|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...utils import BaseOutput |
|
from ...utils.torch_utils import randn_tensor |
|
from ..scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
class KarrasVeOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
derivative (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Derivative of predicted original image sample (x_0). |
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
derivative: torch.Tensor |
|
pred_original_sample: Optional[torch.Tensor] = None |
|
|
|
|
|
class KarrasVeScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
A stochastic scheduler tailored to variance-expanding models. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
<Tip> |
|
|
|
For more details on the parameters, see [Appendix E](https://arxiv.org/abs/2206.00364). The grid search values used |
|
to find the optimal `{s_noise, s_churn, s_min, s_max}` for a specific model are described in Table 5 of the paper. |
|
|
|
</Tip> |
|
|
|
Args: |
|
sigma_min (`float`, defaults to 0.02): |
|
The minimum noise magnitude. |
|
sigma_max (`float`, defaults to 100): |
|
The maximum noise magnitude. |
|
s_noise (`float`, defaults to 1.007): |
|
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, |
|
1.011]. |
|
s_churn (`float`, defaults to 80): |
|
The parameter controlling the overall amount of stochasticity. A reasonable range is [0, 100]. |
|
s_min (`float`, defaults to 0.05): |
|
The start value of the sigma range to add noise (enable stochasticity). A reasonable range is [0, 10]. |
|
s_max (`float`, defaults to 50): |
|
The end value of the sigma range to add noise. A reasonable range is [0.2, 80]. |
|
""" |
|
|
|
order = 2 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sigma_min: float = 0.02, |
|
sigma_max: float = 100, |
|
s_noise: float = 1.007, |
|
s_churn: float = 80, |
|
s_min: float = 0.05, |
|
s_max: float = 50, |
|
): |
|
|
|
self.init_noise_sigma = sigma_max |
|
|
|
|
|
self.num_inference_steps: int = None |
|
self.timesteps: np.IntTensor = None |
|
self.schedule: torch.Tensor = None |
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
timesteps = np.arange(0, self.num_inference_steps)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
schedule = [ |
|
( |
|
self.config.sigma_max**2 |
|
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) |
|
) |
|
for i in self.timesteps |
|
] |
|
self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device) |
|
|
|
def add_noise_to_input( |
|
self, sample: torch.Tensor, sigma: float, generator: Optional[torch.Generator] = None |
|
) -> Tuple[torch.Tensor, float]: |
|
""" |
|
Explicit Langevin-like "churn" step of adding noise to the sample according to a `gamma_i ≥ 0` to reach a |
|
higher noise level `sigma_hat = sigma_i + gamma_i*sigma_i`. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
sigma (`float`): |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
""" |
|
if self.config.s_min <= sigma <= self.config.s_max: |
|
gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1) |
|
else: |
|
gamma = 0 |
|
|
|
|
|
eps = self.config.s_noise * randn_tensor(sample.shape, generator=generator).to(sample.device) |
|
sigma_hat = sigma + gamma * sigma |
|
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) |
|
|
|
return sample_hat, sigma_hat |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
sigma_hat: float, |
|
sigma_prev: float, |
|
sample_hat: torch.Tensor, |
|
return_dict: bool = True, |
|
) -> Union[KarrasVeOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
sigma_hat (`float`): |
|
sigma_prev (`float`): |
|
sample_hat (`torch.Tensor`): |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
|
|
pred_original_sample = sample_hat + sigma_hat * model_output |
|
derivative = (sample_hat - pred_original_sample) / sigma_hat |
|
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative |
|
|
|
if not return_dict: |
|
return (sample_prev, derivative) |
|
|
|
return KarrasVeOutput( |
|
prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample |
|
) |
|
|
|
def step_correct( |
|
self, |
|
model_output: torch.Tensor, |
|
sigma_hat: float, |
|
sigma_prev: float, |
|
sample_hat: torch.Tensor, |
|
sample_prev: torch.Tensor, |
|
derivative: torch.Tensor, |
|
return_dict: bool = True, |
|
) -> Union[KarrasVeOutput, Tuple]: |
|
""" |
|
Corrects the predicted sample based on the `model_output` of the network. |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
sigma_hat (`float`): TODO |
|
sigma_prev (`float`): TODO |
|
sample_hat (`torch.Tensor`): TODO |
|
sample_prev (`torch.Tensor`): TODO |
|
derivative (`torch.Tensor`): TODO |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO |
|
|
|
""" |
|
pred_original_sample = sample_prev + sigma_prev * model_output |
|
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev |
|
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) |
|
|
|
if not return_dict: |
|
return (sample_prev, derivative) |
|
|
|
return KarrasVeOutput( |
|
prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample |
|
) |
|
|
|
def add_noise(self, original_samples, noise, timesteps): |
|
raise NotImplementedError() |
|
|