|
|
|
from einops import rearrange, repeat
|
|
import logging
|
|
from typing import Any, Callable, Optional, Iterable, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from packaging import version
|
|
logpy = logging.getLogger(__name__)
|
|
|
|
try:
|
|
import xformers
|
|
import xformers.ops
|
|
|
|
XFORMERS_IS_AVAILABLE = True
|
|
except:
|
|
XFORMERS_IS_AVAILABLE = False
|
|
logpy.warning("no module 'xformers'. Processing without...")
|
|
|
|
from lvdm.modules.attention_svd import LinearAttention, MemoryEfficientCrossAttention
|
|
|
|
|
|
def nonlinearity(x):
|
|
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
def Normalize(in_channels, num_groups=32):
|
|
return torch.nn.GroupNorm(
|
|
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
|
)
|
|
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
in_channels,
|
|
out_channels=None,
|
|
conv_shortcut=False,
|
|
dropout,
|
|
temb_channels=512,
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
|
|
self.norm1 = Normalize(in_channels)
|
|
self.conv1 = torch.nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
if temb_channels > 0:
|
|
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
|
self.norm2 = Normalize(out_channels)
|
|
self.dropout = torch.nn.Dropout(dropout)
|
|
self.conv2 = torch.nn.Conv2d(
|
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
self.conv_shortcut = torch.nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
else:
|
|
self.nin_shortcut = torch.nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, x, temb):
|
|
h = x
|
|
h = self.norm1(h)
|
|
h = nonlinearity(h)
|
|
h = self.conv1(h)
|
|
|
|
if temb is not None:
|
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
|
|
|
h = self.norm2(h)
|
|
h = nonlinearity(h)
|
|
h = self.dropout(h)
|
|
h = self.conv2(h)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
x = self.conv_shortcut(x)
|
|
else:
|
|
x = self.nin_shortcut(x)
|
|
|
|
return x + h
|
|
|
|
|
|
class LinAttnBlock(LinearAttention):
|
|
"""to match AttnBlock usage"""
|
|
|
|
def __init__(self, in_channels):
|
|
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
|
|
|
|
|
class AttnBlock(nn.Module):
|
|
def __init__(self, in_channels):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = Normalize(in_channels)
|
|
self.q = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.k = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.v = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.proj_out = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
|
h_ = self.norm(h_)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
b, c, h, w = q.shape
|
|
q, k, v = map(
|
|
lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v)
|
|
)
|
|
h_ = torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v
|
|
)
|
|
|
|
|
|
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
|
|
|
def forward(self, x, **kwargs):
|
|
h_ = x
|
|
h_ = self.attention(h_)
|
|
h_ = self.proj_out(h_)
|
|
return x + h_
|
|
|
|
|
|
class MemoryEfficientAttnBlock(nn.Module):
|
|
"""
|
|
Uses xformers efficient implementation,
|
|
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
|
Note: this is a single-head self-attention operation
|
|
"""
|
|
|
|
|
|
def __init__(self, in_channels):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = Normalize(in_channels)
|
|
self.q = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.k = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.v = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.proj_out = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.attention_op: Optional[Any] = None
|
|
|
|
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
|
h_ = self.norm(h_)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
|
|
B, C, H, W = q.shape
|
|
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
|
|
|
|
q, k, v = map(
|
|
lambda t: t.unsqueeze(3)
|
|
.reshape(B, t.shape[1], 1, C)
|
|
.permute(0, 2, 1, 3)
|
|
.reshape(B * 1, t.shape[1], C)
|
|
.contiguous(),
|
|
(q, k, v),
|
|
)
|
|
out = xformers.ops.memory_efficient_attention(
|
|
q, k, v, attn_bias=None, op=self.attention_op
|
|
)
|
|
|
|
out = (
|
|
out.unsqueeze(0)
|
|
.reshape(B, 1, out.shape[1], C)
|
|
.permute(0, 2, 1, 3)
|
|
.reshape(B, out.shape[1], C)
|
|
)
|
|
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
|
|
|
|
def forward(self, x, **kwargs):
|
|
h_ = x
|
|
h_ = self.attention(h_)
|
|
h_ = self.proj_out(h_)
|
|
return x + h_
|
|
|
|
|
|
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
|
def forward(self, x, context=None, mask=None, **unused_kwargs):
|
|
b, c, h, w = x.shape
|
|
x = rearrange(x, "b c h w -> b (h w) c")
|
|
out = super().forward(x, context=context, mask=mask)
|
|
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
|
|
return x + out
|
|
|
|
|
|
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
|
assert attn_type in [
|
|
"vanilla",
|
|
"vanilla-xformers",
|
|
"memory-efficient-cross-attn",
|
|
"linear",
|
|
"none",
|
|
"memory-efficient-cross-attn-fusion",
|
|
], f"attn_type {attn_type} unknown"
|
|
if (
|
|
version.parse(torch.__version__) < version.parse("2.0.0")
|
|
and attn_type != "none"
|
|
):
|
|
assert XFORMERS_IS_AVAILABLE, (
|
|
f"We do not support vanilla attention in {torch.__version__} anymore, "
|
|
f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
|
)
|
|
|
|
logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
|
if attn_type == "vanilla":
|
|
assert attn_kwargs is None
|
|
return AttnBlock(in_channels)
|
|
elif attn_type == "vanilla-xformers":
|
|
logpy.info(
|
|
f"building MemoryEfficientAttnBlock with {in_channels} in_channels..."
|
|
)
|
|
return MemoryEfficientAttnBlock(in_channels)
|
|
elif attn_type == "memory-efficient-cross-attn":
|
|
attn_kwargs["query_dim"] = in_channels
|
|
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
|
elif attn_type == "memory-efficient-cross-attn-fusion":
|
|
attn_kwargs["query_dim"] = in_channels
|
|
return MemoryEfficientCrossAttentionWrapperFusion(**attn_kwargs)
|
|
elif attn_type == "none":
|
|
return nn.Identity(in_channels)
|
|
else:
|
|
return LinAttnBlock(in_channels)
|
|
|
|
class MemoryEfficientCrossAttentionWrapperFusion(MemoryEfficientCrossAttention):
|
|
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0, **kwargs):
|
|
super().__init__(query_dim, context_dim, heads, dim_head, dropout, **kwargs)
|
|
self.norm = Normalize(query_dim)
|
|
nn.init.zeros_(self.to_out[0].weight)
|
|
nn.init.zeros_(self.to_out[0].bias)
|
|
|
|
def forward(self, x, context=None, mask=None):
|
|
if self.training:
|
|
return checkpoint(self._forward, x, context, mask, use_reentrant=False)
|
|
else:
|
|
return self._forward(x, context, mask)
|
|
|
|
def _forward(
|
|
self,
|
|
x,
|
|
context=None,
|
|
mask=None,
|
|
):
|
|
bt, c, h, w = x.shape
|
|
h_ = self.norm(x)
|
|
h_ = rearrange(h_, "b c h w -> b (h w) c")
|
|
q = self.to_q(h_)
|
|
|
|
|
|
b, c, l, h, w = context.shape
|
|
context = rearrange(context, "b c l h w -> (b l) (h w) c")
|
|
k = self.to_k(context)
|
|
v = self.to_v(context)
|
|
k = rearrange(k, "(b l) d c -> b l d c", l=l)
|
|
k = torch.cat([k[:, [0] * (bt//b)], k[:, [1]*(bt//b)]], dim=2)
|
|
k = rearrange(k, "b l d c -> (b l) d c")
|
|
|
|
v = rearrange(v, "(b l) d c -> b l d c", l=l)
|
|
v = torch.cat([v[:, [0] * (bt//b)], v[:, [1]*(bt//b)]], dim=2)
|
|
v = rearrange(v, "b l d c -> (b l) d c")
|
|
|
|
|
|
b, _, _ = q.shape
|
|
q, k, v = map(
|
|
lambda t: t.unsqueeze(3)
|
|
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
|
.permute(0, 2, 1, 3)
|
|
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
|
.contiguous(),
|
|
(q, k, v),
|
|
)
|
|
|
|
|
|
if version.parse(xformers.__version__) >= version.parse("0.0.21"):
|
|
|
|
|
|
max_bs = 32768
|
|
N = q.shape[0]
|
|
n_batches = math.ceil(N / max_bs)
|
|
out = list()
|
|
for i_batch in range(n_batches):
|
|
batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs)
|
|
out.append(
|
|
xformers.ops.memory_efficient_attention(
|
|
q[batch],
|
|
k[batch],
|
|
v[batch],
|
|
attn_bias=None,
|
|
op=self.attention_op,
|
|
)
|
|
)
|
|
out = torch.cat(out, 0)
|
|
else:
|
|
out = xformers.ops.memory_efficient_attention(
|
|
q, k, v, attn_bias=None, op=self.attention_op
|
|
)
|
|
|
|
|
|
if exists(mask):
|
|
raise NotImplementedError
|
|
out = (
|
|
out.unsqueeze(0)
|
|
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
|
.permute(0, 2, 1, 3)
|
|
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
|
)
|
|
out = self.to_out(out)
|
|
out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c)
|
|
return x + out
|
|
|
|
class Combiner(nn.Module):
|
|
def __init__(self, ch) -> None:
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(ch,ch,1,padding=0)
|
|
|
|
nn.init.zeros_(self.conv.weight)
|
|
nn.init.zeros_(self.conv.bias)
|
|
|
|
def forward(self, x, context):
|
|
if self.training:
|
|
return checkpoint(self._forward, x, context, use_reentrant=False)
|
|
else:
|
|
return self._forward(x, context)
|
|
|
|
def _forward(self, x, context):
|
|
|
|
b, c, l, h, w = context.shape
|
|
bt, c, h, w = x.shape
|
|
context = rearrange(context, "b c l h w -> (b l) c h w")
|
|
context = self.conv(context)
|
|
context = rearrange(context, "(b l) c h w -> b c l h w", l=l)
|
|
x = rearrange(x, "(b t) c h w -> b c t h w", t=bt//b)
|
|
x[:,:,0] = x[:,:,0] + context[:,:,0]
|
|
x[:,:,-1] = x[:,:,-1] + context[:,:,1]
|
|
x = rearrange(x, "b c t h w -> (b t) c h w")
|
|
return x
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
ch,
|
|
out_ch,
|
|
ch_mult=(1, 2, 4, 8),
|
|
num_res_blocks,
|
|
attn_resolutions,
|
|
dropout=0.0,
|
|
resamp_with_conv=True,
|
|
in_channels,
|
|
resolution,
|
|
z_channels,
|
|
give_pre_end=False,
|
|
tanh_out=False,
|
|
use_linear_attn=False,
|
|
attn_type="vanilla-xformers",
|
|
attn_level=[2,3],
|
|
**ignorekwargs,
|
|
):
|
|
super().__init__()
|
|
if use_linear_attn:
|
|
attn_type = "linear"
|
|
self.ch = ch
|
|
self.temb_ch = 0
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
self.give_pre_end = give_pre_end
|
|
self.tanh_out = tanh_out
|
|
self.attn_level = attn_level
|
|
|
|
in_ch_mult = (1,) + tuple(ch_mult)
|
|
block_in = ch * ch_mult[self.num_resolutions - 1]
|
|
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
|
self.z_shape = (1, z_channels, curr_res, curr_res)
|
|
logpy.info(
|
|
"Working with z of shape {} = {} dimensions.".format(
|
|
self.z_shape, np.prod(self.z_shape)
|
|
)
|
|
)
|
|
|
|
make_attn_cls = self._make_attn()
|
|
make_resblock_cls = self._make_resblock()
|
|
make_conv_cls = self._make_conv()
|
|
|
|
self.conv_in = torch.nn.Conv2d(
|
|
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
|
|
self.mid = nn.Module()
|
|
self.mid.block_1 = make_resblock_cls(
|
|
in_channels=block_in,
|
|
out_channels=block_in,
|
|
temb_channels=self.temb_ch,
|
|
dropout=dropout,
|
|
)
|
|
self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type)
|
|
self.mid.block_2 = make_resblock_cls(
|
|
in_channels=block_in,
|
|
out_channels=block_in,
|
|
temb_channels=self.temb_ch,
|
|
dropout=dropout,
|
|
)
|
|
|
|
|
|
self.up = nn.ModuleList()
|
|
self.attn_refinement = nn.ModuleList()
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
block = nn.ModuleList()
|
|
attn = nn.ModuleList()
|
|
block_out = ch * ch_mult[i_level]
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
block.append(
|
|
make_resblock_cls(
|
|
in_channels=block_in,
|
|
out_channels=block_out,
|
|
temb_channels=self.temb_ch,
|
|
dropout=dropout,
|
|
)
|
|
)
|
|
block_in = block_out
|
|
if curr_res in attn_resolutions:
|
|
attn.append(make_attn_cls(block_in, attn_type=attn_type))
|
|
up = nn.Module()
|
|
up.block = block
|
|
up.attn = attn
|
|
if i_level != 0:
|
|
up.upsample = Upsample(block_in, resamp_with_conv)
|
|
curr_res = curr_res * 2
|
|
self.up.insert(0, up)
|
|
|
|
if i_level in self.attn_level:
|
|
self.attn_refinement.insert(0, make_attn_cls(block_in, attn_type='memory-efficient-cross-attn-fusion', attn_kwargs={}))
|
|
else:
|
|
self.attn_refinement.insert(0, Combiner(block_in))
|
|
|
|
self.norm_out = Normalize(block_in)
|
|
self.attn_refinement.append(Combiner(block_in))
|
|
self.conv_out = make_conv_cls(
|
|
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
def _make_attn(self) -> Callable:
|
|
return make_attn
|
|
|
|
def _make_resblock(self) -> Callable:
|
|
return ResnetBlock
|
|
|
|
def _make_conv(self) -> Callable:
|
|
return torch.nn.Conv2d
|
|
|
|
def get_last_layer(self, **kwargs):
|
|
return self.conv_out.weight
|
|
|
|
def forward(self, z, ref_context=None, **kwargs):
|
|
|
|
|
|
self.last_z_shape = z.shape
|
|
|
|
temb = None
|
|
|
|
|
|
h = self.conv_in(z)
|
|
|
|
|
|
h = self.mid.block_1(h, temb, **kwargs)
|
|
h = self.mid.attn_1(h, **kwargs)
|
|
h = self.mid.block_2(h, temb, **kwargs)
|
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
h = self.up[i_level].block[i_block](h, temb, **kwargs)
|
|
if len(self.up[i_level].attn) > 0:
|
|
h = self.up[i_level].attn[i_block](h, **kwargs)
|
|
if ref_context:
|
|
h = self.attn_refinement[i_level](x=h, context=ref_context[i_level])
|
|
if i_level != 0:
|
|
h = self.up[i_level].upsample(h)
|
|
|
|
|
|
if self.give_pre_end:
|
|
return h
|
|
|
|
h = self.norm_out(h)
|
|
h = nonlinearity(h)
|
|
if ref_context:
|
|
|
|
h = self.attn_refinement[-1](x=h, context=ref_context[-1])
|
|
h = self.conv_out(h, **kwargs)
|
|
if self.tanh_out:
|
|
h = torch.tanh(h)
|
|
return h
|
|
|
|
|
|
|
|
|
|
from abc import abstractmethod
|
|
from lvdm.models.utils_diffusion import timestep_embedding
|
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
from lvdm.basics import (
|
|
zero_module,
|
|
conv_nd,
|
|
linear,
|
|
normalization,
|
|
)
|
|
from lvdm.modules.networks.openaimodel3d import Upsample, Downsample
|
|
class TimestepBlock(nn.Module):
|
|
"""
|
|
Any module where forward() takes timestep embeddings as a second argument.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def forward(self, x: torch.Tensor, emb: torch.Tensor):
|
|
"""
|
|
Apply the module to `x` given `emb` timestep embeddings.
|
|
"""
|
|
|
|
class ResBlock(TimestepBlock):
|
|
"""
|
|
A residual block that can optionally change the number of channels.
|
|
:param channels: the number of input channels.
|
|
:param emb_channels: the number of timestep embedding channels.
|
|
:param dropout: the rate of dropout.
|
|
:param out_channels: if specified, the number of out channels.
|
|
:param use_conv: if True and out_channels is specified, use a spatial
|
|
convolution instead of a smaller 1x1 convolution to change the
|
|
channels in the skip connection.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
|
:param up: if True, use this block for upsampling.
|
|
:param down: if True, use this block for downsampling.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
emb_channels: int,
|
|
dropout: float,
|
|
out_channels: Optional[int] = None,
|
|
use_conv: bool = False,
|
|
use_scale_shift_norm: bool = False,
|
|
dims: int = 2,
|
|
use_checkpoint: bool = False,
|
|
up: bool = False,
|
|
down: bool = False,
|
|
kernel_size: int = 3,
|
|
exchange_temb_dims: bool = False,
|
|
skip_t_emb: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.emb_channels = emb_channels
|
|
self.dropout = dropout
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_checkpoint = use_checkpoint
|
|
self.use_scale_shift_norm = use_scale_shift_norm
|
|
self.exchange_temb_dims = exchange_temb_dims
|
|
|
|
if isinstance(kernel_size, Iterable):
|
|
padding = [k // 2 for k in kernel_size]
|
|
else:
|
|
padding = kernel_size // 2
|
|
|
|
self.in_layers = nn.Sequential(
|
|
normalization(channels),
|
|
nn.SiLU(),
|
|
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
|
|
)
|
|
|
|
self.updown = up or down
|
|
|
|
if up:
|
|
self.h_upd = Upsample(channels, False, dims)
|
|
self.x_upd = Upsample(channels, False, dims)
|
|
elif down:
|
|
self.h_upd = Downsample(channels, False, dims)
|
|
self.x_upd = Downsample(channels, False, dims)
|
|
else:
|
|
self.h_upd = self.x_upd = nn.Identity()
|
|
|
|
self.skip_t_emb = skip_t_emb
|
|
self.emb_out_channels = (
|
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels
|
|
)
|
|
if self.skip_t_emb:
|
|
|
|
assert not self.use_scale_shift_norm
|
|
self.emb_layers = None
|
|
self.exchange_temb_dims = False
|
|
else:
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
linear(
|
|
emb_channels,
|
|
self.emb_out_channels,
|
|
),
|
|
)
|
|
|
|
self.out_layers = nn.Sequential(
|
|
normalization(self.out_channels),
|
|
nn.SiLU(),
|
|
nn.Dropout(p=dropout),
|
|
zero_module(
|
|
conv_nd(
|
|
dims,
|
|
self.out_channels,
|
|
self.out_channels,
|
|
kernel_size,
|
|
padding=padding,
|
|
)
|
|
),
|
|
)
|
|
|
|
if self.out_channels == channels:
|
|
self.skip_connection = nn.Identity()
|
|
elif use_conv:
|
|
self.skip_connection = conv_nd(
|
|
dims, channels, self.out_channels, kernel_size, padding=padding
|
|
)
|
|
else:
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
|
|
|
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
:param x: an [N x C x ...] Tensor of features.
|
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
if self.use_checkpoint:
|
|
return checkpoint(self._forward, x, emb, use_reentrant=False)
|
|
else:
|
|
return self._forward(x, emb)
|
|
|
|
def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
|
if self.updown:
|
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
|
h = in_rest(x)
|
|
h = self.h_upd(h)
|
|
x = self.x_upd(x)
|
|
h = in_conv(h)
|
|
else:
|
|
h = self.in_layers(x)
|
|
|
|
if self.skip_t_emb:
|
|
emb_out = torch.zeros_like(h)
|
|
else:
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
while len(emb_out.shape) < len(h.shape):
|
|
emb_out = emb_out[..., None]
|
|
if self.use_scale_shift_norm:
|
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
|
h = out_norm(h) * (1 + scale) + shift
|
|
h = out_rest(h)
|
|
else:
|
|
if self.exchange_temb_dims:
|
|
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
|
|
h = h + emb_out
|
|
h = self.out_layers(h)
|
|
return self.skip_connection(x) + h
|
|
|
|
|
|
|
|
from lvdm.modules.attention_svd import *
|
|
class VideoTransformerBlock(nn.Module):
|
|
ATTENTION_MODES = {
|
|
"softmax": CrossAttention,
|
|
"softmax-xformers": MemoryEfficientCrossAttention,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
n_heads,
|
|
d_head,
|
|
dropout=0.0,
|
|
context_dim=None,
|
|
gated_ff=True,
|
|
checkpoint=True,
|
|
timesteps=None,
|
|
ff_in=False,
|
|
inner_dim=None,
|
|
attn_mode="softmax",
|
|
disable_self_attn=False,
|
|
disable_temporal_crossattention=False,
|
|
switch_temporal_ca_to_sa=False,
|
|
):
|
|
super().__init__()
|
|
|
|
attn_cls = self.ATTENTION_MODES[attn_mode]
|
|
|
|
self.ff_in = ff_in or inner_dim is not None
|
|
if inner_dim is None:
|
|
inner_dim = dim
|
|
|
|
assert int(n_heads * d_head) == inner_dim
|
|
|
|
self.is_res = inner_dim == dim
|
|
|
|
if self.ff_in:
|
|
self.norm_in = nn.LayerNorm(dim)
|
|
self.ff_in = FeedForward(
|
|
dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff
|
|
)
|
|
|
|
self.timesteps = timesteps
|
|
self.disable_self_attn = disable_self_attn
|
|
if self.disable_self_attn:
|
|
self.attn1 = attn_cls(
|
|
query_dim=inner_dim,
|
|
heads=n_heads,
|
|
dim_head=d_head,
|
|
context_dim=context_dim,
|
|
dropout=dropout,
|
|
)
|
|
else:
|
|
self.attn1 = attn_cls(
|
|
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
|
)
|
|
|
|
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)
|
|
|
|
if disable_temporal_crossattention:
|
|
if switch_temporal_ca_to_sa:
|
|
raise ValueError
|
|
else:
|
|
self.attn2 = None
|
|
else:
|
|
self.norm2 = nn.LayerNorm(inner_dim)
|
|
if switch_temporal_ca_to_sa:
|
|
self.attn2 = attn_cls(
|
|
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
|
)
|
|
else:
|
|
self.attn2 = attn_cls(
|
|
query_dim=inner_dim,
|
|
context_dim=context_dim,
|
|
heads=n_heads,
|
|
dim_head=d_head,
|
|
dropout=dropout,
|
|
)
|
|
|
|
self.norm1 = nn.LayerNorm(inner_dim)
|
|
self.norm3 = nn.LayerNorm(inner_dim)
|
|
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
|
|
|
|
self.checkpoint = checkpoint
|
|
if self.checkpoint:
|
|
print(f"====>{self.__class__.__name__} is using checkpointing")
|
|
else:
|
|
print(f"====>{self.__class__.__name__} is NOT using checkpointing")
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None
|
|
) -> torch.Tensor:
|
|
if self.checkpoint:
|
|
return checkpoint(self._forward, x, context, timesteps, use_reentrant=False)
|
|
else:
|
|
return self._forward(x, context, timesteps=timesteps)
|
|
|
|
def _forward(self, x, context=None, timesteps=None):
|
|
assert self.timesteps or timesteps
|
|
assert not (self.timesteps and timesteps) or self.timesteps == timesteps
|
|
timesteps = self.timesteps or timesteps
|
|
B, S, C = x.shape
|
|
x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps)
|
|
|
|
if self.ff_in:
|
|
x_skip = x
|
|
x = self.ff_in(self.norm_in(x))
|
|
if self.is_res:
|
|
x += x_skip
|
|
|
|
if self.disable_self_attn:
|
|
x = self.attn1(self.norm1(x), context=context) + x
|
|
else:
|
|
x = self.attn1(self.norm1(x)) + x
|
|
|
|
if self.attn2 is not None:
|
|
if self.switch_temporal_ca_to_sa:
|
|
x = self.attn2(self.norm2(x)) + x
|
|
else:
|
|
x = self.attn2(self.norm2(x), context=context) + x
|
|
x_skip = x
|
|
x = self.ff(self.norm3(x))
|
|
if self.is_res:
|
|
x += x_skip
|
|
|
|
x = rearrange(
|
|
x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
|
)
|
|
return x
|
|
|
|
def get_last_layer(self):
|
|
return self.ff.net[-1].weight
|
|
|
|
|
|
|
|
|
|
import functools
|
|
def partialclass(cls, *args, **kwargs):
|
|
class NewCls(cls):
|
|
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
|
|
|
|
return NewCls
|
|
|
|
|
|
class VideoResBlock(ResnetBlock):
|
|
def __init__(
|
|
self,
|
|
out_channels,
|
|
*args,
|
|
dropout=0.0,
|
|
video_kernel_size=3,
|
|
alpha=0.0,
|
|
merge_strategy="learned",
|
|
**kwargs,
|
|
):
|
|
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
|
|
if video_kernel_size is None:
|
|
video_kernel_size = [3, 1, 1]
|
|
self.time_stack = ResBlock(
|
|
channels=out_channels,
|
|
emb_channels=0,
|
|
dropout=dropout,
|
|
dims=3,
|
|
use_scale_shift_norm=False,
|
|
use_conv=False,
|
|
up=False,
|
|
down=False,
|
|
kernel_size=video_kernel_size,
|
|
use_checkpoint=True,
|
|
skip_t_emb=True,
|
|
)
|
|
|
|
self.merge_strategy = merge_strategy
|
|
if self.merge_strategy == "fixed":
|
|
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
|
elif self.merge_strategy == "learned":
|
|
self.register_parameter(
|
|
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
|
|
|
def get_alpha(self, bs):
|
|
if self.merge_strategy == "fixed":
|
|
return self.mix_factor
|
|
elif self.merge_strategy == "learned":
|
|
return torch.sigmoid(self.mix_factor)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def forward(self, x, temb, skip_video=False, timesteps=None):
|
|
if timesteps is None:
|
|
timesteps = self.timesteps
|
|
|
|
b, c, h, w = x.shape
|
|
|
|
x = super().forward(x, temb)
|
|
|
|
if not skip_video:
|
|
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
|
|
|
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
|
|
|
x = self.time_stack(x, temb)
|
|
|
|
alpha = self.get_alpha(bs=b // timesteps)
|
|
x = alpha * x + (1.0 - alpha) * x_mix
|
|
|
|
x = rearrange(x, "b c t h w -> (b t) c h w")
|
|
return x
|
|
|
|
|
|
class AE3DConv(torch.nn.Conv2d):
|
|
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
|
|
super().__init__(in_channels, out_channels, *args, **kwargs)
|
|
if isinstance(video_kernel_size, Iterable):
|
|
padding = [int(k // 2) for k in video_kernel_size]
|
|
else:
|
|
padding = int(video_kernel_size // 2)
|
|
|
|
self.time_mix_conv = torch.nn.Conv3d(
|
|
in_channels=out_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=video_kernel_size,
|
|
padding=padding,
|
|
)
|
|
|
|
def forward(self, input, timesteps, skip_video=False):
|
|
x = super().forward(input)
|
|
if skip_video:
|
|
return x
|
|
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
|
x = self.time_mix_conv(x)
|
|
return rearrange(x, "b c t h w -> (b t) c h w")
|
|
|
|
|
|
class VideoBlock(AttnBlock):
|
|
def __init__(
|
|
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
|
|
):
|
|
super().__init__(in_channels)
|
|
|
|
self.time_mix_block = VideoTransformerBlock(
|
|
dim=in_channels,
|
|
n_heads=1,
|
|
d_head=in_channels,
|
|
checkpoint=True,
|
|
ff_in=True,
|
|
attn_mode="softmax",
|
|
)
|
|
|
|
time_embed_dim = self.in_channels * 4
|
|
self.video_time_embed = torch.nn.Sequential(
|
|
torch.nn.Linear(self.in_channels, time_embed_dim),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Linear(time_embed_dim, self.in_channels),
|
|
)
|
|
|
|
self.merge_strategy = merge_strategy
|
|
if self.merge_strategy == "fixed":
|
|
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
|
elif self.merge_strategy == "learned":
|
|
self.register_parameter(
|
|
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
|
|
|
def forward(self, x, timesteps, skip_video=False):
|
|
if skip_video:
|
|
return super().forward(x)
|
|
|
|
x_in = x
|
|
x = self.attention(x)
|
|
h, w = x.shape[2:]
|
|
x = rearrange(x, "b c h w -> b (h w) c")
|
|
|
|
x_mix = x
|
|
num_frames = torch.arange(timesteps, device=x.device)
|
|
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
|
num_frames = rearrange(num_frames, "b t -> (b t)")
|
|
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
|
emb = self.video_time_embed(t_emb)
|
|
emb = emb[:, None, :]
|
|
x_mix = x_mix + emb
|
|
|
|
alpha = self.get_alpha()
|
|
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
|
|
x = alpha * x + (1.0 - alpha) * x_mix
|
|
|
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
|
x = self.proj_out(x)
|
|
|
|
return x_in + x
|
|
|
|
def get_alpha(
|
|
self,
|
|
):
|
|
if self.merge_strategy == "fixed":
|
|
return self.mix_factor
|
|
elif self.merge_strategy == "learned":
|
|
return torch.sigmoid(self.mix_factor)
|
|
else:
|
|
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
|
|
|
|
|
|
class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock):
|
|
def __init__(
|
|
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
|
|
):
|
|
super().__init__(in_channels)
|
|
|
|
self.time_mix_block = VideoTransformerBlock(
|
|
dim=in_channels,
|
|
n_heads=1,
|
|
d_head=in_channels,
|
|
checkpoint=True,
|
|
ff_in=True,
|
|
attn_mode="softmax-xformers",
|
|
)
|
|
|
|
time_embed_dim = self.in_channels * 4
|
|
self.video_time_embed = torch.nn.Sequential(
|
|
torch.nn.Linear(self.in_channels, time_embed_dim),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Linear(time_embed_dim, self.in_channels),
|
|
)
|
|
|
|
self.merge_strategy = merge_strategy
|
|
if self.merge_strategy == "fixed":
|
|
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
|
elif self.merge_strategy == "learned":
|
|
self.register_parameter(
|
|
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
|
|
|
def forward(self, x, timesteps, skip_time_block=False):
|
|
if skip_time_block:
|
|
return super().forward(x)
|
|
|
|
x_in = x
|
|
x = self.attention(x)
|
|
h, w = x.shape[2:]
|
|
x = rearrange(x, "b c h w -> b (h w) c")
|
|
|
|
x_mix = x
|
|
num_frames = torch.arange(timesteps, device=x.device)
|
|
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
|
num_frames = rearrange(num_frames, "b t -> (b t)")
|
|
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
|
emb = self.video_time_embed(t_emb)
|
|
emb = emb[:, None, :]
|
|
x_mix = x_mix + emb
|
|
|
|
alpha = self.get_alpha()
|
|
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
|
|
x = alpha * x + (1.0 - alpha) * x_mix
|
|
|
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
|
x = self.proj_out(x)
|
|
|
|
return x_in + x
|
|
|
|
def get_alpha(
|
|
self,
|
|
):
|
|
if self.merge_strategy == "fixed":
|
|
return self.mix_factor
|
|
elif self.merge_strategy == "learned":
|
|
return torch.sigmoid(self.mix_factor)
|
|
else:
|
|
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
|
|
|
|
|
|
def make_time_attn(
|
|
in_channels,
|
|
attn_type="vanilla",
|
|
attn_kwargs=None,
|
|
alpha: float = 0,
|
|
merge_strategy: str = "learned",
|
|
):
|
|
assert attn_type in [
|
|
"vanilla",
|
|
"vanilla-xformers",
|
|
], f"attn_type {attn_type} not supported for spatio-temporal attention"
|
|
print(
|
|
f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels"
|
|
)
|
|
if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers":
|
|
print(
|
|
f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. "
|
|
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
|
)
|
|
attn_type = "vanilla"
|
|
|
|
if attn_type == "vanilla":
|
|
assert attn_kwargs is None
|
|
return partialclass(
|
|
VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
|
|
)
|
|
elif attn_type == "vanilla-xformers":
|
|
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
|
return partialclass(
|
|
MemoryEfficientVideoBlock,
|
|
in_channels,
|
|
alpha=alpha,
|
|
merge_strategy=merge_strategy,
|
|
)
|
|
else:
|
|
return NotImplementedError()
|
|
|
|
|
|
class Conv2DWrapper(torch.nn.Conv2d):
|
|
def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
return super().forward(input)
|
|
|
|
|
|
class VideoDecoder(Decoder):
|
|
available_time_modes = ["all", "conv-only", "attn-only"]
|
|
|
|
def __init__(
|
|
self,
|
|
*args,
|
|
video_kernel_size: Union[int, list] = [3,1,1],
|
|
alpha: float = 0.0,
|
|
merge_strategy: str = "learned",
|
|
time_mode: str = "conv-only",
|
|
**kwargs,
|
|
):
|
|
self.video_kernel_size = video_kernel_size
|
|
self.alpha = alpha
|
|
self.merge_strategy = merge_strategy
|
|
self.time_mode = time_mode
|
|
assert (
|
|
self.time_mode in self.available_time_modes
|
|
), f"time_mode parameter has to be in {self.available_time_modes}"
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def get_last_layer(self, skip_time_mix=False, **kwargs):
|
|
if self.time_mode == "attn-only":
|
|
raise NotImplementedError("TODO")
|
|
else:
|
|
return (
|
|
self.conv_out.time_mix_conv.weight
|
|
if not skip_time_mix
|
|
else self.conv_out.weight
|
|
)
|
|
|
|
def _make_attn(self) -> Callable:
|
|
if self.time_mode not in ["conv-only", "only-last-conv"]:
|
|
return partialclass(
|
|
make_time_attn,
|
|
alpha=self.alpha,
|
|
merge_strategy=self.merge_strategy,
|
|
)
|
|
else:
|
|
return super()._make_attn()
|
|
|
|
def _make_conv(self) -> Callable:
|
|
if self.time_mode != "attn-only":
|
|
return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
|
|
else:
|
|
return Conv2DWrapper
|
|
|
|
def _make_resblock(self) -> Callable:
|
|
if self.time_mode not in ["attn-only", "only-last-conv"]:
|
|
return partialclass(
|
|
VideoResBlock,
|
|
video_kernel_size=self.video_kernel_size,
|
|
alpha=self.alpha,
|
|
merge_strategy=self.merge_strategy,
|
|
)
|
|
else:
|
|
return super()._make_resblock() |