|
import math
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import repeat
|
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
|
"""
|
|
Create sinusoidal timestep embeddings.
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
|
These may be fractional.
|
|
:param dim: the dimension of the output.
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
:return: an [N x dim] Tensor of positional embeddings.
|
|
"""
|
|
if not repeat_only:
|
|
half = dim // 2
|
|
freqs = torch.exp(
|
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
|
).to(device=timesteps.device)
|
|
args = timesteps[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
else:
|
|
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
|
return embedding
|
|
|
|
|
|
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
|
if schedule == "linear":
|
|
betas = (
|
|
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
|
)
|
|
|
|
elif schedule == "cosine":
|
|
timesteps = (
|
|
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
|
)
|
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
|
alphas = torch.cos(alphas).pow(2)
|
|
alphas = alphas / alphas[0]
|
|
betas = 1 - alphas[1:] / alphas[:-1]
|
|
betas = np.clip(betas, a_min=0, a_max=0.999)
|
|
|
|
elif schedule == "sqrt_linear":
|
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
|
elif schedule == "sqrt":
|
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
|
else:
|
|
raise ValueError(f"schedule '{schedule}' unknown.")
|
|
return betas.numpy()
|
|
|
|
|
|
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
|
if ddim_discr_method == 'uniform':
|
|
c = num_ddpm_timesteps // num_ddim_timesteps
|
|
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
|
steps_out = ddim_timesteps + 1
|
|
elif ddim_discr_method == 'uniform_trailing':
|
|
c = num_ddpm_timesteps / num_ddim_timesteps
|
|
ddim_timesteps = np.flip(np.round(np.arange(num_ddpm_timesteps, 0, -c))).astype(np.int64)
|
|
steps_out = ddim_timesteps - 1
|
|
elif ddim_discr_method == 'quad':
|
|
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
|
steps_out = ddim_timesteps + 1
|
|
else:
|
|
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
|
|
|
|
|
|
|
|
|
if verbose:
|
|
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
|
return steps_out
|
|
|
|
|
|
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
|
|
|
|
|
alphas = alphacums[ddim_timesteps]
|
|
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
|
|
|
|
|
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
|
if verbose:
|
|
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
|
print(f'For the chosen value of eta, which is {eta}, '
|
|
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
|
return sigmas, alphas, alphas_prev
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
|
"""
|
|
Create a beta schedule that discretizes the given alpha_t_bar function,
|
|
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
|
:param num_diffusion_timesteps: the number of betas to produce.
|
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
|
produces the cumulative product of (1-beta) up to that
|
|
part of the diffusion process.
|
|
:param max_beta: the maximum beta to use; use values lower than 1 to
|
|
prevent singularities.
|
|
"""
|
|
betas = []
|
|
for i in range(num_diffusion_timesteps):
|
|
t1 = i / num_diffusion_timesteps
|
|
t2 = (i + 1) / num_diffusion_timesteps
|
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
|
return np.array(betas)
|
|
|
|
def rescale_zero_terminal_snr(betas):
|
|
"""
|
|
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
|
|
|
Args:
|
|
betas (`numpy.ndarray`):
|
|
the betas that the scheduler is being initialized with.
|
|
|
|
Returns:
|
|
`numpy.ndarray`: rescaled betas with zero terminal SNR
|
|
"""
|
|
|
|
alphas = 1.0 - betas
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
alphas_bar_sqrt = np.sqrt(alphas_cumprod)
|
|
|
|
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].copy()
|
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].copy()
|
|
|
|
|
|
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
|
|
|
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
|
|
|
|
|
alphas_bar = alphas_bar_sqrt**2
|
|
alphas = alphas_bar[1:] / alphas_bar[:-1]
|
|
alphas = np.concatenate([alphas_bar[0:1], alphas])
|
|
betas = 1 - alphas
|
|
|
|
return betas
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
"""
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
|
"""
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
return noise_cfg |