|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ..utils import deprecate |
|
from .normalization import RMSNorm |
|
from .upsampling import upfirdn2d_native |
|
|
|
|
|
class Downsample1D(nn.Module): |
|
"""A 1D downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
name (`str`, default `conv`): |
|
name of the downsampling 1D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
out_channels: Optional[int] = None, |
|
padding: int = 1, |
|
name: str = "conv", |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if use_conv: |
|
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride) |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
assert inputs.shape[1] == self.channels |
|
return self.conv(inputs) |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
"""A 2D downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
name (`str`, default `conv`): |
|
name of the downsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
out_channels: Optional[int] = None, |
|
padding: int = 1, |
|
name: str = "conv", |
|
kernel_size=3, |
|
norm_type=None, |
|
eps=None, |
|
elementwise_affine=None, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if norm_type == "ln_norm": |
|
self.norm = nn.LayerNorm(channels, eps, elementwise_affine) |
|
elif norm_type == "rms_norm": |
|
self.norm = RMSNorm(channels, eps, elementwise_affine) |
|
elif norm_type is None: |
|
self.norm = None |
|
else: |
|
raise ValueError(f"unknown norm_type: {norm_type}") |
|
|
|
if use_conv: |
|
conv = nn.Conv2d( |
|
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) |
|
|
|
|
|
if name == "conv": |
|
self.Conv2d_0 = conv |
|
self.conv = conv |
|
elif name == "Conv2d_0": |
|
self.conv = conv |
|
else: |
|
self.conv = conv |
|
|
|
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.norm is not None: |
|
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
|
|
if self.use_conv and self.padding == 0: |
|
pad = (0, 1, 0, 1) |
|
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) |
|
|
|
assert hidden_states.shape[1] == self.channels |
|
|
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class FirDownsample2D(nn.Module): |
|
"""A 2D FIR downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
fir_kernel (`tuple`, default `(1, 3, 3, 1)`): |
|
kernel for the FIR filter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
use_conv: bool = False, |
|
fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1), |
|
): |
|
super().__init__() |
|
out_channels = out_channels if out_channels else channels |
|
if use_conv: |
|
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.fir_kernel = fir_kernel |
|
self.use_conv = use_conv |
|
self.out_channels = out_channels |
|
|
|
def _downsample_2d( |
|
self, |
|
hidden_states: torch.Tensor, |
|
weight: Optional[torch.Tensor] = None, |
|
kernel: Optional[torch.Tensor] = None, |
|
factor: int = 2, |
|
gain: float = 1, |
|
) -> torch.Tensor: |
|
"""Fused `Conv2d()` followed by `downsample_2d()`. |
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more |
|
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of |
|
arbitrary order. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
weight (`torch.Tensor`, *optional*): |
|
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be |
|
performed by `inChannels = x.shape[0] // numGroups`. |
|
kernel (`torch.Tensor`, *optional*): |
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which |
|
corresponds to average pooling. |
|
factor (`int`, *optional*, default to `2`): |
|
Integer downsampling factor. |
|
gain (`float`, *optional*, default to `1.0`): |
|
Scaling factor for signal magnitude. |
|
|
|
Returns: |
|
output (`torch.Tensor`): |
|
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same |
|
datatype as `x`. |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * gain |
|
|
|
if self.use_conv: |
|
_, _, convH, convW = weight.shape |
|
pad_value = (kernel.shape[0] - factor) + (convW - 1) |
|
stride_value = [factor, factor] |
|
upfirdn_input = upfirdn2d_native( |
|
hidden_states, |
|
torch.tensor(kernel, device=hidden_states.device), |
|
pad=((pad_value + 1) // 2, pad_value // 2), |
|
) |
|
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) |
|
else: |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, |
|
torch.tensor(kernel, device=hidden_states.device), |
|
down=factor, |
|
pad=((pad_value + 1) // 2, pad_value // 2), |
|
) |
|
|
|
return output |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
if self.use_conv: |
|
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) |
|
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) |
|
else: |
|
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class KDownsample2D(nn.Module): |
|
r"""A 2D K-downsampling layer. |
|
|
|
Parameters: |
|
pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use. |
|
""" |
|
|
|
def __init__(self, pad_mode: str = "reflect"): |
|
super().__init__() |
|
self.pad_mode = pad_mode |
|
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) |
|
self.pad = kernel_1d.shape[1] // 2 - 1 |
|
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode) |
|
weight = inputs.new_zeros( |
|
[ |
|
inputs.shape[1], |
|
inputs.shape[1], |
|
self.kernel.shape[0], |
|
self.kernel.shape[1], |
|
] |
|
) |
|
indices = torch.arange(inputs.shape[1], device=inputs.device) |
|
kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) |
|
weight[indices, indices] = kernel |
|
return F.conv2d(inputs, weight, stride=2) |
|
|
|
|
|
def downsample_2d( |
|
hidden_states: torch.Tensor, |
|
kernel: Optional[torch.Tensor] = None, |
|
factor: int = 2, |
|
gain: float = 1, |
|
) -> torch.Tensor: |
|
r"""Downsample2D a batch of 2D images with the given filter. |
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the |
|
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the |
|
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its |
|
shape is a multiple of the downsampling factor. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`) |
|
Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. |
|
kernel (`torch.Tensor`, *optional*): |
|
FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which |
|
corresponds to average pooling. |
|
factor (`int`, *optional*, default to `2`): |
|
Integer downsampling factor. |
|
gain (`float`, *optional*, default to `1.0`): |
|
Scaling factor for signal magnitude. |
|
|
|
Returns: |
|
output (`torch.Tensor`): |
|
Tensor of the shape `[N, C, H // factor, W // factor]` |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
kernel = torch.tensor(kernel, dtype=torch.float32) |
|
if kernel.ndim == 1: |
|
kernel = torch.outer(kernel, kernel) |
|
kernel /= torch.sum(kernel) |
|
|
|
kernel = kernel * gain |
|
pad_value = kernel.shape[0] - factor |
|
output = upfirdn2d_native( |
|
hidden_states, |
|
kernel.to(device=hidden_states.device), |
|
down=factor, |
|
pad=((pad_value + 1) // 2, pad_value // 2), |
|
) |
|
return output |
|
|