|
import os, sys, glob
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
from decord import VideoReader, cpu
|
|
import cv2
|
|
|
|
import torch
|
|
import torchvision
|
|
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
|
from lvdm.models.samplers.ddim import DDIMSampler
|
|
from einops import rearrange
|
|
|
|
|
|
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
|
cfg_scale=1.0, hs=None, temporal_cfg_scale=None, **kwargs):
|
|
ddim_sampler = DDIMSampler(model)
|
|
uncond_type = model.uncond_type
|
|
batch_size = noise_shape[0]
|
|
fs = cond["fs"]
|
|
del cond["fs"]
|
|
if noise_shape[-1] == 32:
|
|
timestep_spacing = "uniform"
|
|
guidance_rescale = 0.0
|
|
else:
|
|
timestep_spacing = "uniform_trailing"
|
|
guidance_rescale = 0.7
|
|
|
|
if cfg_scale != 1.0:
|
|
if uncond_type == "empty_seq":
|
|
prompts = batch_size * [""]
|
|
|
|
uc_emb = model.get_learned_conditioning(prompts)
|
|
elif uncond_type == "zero_embed":
|
|
c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond
|
|
uc_emb = torch.zeros_like(c_emb)
|
|
|
|
|
|
if hasattr(model, 'embedder'):
|
|
uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device)
|
|
|
|
uc_img = model.embedder(uc_img)
|
|
uc_img = model.image_proj_model(uc_img)
|
|
uc_emb = torch.cat([uc_emb, uc_img], dim=1)
|
|
|
|
if isinstance(cond, dict):
|
|
uc = {key:cond[key] for key in cond.keys()}
|
|
uc.update({'c_crossattn': [uc_emb]})
|
|
else:
|
|
uc = uc_emb
|
|
else:
|
|
uc = None
|
|
|
|
|
|
additional_decode_kwargs = {'ref_context': hs}
|
|
x_T = None
|
|
batch_variants = []
|
|
|
|
for _ in range(n_samples):
|
|
if ddim_sampler is not None:
|
|
kwargs.update({"clean_cond": True})
|
|
samples, _ = ddim_sampler.sample(S=ddim_steps,
|
|
conditioning=cond,
|
|
batch_size=noise_shape[0],
|
|
shape=noise_shape[1:],
|
|
verbose=False,
|
|
unconditional_guidance_scale=cfg_scale,
|
|
unconditional_conditioning=uc,
|
|
eta=ddim_eta,
|
|
temporal_length=noise_shape[2],
|
|
conditional_guidance_scale_temporal=temporal_cfg_scale,
|
|
x_T=x_T,
|
|
fs=fs,
|
|
timestep_spacing=timestep_spacing,
|
|
guidance_rescale=guidance_rescale,
|
|
**kwargs
|
|
)
|
|
|
|
batch_images = model.decode_first_stage(samples, **additional_decode_kwargs)
|
|
|
|
index = list(range(samples.shape[2]))
|
|
del index[1]
|
|
del index[-2]
|
|
samples = samples[:,:,index,:,:]
|
|
|
|
batch_images_middle = model.decode_first_stage(samples, **additional_decode_kwargs)
|
|
batch_images[:,:,batch_images.shape[2]//2-1:batch_images.shape[2]//2+1] = batch_images_middle[:,:,batch_images.shape[2]//2-2:batch_images.shape[2]//2]
|
|
|
|
|
|
|
|
batch_variants.append(batch_images)
|
|
|
|
batch_variants = torch.stack(batch_variants, dim=1)
|
|
return batch_variants
|
|
|
|
|
|
def get_filelist(data_dir, ext='*'):
|
|
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
|
|
file_list.sort()
|
|
return file_list
|
|
|
|
def get_dirlist(path):
|
|
list = []
|
|
if (os.path.exists(path)):
|
|
files = os.listdir(path)
|
|
for file in files:
|
|
m = os.path.join(path,file)
|
|
if (os.path.isdir(m)):
|
|
list.append(m)
|
|
list.sort()
|
|
return list
|
|
|
|
|
|
def load_model_checkpoint(model, ckpt):
|
|
def load_checkpoint(model, ckpt, full_strict):
|
|
state_dict = torch.load(ckpt, map_location="cpu")
|
|
if "state_dict" in list(state_dict.keys()):
|
|
state_dict = state_dict["state_dict"]
|
|
try:
|
|
model.load_state_dict(state_dict, strict=full_strict)
|
|
except:
|
|
|
|
new_pl_sd = OrderedDict()
|
|
for k,v in state_dict.items():
|
|
new_pl_sd[k] = v
|
|
|
|
for k in list(new_pl_sd.keys()):
|
|
if "framestride_embed" in k:
|
|
new_key = k.replace("framestride_embed", "fps_embedding")
|
|
new_pl_sd[new_key] = new_pl_sd[k]
|
|
del new_pl_sd[k]
|
|
model.load_state_dict(new_pl_sd, strict=full_strict)
|
|
else:
|
|
|
|
new_pl_sd = OrderedDict()
|
|
for key in state_dict['module'].keys():
|
|
new_pl_sd[key[16:]]=state_dict['module'][key]
|
|
model.load_state_dict(new_pl_sd, strict=full_strict)
|
|
|
|
return model
|
|
load_checkpoint(model, ckpt, full_strict=True)
|
|
print('>>> model checkpoint loaded.')
|
|
return model
|
|
|
|
|
|
def load_prompts(prompt_file):
|
|
f = open(prompt_file, 'r')
|
|
prompt_list = []
|
|
for idx, line in enumerate(f.readlines()):
|
|
l = line.strip()
|
|
if len(l) != 0:
|
|
prompt_list.append(l)
|
|
f.close()
|
|
return prompt_list
|
|
|
|
|
|
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
|
|
'''
|
|
Notice about some special cases:
|
|
1. video_frames=-1 means to take all the frames (with fs=1)
|
|
2. when the total video frames is less than required, padding strategy will be used (repeated last frame)
|
|
'''
|
|
fps_list = []
|
|
batch_tensor = []
|
|
assert frame_stride > 0, "valid frame stride should be a positive interge!"
|
|
for filepath in filepath_list:
|
|
padding_num = 0
|
|
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
|
|
fps = vidreader.get_avg_fps()
|
|
total_frames = len(vidreader)
|
|
max_valid_frames = (total_frames-1) // frame_stride + 1
|
|
if video_frames < 0:
|
|
|
|
required_frames = total_frames
|
|
frame_stride = 1
|
|
else:
|
|
required_frames = video_frames
|
|
query_frames = min(required_frames, max_valid_frames)
|
|
frame_indices = [frame_stride*i for i in range(query_frames)]
|
|
|
|
|
|
frames = vidreader.get_batch(frame_indices)
|
|
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
|
|
frame_tensor = (frame_tensor / 255. - 0.5) * 2
|
|
if max_valid_frames < required_frames:
|
|
padding_num = required_frames - max_valid_frames
|
|
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
|
|
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
|
|
batch_tensor.append(frame_tensor)
|
|
sample_fps = int(fps/frame_stride)
|
|
fps_list.append(sample_fps)
|
|
|
|
return torch.stack(batch_tensor, dim=0)
|
|
|
|
from PIL import Image
|
|
def load_image_batch(filepath_list, image_size=(256,256)):
|
|
batch_tensor = []
|
|
for filepath in filepath_list:
|
|
_, filename = os.path.split(filepath)
|
|
_, ext = os.path.splitext(filename)
|
|
if ext == '.mp4':
|
|
vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0])
|
|
frame = vidreader.get_batch([0])
|
|
img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float()
|
|
elif ext == '.png' or ext == '.jpg':
|
|
img = Image.open(filepath).convert("RGB")
|
|
rgb_img = np.array(img, np.float32)
|
|
|
|
|
|
rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR)
|
|
img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float()
|
|
else:
|
|
print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]')
|
|
raise NotImplementedError
|
|
img_tensor = (img_tensor / 255. - 0.5) * 2
|
|
batch_tensor.append(img_tensor)
|
|
return torch.stack(batch_tensor, dim=0)
|
|
|
|
|
|
def save_videos(batch_tensors, savedir, filenames, fps=10):
|
|
|
|
n_samples = batch_tensors.shape[1]
|
|
for idx, vid_tensor in enumerate(batch_tensors):
|
|
video = vid_tensor.detach().cpu()
|
|
video = torch.clamp(video.float(), -1., 1.)
|
|
video = video.permute(2, 0, 1, 3, 4)
|
|
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video]
|
|
grid = torch.stack(frame_grids, dim=0)
|
|
grid = (grid + 1.0) / 2.0
|
|
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
|
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
|
|
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
|
|
|
|
|
def get_latent_z(model, videos):
|
|
b, c, t, h, w = videos.shape
|
|
x = rearrange(videos, 'b c t h w -> (b t) c h w')
|
|
z = model.encode_first_stage(x)
|
|
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
|
return z
|
|
|
|
|