Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +6 -0
- .gitignore +4 -0
- .ipynb_checkpoints/README-checkpoint.md +154 -0
- 20250204-104122_1234.mp4 +3 -0
- 20250204-111149_1234.mp4 +3 -0
- 20250204-114357_1234.mp4 +3 -0
- README.md +154 -0
- Star_im_lora_dir/Star_single_im_lora-000030.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000031.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000032.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000033.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000034.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000035.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000036.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000037.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000038.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000039.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000040.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000041.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000042.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000043.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000044.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000045.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000046.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000047.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000048.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora-000049.safetensors +3 -0
- Star_im_lora_dir/Star_single_im_lora.safetensors +3 -0
- cache_latents.py +245 -0
- cache_text_encoder_outputs.py +135 -0
- convert_lora.py +129 -0
- dataset/__init__.py +0 -0
- dataset/config_utils.py +359 -0
- dataset/dataset_config.md +293 -0
- dataset/image_video_dataset.py +1255 -0
- hunyuan_model/__init__.py +0 -0
- hunyuan_model/activation_layers.py +23 -0
- hunyuan_model/attention.py +230 -0
- hunyuan_model/autoencoder_kl_causal_3d.py +609 -0
- hunyuan_model/embed_layers.py +132 -0
- hunyuan_model/helpers.py +40 -0
- hunyuan_model/mlp_layers.py +118 -0
- hunyuan_model/models.py +997 -0
- hunyuan_model/modulate_layers.py +76 -0
- hunyuan_model/norm_layers.py +79 -0
- hunyuan_model/pipeline_hunyuan_video.py +1100 -0
- hunyuan_model/posemb_layers.py +310 -0
- hunyuan_model/text_encoder.py +438 -0
- hunyuan_model/token_refiner.py +236 -0
- hunyuan_model/vae.py +442 -0
.gitattributes
CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
20250131-122504_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
20250131-125418_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
20250131-130555_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
20250204-104122_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
20250204-111149_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
20250204-114357_1234.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.venv
|
3 |
+
venv/
|
4 |
+
logs/
|
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prince Star (Kim Hyesung) HunyuanVideo LoRA
|
2 |
+
|
3 |
+
This repository contains the necessary setup and scripts to generate videos using the HunyuanVideo model with a LoRA (Low-Rank Adaptation) fine-tuned for Kim Hyesung. Below are the instructions to install dependencies, download models, and run the demo.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## Installation
|
8 |
+
|
9 |
+
### Step 1: Install System Dependencies
|
10 |
+
Run the following command to install required system packages:
|
11 |
+
```bash
|
12 |
+
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
|
13 |
+
```
|
14 |
+
|
15 |
+
### Step 2: Clone the Repository
|
16 |
+
Clone the repository and navigate to the project directory:
|
17 |
+
```bash
|
18 |
+
git clone https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora
|
19 |
+
cd Prince_Star_HunyuanVideo_lora
|
20 |
+
```
|
21 |
+
|
22 |
+
### Step 3: Install Python Dependencies
|
23 |
+
Install the required Python packages:
|
24 |
+
```bash
|
25 |
+
conda create -n py310 python=3.10
|
26 |
+
conda activate py310
|
27 |
+
pip install ipykernel
|
28 |
+
python -m ipykernel install --user --name py310 --display-name "py310"
|
29 |
+
|
30 |
+
pip install -r requirements.txt
|
31 |
+
pip install ascii-magic matplotlib tensorboard huggingface_hub
|
32 |
+
pip install moviepy==1.0.3
|
33 |
+
pip install sageattention==1.0.6
|
34 |
+
|
35 |
+
pip install torch==2.5.0 torchvision
|
36 |
+
```
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## Download Models
|
41 |
+
|
42 |
+
### Step 1: Download HunyuanVideo Model
|
43 |
+
Download the HunyuanVideo model and place it in the `ckpts` directory:
|
44 |
+
```bash
|
45 |
+
huggingface-cli download tencent/HunyuanVideo --local-dir ./ckpts
|
46 |
+
```
|
47 |
+
|
48 |
+
### Step 2: Download LLaVA Model
|
49 |
+
Download the LLaVA model and preprocess it:
|
50 |
+
```bash
|
51 |
+
cd ckpts
|
52 |
+
huggingface-cli download xtuner/llava-llama-3-8b-v1_1-transformers --local-dir ./llava-llama-3-8b-v1_1-transformers
|
53 |
+
wget https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py
|
54 |
+
python preprocess_text_encoder_tokenizer_utils.py --input_dir llava-llama-3-8b-v1_1-transformers --output_dir text_encoder
|
55 |
+
```
|
56 |
+
|
57 |
+
### Step 3: Download CLIP Model
|
58 |
+
Download the CLIP model for the text encoder:
|
59 |
+
```bash
|
60 |
+
huggingface-cli download openai/clip-vit-large-patch14 --local-dir ./text_encoder_2
|
61 |
+
```
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
## Demo
|
66 |
+
|
67 |
+
### Generate Video 1: Kim Hyesung Sun
|
68 |
+
Run the following command to generate a video of Prince Kim Hyesung:
|
69 |
+
```bash
|
70 |
+
python hv_generate_video.py \
|
71 |
+
--fp8 \
|
72 |
+
--video_size 544 960 \
|
73 |
+
--video_length 60 \
|
74 |
+
--infer_steps 30 \
|
75 |
+
--prompt "fantastic artwork of Kim Hyesung. warm sunset in a rural village. the interior of a futuristic spaceship in the background." \
|
76 |
+
--save_path . \
|
77 |
+
--output_type both \
|
78 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
79 |
+
--attn_mode sdpa \
|
80 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
81 |
+
--vae_chunk_size 32 \
|
82 |
+
--vae_spatial_tile_sample_min_size 128 \
|
83 |
+
--text_encoder1 ckpts/text_encoder \
|
84 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
85 |
+
--seed 1234 \
|
86 |
+
--lora_multiplier 1.0 \
|
87 |
+
--lora_weight Star_im_lora_dir/Star_single_im_lora-000040.safetensors
|
88 |
+
```
|
89 |
+
|
90 |
+
|
91 |
+
<video controls autoplay src="https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora/resolve/main/20250204-104122_1234.mp4"></video>
|
92 |
+
|
93 |
+
|
94 |
+
### Generate Video 2: Kim Hyesung Sea
|
95 |
+
Run the following command to generate a video of Prince Kim Hyesung:
|
96 |
+
```bash
|
97 |
+
python hv_generate_video.py \
|
98 |
+
--fp8 \
|
99 |
+
--video_size 544 960 \
|
100 |
+
--video_length 60 \
|
101 |
+
--infer_steps 30 \
|
102 |
+
--prompt "surrealist painting of Kim Hyesung. underwater glow, deep sea. a peaceful zen garden with koi pond in the background." \
|
103 |
+
--save_path . \
|
104 |
+
--output_type both \
|
105 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
106 |
+
--attn_mode sdpa \
|
107 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
108 |
+
--vae_chunk_size 32 \
|
109 |
+
--vae_spatial_tile_sample_min_size 128 \
|
110 |
+
--text_encoder1 ckpts/text_encoder \
|
111 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
112 |
+
--seed 1234 \
|
113 |
+
--lora_multiplier 1.0 \
|
114 |
+
--lora_weight Star_im_lora_dir/Star_single_im_lora-000040.safetensors
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
<video controls autoplay src="https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora/resolve/main/20250204-111149_1234.mp4"></video>
|
119 |
+
|
120 |
+
### Generate Video 1: Kim Hyesung Class
|
121 |
+
Run the following command to generate a video of Prince Kim Hyesung:
|
122 |
+
```bash
|
123 |
+
python hv_generate_video.py \
|
124 |
+
--fp8 \
|
125 |
+
--video_size 544 960 \
|
126 |
+
--video_length 60 \
|
127 |
+
--infer_steps 30 \
|
128 |
+
--prompt "Kim Hyesung, a young person with straight, dark hair, wearing a white school uniform. They are seated in a classroom with other students, all dressed in white uniforms. The background includes a wooden door and blurred figures of other students, suggesting a school setting. The lighting is soft, and the image has a slightly grainy texture, adding to the realistic and candid feel." \
|
129 |
+
--save_path . \
|
130 |
+
--output_type both \
|
131 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
132 |
+
--attn_mode sdpa \
|
133 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
134 |
+
--vae_chunk_size 32 \
|
135 |
+
--vae_spatial_tile_sample_min_size 128 \
|
136 |
+
--text_encoder1 ckpts/text_encoder \
|
137 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
138 |
+
--seed 1234 \
|
139 |
+
--lora_multiplier 1.0 \
|
140 |
+
--lora_weight Star_im_lora_dir/Star_single_im_lora-000040.safetensors
|
141 |
+
```
|
142 |
+
|
143 |
+
|
144 |
+
<video controls autoplay src="https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora/resolve/main/20250204-114357_1234.mp4"></video>
|
145 |
+
|
146 |
+
|
147 |
+
---
|
148 |
+
|
149 |
+
## Notes
|
150 |
+
- Ensure you have sufficient GPU resources for video generation.
|
151 |
+
- Adjust the `--video_size`, `--video_length`, and `--infer_steps` parameters as needed for different output qualities and lengths.
|
152 |
+
- The `--prompt` parameter can be modified to generate videos with different scenes or actions.
|
153 |
+
|
154 |
+
---
|
20250204-104122_1234.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:122cf6f9fd13478d006c95fdfa6caafb7a6f138b2b09a814f471cb7e52044224
|
3 |
+
size 1109401
|
20250204-111149_1234.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc68ab4b39c8ec500fbe1aab1da3c4853967c1da29f2e771fef0d6d6287efd44
|
3 |
+
size 1148331
|
20250204-114357_1234.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dde5e550ad8af64ca53b2fd1bb488b5f9344f0ad01cd0bb7c7da8459bc144a8d
|
3 |
+
size 1058260
|
README.md
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prince Star (Kim Hyesung) HunyuanVideo LoRA
|
2 |
+
|
3 |
+
This repository contains the necessary setup and scripts to generate videos using the HunyuanVideo model with a LoRA (Low-Rank Adaptation) fine-tuned for Kim Hyesung. Below are the instructions to install dependencies, download models, and run the demo.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## Installation
|
8 |
+
|
9 |
+
### Step 1: Install System Dependencies
|
10 |
+
Run the following command to install required system packages:
|
11 |
+
```bash
|
12 |
+
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
|
13 |
+
```
|
14 |
+
|
15 |
+
### Step 2: Clone the Repository
|
16 |
+
Clone the repository and navigate to the project directory:
|
17 |
+
```bash
|
18 |
+
git clone https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora
|
19 |
+
cd Prince_Star_HunyuanVideo_lora
|
20 |
+
```
|
21 |
+
|
22 |
+
### Step 3: Install Python Dependencies
|
23 |
+
Install the required Python packages:
|
24 |
+
```bash
|
25 |
+
conda create -n py310 python=3.10
|
26 |
+
conda activate py310
|
27 |
+
pip install ipykernel
|
28 |
+
python -m ipykernel install --user --name py310 --display-name "py310"
|
29 |
+
|
30 |
+
pip install -r requirements.txt
|
31 |
+
pip install ascii-magic matplotlib tensorboard huggingface_hub
|
32 |
+
pip install moviepy==1.0.3
|
33 |
+
pip install sageattention==1.0.6
|
34 |
+
|
35 |
+
pip install torch==2.5.0 torchvision
|
36 |
+
```
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## Download Models
|
41 |
+
|
42 |
+
### Step 1: Download HunyuanVideo Model
|
43 |
+
Download the HunyuanVideo model and place it in the `ckpts` directory:
|
44 |
+
```bash
|
45 |
+
huggingface-cli download tencent/HunyuanVideo --local-dir ./ckpts
|
46 |
+
```
|
47 |
+
|
48 |
+
### Step 2: Download LLaVA Model
|
49 |
+
Download the LLaVA model and preprocess it:
|
50 |
+
```bash
|
51 |
+
cd ckpts
|
52 |
+
huggingface-cli download xtuner/llava-llama-3-8b-v1_1-transformers --local-dir ./llava-llama-3-8b-v1_1-transformers
|
53 |
+
wget https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py
|
54 |
+
python preprocess_text_encoder_tokenizer_utils.py --input_dir llava-llama-3-8b-v1_1-transformers --output_dir text_encoder
|
55 |
+
```
|
56 |
+
|
57 |
+
### Step 3: Download CLIP Model
|
58 |
+
Download the CLIP model for the text encoder:
|
59 |
+
```bash
|
60 |
+
huggingface-cli download openai/clip-vit-large-patch14 --local-dir ./text_encoder_2
|
61 |
+
```
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
## Demo
|
66 |
+
|
67 |
+
### Generate Video 1: Kim Hyesung Sun
|
68 |
+
Run the following command to generate a video of Prince Kim Hyesung:
|
69 |
+
```bash
|
70 |
+
python hv_generate_video.py \
|
71 |
+
--fp8 \
|
72 |
+
--video_size 544 960 \
|
73 |
+
--video_length 60 \
|
74 |
+
--infer_steps 30 \
|
75 |
+
--prompt "fantastic artwork of Kim Hyesung. warm sunset in a rural village. the interior of a futuristic spaceship in the background." \
|
76 |
+
--save_path . \
|
77 |
+
--output_type both \
|
78 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
79 |
+
--attn_mode sdpa \
|
80 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
81 |
+
--vae_chunk_size 32 \
|
82 |
+
--vae_spatial_tile_sample_min_size 128 \
|
83 |
+
--text_encoder1 ckpts/text_encoder \
|
84 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
85 |
+
--seed 1234 \
|
86 |
+
--lora_multiplier 1.0 \
|
87 |
+
--lora_weight Star_im_lora_dir/Star_single_im_lora-000040.safetensors
|
88 |
+
```
|
89 |
+
|
90 |
+
|
91 |
+
<video controls autoplay src="https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora/resolve/main/20250204-104122_1234.mp4"></video>
|
92 |
+
|
93 |
+
|
94 |
+
### Generate Video 2: Kim Hyesung Sea
|
95 |
+
Run the following command to generate a video of Prince Kim Hyesung:
|
96 |
+
```bash
|
97 |
+
python hv_generate_video.py \
|
98 |
+
--fp8 \
|
99 |
+
--video_size 544 960 \
|
100 |
+
--video_length 60 \
|
101 |
+
--infer_steps 30 \
|
102 |
+
--prompt "surrealist painting of Kim Hyesung. underwater glow, deep sea. a peaceful zen garden with koi pond in the background." \
|
103 |
+
--save_path . \
|
104 |
+
--output_type both \
|
105 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
106 |
+
--attn_mode sdpa \
|
107 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
108 |
+
--vae_chunk_size 32 \
|
109 |
+
--vae_spatial_tile_sample_min_size 128 \
|
110 |
+
--text_encoder1 ckpts/text_encoder \
|
111 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
112 |
+
--seed 1234 \
|
113 |
+
--lora_multiplier 1.0 \
|
114 |
+
--lora_weight Star_im_lora_dir/Star_single_im_lora-000040.safetensors
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
<video controls autoplay src="https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora/resolve/main/20250204-111149_1234.mp4"></video>
|
119 |
+
|
120 |
+
### Generate Video 1: Kim Hyesung Class
|
121 |
+
Run the following command to generate a video of Prince Kim Hyesung:
|
122 |
+
```bash
|
123 |
+
python hv_generate_video.py \
|
124 |
+
--fp8 \
|
125 |
+
--video_size 544 960 \
|
126 |
+
--video_length 60 \
|
127 |
+
--infer_steps 30 \
|
128 |
+
--prompt "Kim Hyesung, a young person with straight, dark hair, wearing a white school uniform. They are seated in a classroom with other students, all dressed in white uniforms. The background includes a wooden door and blurred figures of other students, suggesting a school setting. The lighting is soft, and the image has a slightly grainy texture, adding to the realistic and candid feel." \
|
129 |
+
--save_path . \
|
130 |
+
--output_type both \
|
131 |
+
--dit ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt \
|
132 |
+
--attn_mode sdpa \
|
133 |
+
--vae ckpts/hunyuan-video-t2v-720p/vae/pytorch_model.pt \
|
134 |
+
--vae_chunk_size 32 \
|
135 |
+
--vae_spatial_tile_sample_min_size 128 \
|
136 |
+
--text_encoder1 ckpts/text_encoder \
|
137 |
+
--text_encoder2 ckpts/text_encoder_2 \
|
138 |
+
--seed 1234 \
|
139 |
+
--lora_multiplier 1.0 \
|
140 |
+
--lora_weight Star_im_lora_dir/Star_single_im_lora-000040.safetensors
|
141 |
+
```
|
142 |
+
|
143 |
+
|
144 |
+
<video controls autoplay src="https://huggingface.co/svjack/Prince_Star_HunyuanVideo_lora/resolve/main/20250204-114357_1234.mp4"></video>
|
145 |
+
|
146 |
+
|
147 |
+
---
|
148 |
+
|
149 |
+
## Notes
|
150 |
+
- Ensure you have sufficient GPU resources for video generation.
|
151 |
+
- Adjust the `--video_size`, `--video_length`, and `--infer_steps` parameters as needed for different output qualities and lengths.
|
152 |
+
- The `--prompt` parameter can be modified to generate videos with different scenes or actions.
|
153 |
+
|
154 |
+
---
|
Star_im_lora_dir/Star_single_im_lora-000030.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a24b6c96e93260558ca1c77eab6ecee4f350b641624f96b957336fc7d25fb3d
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000031.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34224c0a987eb6919f244d4092dad34865b2c98e8a40eea2db4764ef580b72f6
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000032.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee0603ba5fb45a9e0b2ba726bd3e868c681d72e83ac509d764ba99ebd635db2d
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3da0c7ff2cbf98a27818e079b94ae21390068489da23b29fba6a045f2e55a1c6
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000034.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66a46a68a5385bbe018d3b3fe307f21e544e5b9546a4057ca591c6df8314e25e
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000035.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f23bdd6d9438cd0260df5ad17244a98e0e615fa507ebf092ee799443150b69f9
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000036.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfd3c266c8de8ba2886b73439e78b3288ac0a8b18bf52d07417c30797ca151cd
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc71502683b12f2532b71c9099733eb31ec2bb2eef6bf185a6b5c032df76dcd6
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000038.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d565b636caffdd453b99ceec541e67dff1fe803814dcb77a76ef84c11f5fac42
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000039.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44d9dfb1e994b153be2d406eb93aa4578719f67e2b730d80a6764ed21e72bff1
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000040.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:582f0f6882a73d7b4673e223c2276f76ac129b5685ec4517c4d7dbe948b622b4
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000041.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e43c3b84a50c1c3deef78150aa29d4f0203d377d331ccaf0d15e5ae097688bab
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000042.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b2be76884c7d20c0943838406ce030f04197f21baa4e622ab97400a4d8e37fe
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000043.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4feaee78e3b65dec3465b7131c1a2adeef5b0ff8090199dbe4fb5459a74016a3
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000044.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53a2171f59b70af7820d2cb032b35f78cb1f93193497a2b6a1c03853a85103ed
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000045.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a4ec1d41c6938541f05fb65b5c614afea0613157bc084fb4ccd6ac0a96975d2
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000046.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67c4bb9694a00c0bbaae59e9e615aa6fd6dc556a153b90c1766ec87efed0cd23
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000047.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ee33e2660d6fc184b9e94daf46140ff4a686fb23dcfc150e98b18c04f51641e
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000048.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82755bc9dddeed5932690c6949e61ab26f5edf2ef358cc1caad6335d1b49bcdd
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora-000049.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99def0d3d2a584e6c382a6cf7fe737716b96dfebbd2f82e722ef7cc2ad751b57
|
3 |
+
size 322557552
|
Star_im_lora_dir/Star_single_im_lora.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8e65f91b49ae338ec7b8d14d0273bac63437027534cf5ad2ebbee0ac1f6b02
|
3 |
+
size 322557552
|
cache_latents.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from dataset import config_utils
|
10 |
+
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
import logging
|
14 |
+
|
15 |
+
from dataset.image_video_dataset import BaseDataset, ItemInfo, save_latent_cache
|
16 |
+
from hunyuan_model.vae import load_vae
|
17 |
+
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
18 |
+
from utils.model_utils import str_to_dtype
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
|
23 |
+
|
24 |
+
def show_image(image: Union[list[Union[Image.Image, np.ndarray], Union[Image.Image, np.ndarray]]]) -> int:
|
25 |
+
import cv2
|
26 |
+
|
27 |
+
imgs = (
|
28 |
+
[image]
|
29 |
+
if (isinstance(image, np.ndarray) and len(image.shape) == 3) or isinstance(image, Image.Image)
|
30 |
+
else [image[0], image[-1]]
|
31 |
+
)
|
32 |
+
if len(imgs) > 1:
|
33 |
+
print(f"Number of images: {len(image)}")
|
34 |
+
for i, img in enumerate(imgs):
|
35 |
+
if len(imgs) > 1:
|
36 |
+
print(f"{'First' if i == 0 else 'Last'} image: {img.shape}")
|
37 |
+
else:
|
38 |
+
print(f"Image: {img.shape}")
|
39 |
+
cv2_img = np.array(img) if isinstance(img, Image.Image) else img
|
40 |
+
cv2_img = cv2.cvtColor(cv2_img, cv2.COLOR_RGB2BGR)
|
41 |
+
cv2.imshow("image", cv2_img)
|
42 |
+
k = cv2.waitKey(0)
|
43 |
+
cv2.destroyAllWindows()
|
44 |
+
if k == ord("q") or k == ord("d"):
|
45 |
+
return k
|
46 |
+
return k
|
47 |
+
|
48 |
+
|
49 |
+
def show_console(
|
50 |
+
image: Union[list[Union[Image.Image, np.ndarray], Union[Image.Image, np.ndarray]]],
|
51 |
+
width: int,
|
52 |
+
back: str,
|
53 |
+
interactive: bool = False,
|
54 |
+
) -> int:
|
55 |
+
from ascii_magic import from_pillow_image, Back
|
56 |
+
|
57 |
+
back = None
|
58 |
+
if back is not None:
|
59 |
+
back = getattr(Back, back.upper())
|
60 |
+
|
61 |
+
k = None
|
62 |
+
imgs = (
|
63 |
+
[image]
|
64 |
+
if (isinstance(image, np.ndarray) and len(image.shape) == 3) or isinstance(image, Image.Image)
|
65 |
+
else [image[0], image[-1]]
|
66 |
+
)
|
67 |
+
if len(imgs) > 1:
|
68 |
+
print(f"Number of images: {len(image)}")
|
69 |
+
for i, img in enumerate(imgs):
|
70 |
+
if len(imgs) > 1:
|
71 |
+
print(f"{'First' if i == 0 else 'Last'} image: {img.shape}")
|
72 |
+
else:
|
73 |
+
print(f"Image: {img.shape}")
|
74 |
+
pil_img = img if isinstance(img, Image.Image) else Image.fromarray(img)
|
75 |
+
ascii_img = from_pillow_image(pil_img)
|
76 |
+
ascii_img.to_terminal(columns=width, back=back)
|
77 |
+
|
78 |
+
if interactive:
|
79 |
+
k = input("Press q to quit, d to next dataset, other key to next: ")
|
80 |
+
if k == "q" or k == "d":
|
81 |
+
return ord(k)
|
82 |
+
|
83 |
+
if not interactive:
|
84 |
+
return ord(" ")
|
85 |
+
return ord(k) if k else ord(" ")
|
86 |
+
|
87 |
+
|
88 |
+
def show_datasets(
|
89 |
+
datasets: list[BaseDataset], debug_mode: str, console_width: int, console_back: str, console_num_images: Optional[int]
|
90 |
+
):
|
91 |
+
print(f"d: next dataset, q: quit")
|
92 |
+
|
93 |
+
num_workers = max(1, os.cpu_count() - 1)
|
94 |
+
for i, dataset in enumerate(datasets):
|
95 |
+
print(f"Dataset [{i}]")
|
96 |
+
batch_index = 0
|
97 |
+
num_images_to_show = console_num_images
|
98 |
+
k = None
|
99 |
+
for key, batch in dataset.retrieve_latent_cache_batches(num_workers):
|
100 |
+
print(f"bucket resolution: {key}, count: {len(batch)}")
|
101 |
+
for j, item_info in enumerate(batch):
|
102 |
+
item_info: ItemInfo
|
103 |
+
print(f"{batch_index}-{j}: {item_info}")
|
104 |
+
if debug_mode == "image":
|
105 |
+
k = show_image(item_info.content)
|
106 |
+
elif debug_mode == "console":
|
107 |
+
k = show_console(item_info.content, console_width, console_back, console_num_images is None)
|
108 |
+
if num_images_to_show is not None:
|
109 |
+
num_images_to_show -= 1
|
110 |
+
if num_images_to_show == 0:
|
111 |
+
k = ord("d") # next dataset
|
112 |
+
|
113 |
+
if k == ord("q"):
|
114 |
+
return
|
115 |
+
elif k == ord("d"):
|
116 |
+
break
|
117 |
+
if k == ord("d"):
|
118 |
+
break
|
119 |
+
batch_index += 1
|
120 |
+
|
121 |
+
|
122 |
+
def encode_and_save_batch(vae: AutoencoderKLCausal3D, batch: list[ItemInfo]):
|
123 |
+
contents = torch.stack([torch.from_numpy(item.content) for item in batch])
|
124 |
+
if len(contents.shape) == 4:
|
125 |
+
contents = contents.unsqueeze(1) # B, H, W, C -> B, F, H, W, C
|
126 |
+
|
127 |
+
contents = contents.permute(0, 4, 1, 2, 3).contiguous() # B, C, F, H, W
|
128 |
+
contents = contents.to(vae.device, dtype=vae.dtype)
|
129 |
+
contents = contents / 127.5 - 1.0 # normalize to [-1, 1]
|
130 |
+
|
131 |
+
# print(f"encode batch: {contents.shape}")
|
132 |
+
with torch.no_grad():
|
133 |
+
latent = vae.encode(contents).latent_dist.sample()
|
134 |
+
latent = latent * vae.config.scaling_factor
|
135 |
+
|
136 |
+
# # debug: decode and save
|
137 |
+
# with torch.no_grad():
|
138 |
+
# latent_to_decode = latent / vae.config.scaling_factor
|
139 |
+
# images = vae.decode(latent_to_decode, return_dict=False)[0]
|
140 |
+
# images = (images / 2 + 0.5).clamp(0, 1)
|
141 |
+
# images = images.cpu().float().numpy()
|
142 |
+
# images = (images * 255).astype(np.uint8)
|
143 |
+
# images = images.transpose(0, 2, 3, 4, 1) # B, C, F, H, W -> B, F, H, W, C
|
144 |
+
# for b in range(images.shape[0]):
|
145 |
+
# for f in range(images.shape[1]):
|
146 |
+
# fln = os.path.splitext(os.path.basename(batch[b].item_key))[0]
|
147 |
+
# img = Image.fromarray(images[b, f])
|
148 |
+
# img.save(f"./logs/decode_{fln}_{b}_{f:03d}.jpg")
|
149 |
+
|
150 |
+
for item, l in zip(batch, latent):
|
151 |
+
# print(f"save latent cache: {item.latent_cache_path}, latent shape: {l.shape}")
|
152 |
+
save_latent_cache(item, l)
|
153 |
+
|
154 |
+
|
155 |
+
def main(args):
|
156 |
+
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
|
157 |
+
device = torch.device(device)
|
158 |
+
|
159 |
+
# Load dataset config
|
160 |
+
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
|
161 |
+
logger.info(f"Load dataset config from {args.dataset_config}")
|
162 |
+
user_config = config_utils.load_user_config(args.dataset_config)
|
163 |
+
blueprint = blueprint_generator.generate(user_config, args)
|
164 |
+
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
165 |
+
|
166 |
+
datasets = train_dataset_group.datasets
|
167 |
+
|
168 |
+
if args.debug_mode is not None:
|
169 |
+
show_datasets(datasets, args.debug_mode, args.console_width, args.console_back, args.console_num_images)
|
170 |
+
return
|
171 |
+
|
172 |
+
assert args.vae is not None, "vae checkpoint is required"
|
173 |
+
|
174 |
+
# Load VAE model: HunyuanVideo VAE model is float16
|
175 |
+
vae_dtype = torch.float16 if args.vae_dtype is None else str_to_dtype(args.vae_dtype)
|
176 |
+
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae)
|
177 |
+
vae.eval()
|
178 |
+
print(f"Loaded VAE: {vae.config}, dtype: {vae.dtype}")
|
179 |
+
|
180 |
+
if args.vae_chunk_size is not None:
|
181 |
+
vae.set_chunk_size_for_causal_conv_3d(args.vae_chunk_size)
|
182 |
+
logger.info(f"Set chunk_size to {args.vae_chunk_size} for CausalConv3d in VAE")
|
183 |
+
if args.vae_spatial_tile_sample_min_size is not None:
|
184 |
+
vae.enable_spatial_tiling(True)
|
185 |
+
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
|
186 |
+
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
|
187 |
+
elif args.vae_tiling:
|
188 |
+
vae.enable_spatial_tiling(True)
|
189 |
+
|
190 |
+
# Encode images
|
191 |
+
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
|
192 |
+
for i, dataset in enumerate(datasets):
|
193 |
+
print(f"Encoding dataset [{i}]")
|
194 |
+
for _, batch in tqdm(dataset.retrieve_latent_cache_batches(num_workers)):
|
195 |
+
if args.skip_existing:
|
196 |
+
filtered_batch = [item for item in batch if not os.path.exists(item.latent_cache_path)]
|
197 |
+
if len(filtered_batch) == 0:
|
198 |
+
continue
|
199 |
+
batch = filtered_batch
|
200 |
+
|
201 |
+
bs = args.batch_size if args.batch_size is not None else len(batch)
|
202 |
+
for i in range(0, len(batch), bs):
|
203 |
+
encode_and_save_batch(vae, batch[i : i + bs])
|
204 |
+
|
205 |
+
|
206 |
+
def setup_parser():
|
207 |
+
parser = argparse.ArgumentParser()
|
208 |
+
|
209 |
+
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
|
210 |
+
parser.add_argument("--vae", type=str, required=False, default=None, help="path to vae checkpoint")
|
211 |
+
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")
|
212 |
+
parser.add_argument(
|
213 |
+
"--vae_tiling",
|
214 |
+
action="store_true",
|
215 |
+
help="enable spatial tiling for VAE, default is False. If vae_spatial_tile_sample_min_size is set, this is automatically enabled",
|
216 |
+
)
|
217 |
+
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
|
218 |
+
parser.add_argument(
|
219 |
+
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
|
220 |
+
)
|
221 |
+
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
|
222 |
+
parser.add_argument(
|
223 |
+
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
|
224 |
+
)
|
225 |
+
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
|
226 |
+
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
|
227 |
+
parser.add_argument("--debug_mode", type=str, default=None, choices=["image", "console"], help="debug mode")
|
228 |
+
parser.add_argument("--console_width", type=int, default=80, help="debug mode: console width")
|
229 |
+
parser.add_argument(
|
230 |
+
"--console_back", type=str, default=None, help="debug mode: console background color, one of ascii_magic.Back"
|
231 |
+
)
|
232 |
+
parser.add_argument(
|
233 |
+
"--console_num_images",
|
234 |
+
type=int,
|
235 |
+
default=None,
|
236 |
+
help="debug mode: not interactive, number of images to show for each dataset",
|
237 |
+
)
|
238 |
+
return parser
|
239 |
+
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
+
parser = setup_parser()
|
243 |
+
|
244 |
+
args = parser.parse_args()
|
245 |
+
main(args)
|
cache_text_encoder_outputs.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from typing import Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from dataset import config_utils
|
10 |
+
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
|
11 |
+
import accelerate
|
12 |
+
|
13 |
+
from dataset.image_video_dataset import ItemInfo, save_text_encoder_output_cache
|
14 |
+
from hunyuan_model import text_encoder as text_encoder_module
|
15 |
+
from hunyuan_model.text_encoder import TextEncoder
|
16 |
+
|
17 |
+
import logging
|
18 |
+
|
19 |
+
from utils.model_utils import str_to_dtype
|
20 |
+
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
|
24 |
+
|
25 |
+
def encode_prompt(text_encoder: TextEncoder, prompt: Union[str, list[str]]):
|
26 |
+
data_type = "video" # video only, image is not supported
|
27 |
+
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
|
31 |
+
|
32 |
+
return prompt_outputs.hidden_state, prompt_outputs.attention_mask
|
33 |
+
|
34 |
+
|
35 |
+
def encode_and_save_batch(
|
36 |
+
text_encoder: TextEncoder, batch: list[ItemInfo], is_llm: bool, accelerator: Optional[accelerate.Accelerator]
|
37 |
+
):
|
38 |
+
prompts = [item.caption for item in batch]
|
39 |
+
# print(prompts)
|
40 |
+
|
41 |
+
# encode prompt
|
42 |
+
if accelerator is not None:
|
43 |
+
with accelerator.autocast():
|
44 |
+
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
|
45 |
+
else:
|
46 |
+
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
|
47 |
+
|
48 |
+
# # convert to fp16 if needed
|
49 |
+
# if prompt_embeds.dtype == torch.float32 and text_encoder.dtype != torch.float32:
|
50 |
+
# prompt_embeds = prompt_embeds.to(text_encoder.dtype)
|
51 |
+
|
52 |
+
# save prompt cache
|
53 |
+
for item, embed, mask in zip(batch, prompt_embeds, prompt_mask):
|
54 |
+
save_text_encoder_output_cache(item, embed, mask, is_llm)
|
55 |
+
|
56 |
+
|
57 |
+
def main(args):
|
58 |
+
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
+
device = torch.device(device)
|
60 |
+
|
61 |
+
# Load dataset config
|
62 |
+
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
|
63 |
+
logger.info(f"Load dataset config from {args.dataset_config}")
|
64 |
+
user_config = config_utils.load_user_config(args.dataset_config)
|
65 |
+
blueprint = blueprint_generator.generate(user_config, args)
|
66 |
+
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
67 |
+
|
68 |
+
datasets = train_dataset_group.datasets
|
69 |
+
|
70 |
+
# define accelerator for fp8 inference
|
71 |
+
accelerator = None
|
72 |
+
if args.fp8_llm:
|
73 |
+
accelerator = accelerate.Accelerator(mixed_precision="fp16")
|
74 |
+
|
75 |
+
# define encode function
|
76 |
+
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
|
77 |
+
|
78 |
+
def encode_for_text_encoder(text_encoder: TextEncoder, is_llm: bool):
|
79 |
+
for i, dataset in enumerate(datasets):
|
80 |
+
print(f"Encoding dataset [{i}]")
|
81 |
+
for batch in tqdm(dataset.retrieve_text_encoder_output_cache_batches(num_workers)):
|
82 |
+
if args.skip_existing:
|
83 |
+
filtered_batch = [item for item in batch if not os.path.exists(item.text_encoder_output_cache_path)]
|
84 |
+
if len(filtered_batch) == 0:
|
85 |
+
continue
|
86 |
+
batch = filtered_batch
|
87 |
+
|
88 |
+
bs = args.batch_size if args.batch_size is not None else len(batch)
|
89 |
+
for i in range(0, len(batch), bs):
|
90 |
+
encode_and_save_batch(text_encoder, batch[i : i + bs], is_llm, accelerator)
|
91 |
+
|
92 |
+
# Load Text Encoder 1
|
93 |
+
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else str_to_dtype(args.text_encoder_dtype)
|
94 |
+
logger.info(f"loading text encoder 1: {args.text_encoder1}")
|
95 |
+
text_encoder_1 = text_encoder_module.load_text_encoder_1(args.text_encoder1, device, args.fp8_llm, text_encoder_dtype)
|
96 |
+
text_encoder_1.to(device=device)
|
97 |
+
|
98 |
+
# Encode with Text Encoder 1
|
99 |
+
logger.info("Encoding with Text Encoder 1")
|
100 |
+
encode_for_text_encoder(text_encoder_1, is_llm=True)
|
101 |
+
del text_encoder_1
|
102 |
+
|
103 |
+
# Load Text Encoder 2
|
104 |
+
logger.info(f"loading text encoder 2: {args.text_encoder2}")
|
105 |
+
text_encoder_2 = text_encoder_module.load_text_encoder_2(args.text_encoder2, device, text_encoder_dtype)
|
106 |
+
text_encoder_2.to(device=device)
|
107 |
+
|
108 |
+
# Encode with Text Encoder 2
|
109 |
+
logger.info("Encoding with Text Encoder 2")
|
110 |
+
encode_for_text_encoder(text_encoder_2, is_llm=False)
|
111 |
+
del text_encoder_2
|
112 |
+
|
113 |
+
|
114 |
+
def setup_parser():
|
115 |
+
parser = argparse.ArgumentParser()
|
116 |
+
|
117 |
+
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
|
118 |
+
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
|
119 |
+
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
|
120 |
+
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
|
121 |
+
parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
|
122 |
+
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
|
123 |
+
parser.add_argument(
|
124 |
+
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
|
125 |
+
)
|
126 |
+
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
|
127 |
+
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
|
128 |
+
return parser
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
parser = setup_parser()
|
133 |
+
|
134 |
+
args = parser.parse_args()
|
135 |
+
main(args)
|
convert_lora.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from safetensors.torch import load_file, save_file
|
5 |
+
from safetensors import safe_open
|
6 |
+
from utils import model_utils
|
7 |
+
|
8 |
+
import logging
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
|
14 |
+
|
15 |
+
def convert_from_diffusers(prefix, weights_sd):
|
16 |
+
# convert from diffusers(?) to default LoRA
|
17 |
+
# Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
|
18 |
+
# default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}
|
19 |
+
# note: Diffusers has no alpha, so alpha is set to rank
|
20 |
+
new_weights_sd = {}
|
21 |
+
lora_dims = {}
|
22 |
+
for key, weight in weights_sd.items():
|
23 |
+
diffusers_prefix, key_body = key.split(".", 1)
|
24 |
+
if diffusers_prefix != "diffusion_model":
|
25 |
+
logger.warning(f"unexpected key: {key} in diffusers format")
|
26 |
+
continue
|
27 |
+
|
28 |
+
new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
|
29 |
+
new_weights_sd[new_key] = weight
|
30 |
+
|
31 |
+
lora_name = new_key.split(".")[0] # before first dot
|
32 |
+
if lora_name not in lora_dims and "lora_down" in new_key:
|
33 |
+
lora_dims[lora_name] = weight.shape[0]
|
34 |
+
|
35 |
+
# add alpha with rank
|
36 |
+
for lora_name, dim in lora_dims.items():
|
37 |
+
new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)
|
38 |
+
|
39 |
+
return new_weights_sd
|
40 |
+
|
41 |
+
|
42 |
+
def convert_to_diffusers(prefix, weights_sd):
|
43 |
+
# convert from default LoRA to diffusers
|
44 |
+
|
45 |
+
# get alphas
|
46 |
+
lora_alphas = {}
|
47 |
+
for key, weight in weights_sd.items():
|
48 |
+
if key.startswith(prefix):
|
49 |
+
lora_name = key.split(".", 1)[0] # before first dot
|
50 |
+
if lora_name not in lora_alphas and "alpha" in key:
|
51 |
+
lora_alphas[lora_name] = weight
|
52 |
+
|
53 |
+
new_weights_sd = {}
|
54 |
+
for key, weight in weights_sd.items():
|
55 |
+
if key.startswith(prefix):
|
56 |
+
if "alpha" in key:
|
57 |
+
continue
|
58 |
+
|
59 |
+
lora_name = key.split(".", 1)[0] # before first dot
|
60 |
+
|
61 |
+
# HunyuanVideo lora name to module name: ugly but works
|
62 |
+
module_name = lora_name[len(prefix) :] # remove "lora_unet_"
|
63 |
+
module_name = module_name.replace("_", ".") # replace "_" with "."
|
64 |
+
module_name = module_name.replace("double.blocks.", "double_blocks.") # fix double blocks
|
65 |
+
module_name = module_name.replace("single.blocks.", "single_blocks.") # fix single blocks
|
66 |
+
module_name = module_name.replace("img.", "img_") # fix img
|
67 |
+
module_name = module_name.replace("txt.", "txt_") # fix txt
|
68 |
+
module_name = module_name.replace("attn.", "attn_") # fix attn
|
69 |
+
|
70 |
+
diffusers_prefix = "diffusion_model"
|
71 |
+
if "lora_down" in key:
|
72 |
+
new_key = f"{diffusers_prefix}.{module_name}.lora_A.weight"
|
73 |
+
dim = weight.shape[0]
|
74 |
+
elif "lora_up" in key:
|
75 |
+
new_key = f"{diffusers_prefix}.{module_name}.lora_B.weight"
|
76 |
+
dim = weight.shape[1]
|
77 |
+
else:
|
78 |
+
logger.warning(f"unexpected key: {key} in default LoRA format")
|
79 |
+
continue
|
80 |
+
|
81 |
+
# scale weight by alpha
|
82 |
+
if lora_name in lora_alphas:
|
83 |
+
# we scale both down and up, so scale is sqrt
|
84 |
+
scale = lora_alphas[lora_name] / dim
|
85 |
+
scale = scale.sqrt()
|
86 |
+
weight = weight * scale
|
87 |
+
else:
|
88 |
+
logger.warning(f"missing alpha for {lora_name}")
|
89 |
+
|
90 |
+
new_weights_sd[new_key] = weight
|
91 |
+
|
92 |
+
return new_weights_sd
|
93 |
+
|
94 |
+
|
95 |
+
def convert(input_file, output_file, target_format):
|
96 |
+
logger.info(f"loading {input_file}")
|
97 |
+
weights_sd = load_file(input_file)
|
98 |
+
with safe_open(input_file, framework="pt") as f:
|
99 |
+
metadata = f.metadata()
|
100 |
+
|
101 |
+
logger.info(f"converting to {target_format}")
|
102 |
+
prefix = "lora_unet_"
|
103 |
+
if target_format == "default":
|
104 |
+
new_weights_sd = convert_from_diffusers(prefix, weights_sd)
|
105 |
+
metadata = metadata or {}
|
106 |
+
model_utils.precalculate_safetensors_hashes(new_weights_sd, metadata)
|
107 |
+
elif target_format == "other":
|
108 |
+
new_weights_sd = convert_to_diffusers(prefix, weights_sd)
|
109 |
+
else:
|
110 |
+
raise ValueError(f"unknown target format: {target_format}")
|
111 |
+
|
112 |
+
logger.info(f"saving to {output_file}")
|
113 |
+
save_file(new_weights_sd, output_file, metadata=metadata)
|
114 |
+
|
115 |
+
logger.info("done")
|
116 |
+
|
117 |
+
|
118 |
+
def parse_args():
|
119 |
+
parser = argparse.ArgumentParser(description="Convert LoRA weights between default and other formats")
|
120 |
+
parser.add_argument("--input", type=str, required=True, help="input model file")
|
121 |
+
parser.add_argument("--output", type=str, required=True, help="output model file")
|
122 |
+
parser.add_argument("--target", type=str, required=True, choices=["other", "default"], help="target format")
|
123 |
+
args = parser.parse_args()
|
124 |
+
return args
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
args = parse_args()
|
129 |
+
convert(args.input, args.output, args.target)
|
dataset/__init__.py
ADDED
File without changes
|
dataset/config_utils.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from dataclasses import (
|
3 |
+
asdict,
|
4 |
+
dataclass,
|
5 |
+
)
|
6 |
+
import functools
|
7 |
+
import random
|
8 |
+
from textwrap import dedent, indent
|
9 |
+
import json
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# from toolz import curry
|
13 |
+
from typing import Dict, List, Optional, Sequence, Tuple, Union
|
14 |
+
|
15 |
+
import toml
|
16 |
+
import voluptuous
|
17 |
+
from voluptuous import Any, ExactSequence, MultipleInvalid, Object, Schema
|
18 |
+
|
19 |
+
from .image_video_dataset import DatasetGroup, ImageDataset, VideoDataset
|
20 |
+
|
21 |
+
import logging
|
22 |
+
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class BaseDatasetParams:
|
29 |
+
resolution: Tuple[int, int] = (960, 544)
|
30 |
+
enable_bucket: bool = False
|
31 |
+
bucket_no_upscale: bool = False
|
32 |
+
caption_extension: Optional[str] = None
|
33 |
+
batch_size: int = 1
|
34 |
+
cache_directory: Optional[str] = None
|
35 |
+
debug_dataset: bool = False
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class ImageDatasetParams(BaseDatasetParams):
|
40 |
+
image_directory: Optional[str] = None
|
41 |
+
image_jsonl_file: Optional[str] = None
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class VideoDatasetParams(BaseDatasetParams):
|
46 |
+
video_directory: Optional[str] = None
|
47 |
+
video_jsonl_file: Optional[str] = None
|
48 |
+
target_frames: Sequence[int] = (1,)
|
49 |
+
frame_extraction: Optional[str] = "head"
|
50 |
+
frame_stride: Optional[int] = 1
|
51 |
+
frame_sample: Optional[int] = 1
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class DatasetBlueprint:
|
56 |
+
is_image_dataset: bool
|
57 |
+
params: Union[ImageDatasetParams, VideoDatasetParams]
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class DatasetGroupBlueprint:
|
62 |
+
datasets: Sequence[DatasetBlueprint]
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class Blueprint:
|
67 |
+
dataset_group: DatasetGroupBlueprint
|
68 |
+
|
69 |
+
|
70 |
+
class ConfigSanitizer:
|
71 |
+
# @curry
|
72 |
+
@staticmethod
|
73 |
+
def __validate_and_convert_twodim(klass, value: Sequence) -> Tuple:
|
74 |
+
Schema(ExactSequence([klass, klass]))(value)
|
75 |
+
return tuple(value)
|
76 |
+
|
77 |
+
# @curry
|
78 |
+
@staticmethod
|
79 |
+
def __validate_and_convert_scalar_or_twodim(klass, value: Union[float, Sequence]) -> Tuple:
|
80 |
+
Schema(Any(klass, ExactSequence([klass, klass])))(value)
|
81 |
+
try:
|
82 |
+
Schema(klass)(value)
|
83 |
+
return (value, value)
|
84 |
+
except:
|
85 |
+
return ConfigSanitizer.__validate_and_convert_twodim(klass, value)
|
86 |
+
|
87 |
+
# datasets schema
|
88 |
+
DATASET_ASCENDABLE_SCHEMA = {
|
89 |
+
"caption_extension": str,
|
90 |
+
"batch_size": int,
|
91 |
+
"resolution": functools.partial(__validate_and_convert_scalar_or_twodim.__func__, int),
|
92 |
+
"enable_bucket": bool,
|
93 |
+
"bucket_no_upscale": bool,
|
94 |
+
}
|
95 |
+
IMAGE_DATASET_DISTINCT_SCHEMA = {
|
96 |
+
"image_directory": str,
|
97 |
+
"image_jsonl_file": str,
|
98 |
+
"cache_directory": str,
|
99 |
+
}
|
100 |
+
VIDEO_DATASET_DISTINCT_SCHEMA = {
|
101 |
+
"video_directory": str,
|
102 |
+
"video_jsonl_file": str,
|
103 |
+
"target_frames": [int],
|
104 |
+
"frame_extraction": str,
|
105 |
+
"frame_stride": int,
|
106 |
+
"frame_sample": int,
|
107 |
+
"cache_directory": str,
|
108 |
+
}
|
109 |
+
|
110 |
+
# options handled by argparse but not handled by user config
|
111 |
+
ARGPARSE_SPECIFIC_SCHEMA = {
|
112 |
+
"debug_dataset": bool,
|
113 |
+
}
|
114 |
+
|
115 |
+
def __init__(self) -> None:
|
116 |
+
self.image_dataset_schema = self.__merge_dict(
|
117 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
118 |
+
self.IMAGE_DATASET_DISTINCT_SCHEMA,
|
119 |
+
)
|
120 |
+
self.video_dataset_schema = self.__merge_dict(
|
121 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
122 |
+
self.VIDEO_DATASET_DISTINCT_SCHEMA,
|
123 |
+
)
|
124 |
+
|
125 |
+
def validate_flex_dataset(dataset_config: dict):
|
126 |
+
if "target_frames" in dataset_config:
|
127 |
+
return Schema(self.video_dataset_schema)(dataset_config)
|
128 |
+
else:
|
129 |
+
return Schema(self.image_dataset_schema)(dataset_config)
|
130 |
+
|
131 |
+
self.dataset_schema = validate_flex_dataset
|
132 |
+
|
133 |
+
self.general_schema = self.__merge_dict(
|
134 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
135 |
+
)
|
136 |
+
self.user_config_validator = Schema(
|
137 |
+
{
|
138 |
+
"general": self.general_schema,
|
139 |
+
"datasets": [self.dataset_schema],
|
140 |
+
}
|
141 |
+
)
|
142 |
+
self.argparse_schema = self.__merge_dict(
|
143 |
+
self.ARGPARSE_SPECIFIC_SCHEMA,
|
144 |
+
)
|
145 |
+
self.argparse_config_validator = Schema(Object(self.argparse_schema), extra=voluptuous.ALLOW_EXTRA)
|
146 |
+
|
147 |
+
def sanitize_user_config(self, user_config: dict) -> dict:
|
148 |
+
try:
|
149 |
+
return self.user_config_validator(user_config)
|
150 |
+
except MultipleInvalid:
|
151 |
+
# TODO: clarify the error message
|
152 |
+
logger.error("Invalid user config / ユーザ設定の形式が正しくないようです")
|
153 |
+
raise
|
154 |
+
|
155 |
+
# NOTE: In nature, argument parser result is not needed to be sanitize
|
156 |
+
# However this will help us to detect program bug
|
157 |
+
def sanitize_argparse_namespace(self, argparse_namespace: argparse.Namespace) -> argparse.Namespace:
|
158 |
+
try:
|
159 |
+
return self.argparse_config_validator(argparse_namespace)
|
160 |
+
except MultipleInvalid:
|
161 |
+
# XXX: this should be a bug
|
162 |
+
logger.error(
|
163 |
+
"Invalid cmdline parsed arguments. This should be a bug. / コマンドラインのパース結果が正しくないようです。プログラムのバグの可能性が高いです。"
|
164 |
+
)
|
165 |
+
raise
|
166 |
+
|
167 |
+
# NOTE: value would be overwritten by latter dict if there is already the same key
|
168 |
+
@staticmethod
|
169 |
+
def __merge_dict(*dict_list: dict) -> dict:
|
170 |
+
merged = {}
|
171 |
+
for schema in dict_list:
|
172 |
+
# merged |= schema
|
173 |
+
for k, v in schema.items():
|
174 |
+
merged[k] = v
|
175 |
+
return merged
|
176 |
+
|
177 |
+
|
178 |
+
class BlueprintGenerator:
|
179 |
+
BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME = {}
|
180 |
+
|
181 |
+
def __init__(self, sanitizer: ConfigSanitizer):
|
182 |
+
self.sanitizer = sanitizer
|
183 |
+
|
184 |
+
# runtime_params is for parameters which is only configurable on runtime, such as tokenizer
|
185 |
+
def generate(self, user_config: dict, argparse_namespace: argparse.Namespace, **runtime_params) -> Blueprint:
|
186 |
+
sanitized_user_config = self.sanitizer.sanitize_user_config(user_config)
|
187 |
+
sanitized_argparse_namespace = self.sanitizer.sanitize_argparse_namespace(argparse_namespace)
|
188 |
+
|
189 |
+
argparse_config = {k: v for k, v in vars(sanitized_argparse_namespace).items() if v is not None}
|
190 |
+
general_config = sanitized_user_config.get("general", {})
|
191 |
+
|
192 |
+
dataset_blueprints = []
|
193 |
+
for dataset_config in sanitized_user_config.get("datasets", []):
|
194 |
+
is_image_dataset = "target_frames" not in dataset_config
|
195 |
+
if is_image_dataset:
|
196 |
+
dataset_params_klass = ImageDatasetParams
|
197 |
+
else:
|
198 |
+
dataset_params_klass = VideoDatasetParams
|
199 |
+
|
200 |
+
params = self.generate_params_by_fallbacks(
|
201 |
+
dataset_params_klass, [dataset_config, general_config, argparse_config, runtime_params]
|
202 |
+
)
|
203 |
+
dataset_blueprints.append(DatasetBlueprint(is_image_dataset, params))
|
204 |
+
|
205 |
+
dataset_group_blueprint = DatasetGroupBlueprint(dataset_blueprints)
|
206 |
+
|
207 |
+
return Blueprint(dataset_group_blueprint)
|
208 |
+
|
209 |
+
@staticmethod
|
210 |
+
def generate_params_by_fallbacks(param_klass, fallbacks: Sequence[dict]):
|
211 |
+
name_map = BlueprintGenerator.BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME
|
212 |
+
search_value = BlueprintGenerator.search_value
|
213 |
+
default_params = asdict(param_klass())
|
214 |
+
param_names = default_params.keys()
|
215 |
+
|
216 |
+
params = {name: search_value(name_map.get(name, name), fallbacks, default_params.get(name)) for name in param_names}
|
217 |
+
|
218 |
+
return param_klass(**params)
|
219 |
+
|
220 |
+
@staticmethod
|
221 |
+
def search_value(key: str, fallbacks: Sequence[dict], default_value=None):
|
222 |
+
for cand in fallbacks:
|
223 |
+
value = cand.get(key)
|
224 |
+
if value is not None:
|
225 |
+
return value
|
226 |
+
|
227 |
+
return default_value
|
228 |
+
|
229 |
+
|
230 |
+
# if training is True, it will return a dataset group for training, otherwise for caching
|
231 |
+
def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlueprint, training: bool = False) -> DatasetGroup:
|
232 |
+
datasets: List[Union[ImageDataset, VideoDataset]] = []
|
233 |
+
|
234 |
+
for dataset_blueprint in dataset_group_blueprint.datasets:
|
235 |
+
if dataset_blueprint.is_image_dataset:
|
236 |
+
dataset_klass = ImageDataset
|
237 |
+
else:
|
238 |
+
dataset_klass = VideoDataset
|
239 |
+
|
240 |
+
dataset = dataset_klass(**asdict(dataset_blueprint.params))
|
241 |
+
datasets.append(dataset)
|
242 |
+
|
243 |
+
# print info
|
244 |
+
info = ""
|
245 |
+
for i, dataset in enumerate(datasets):
|
246 |
+
is_image_dataset = isinstance(dataset, ImageDataset)
|
247 |
+
info += dedent(
|
248 |
+
f"""\
|
249 |
+
[Dataset {i}]
|
250 |
+
is_image_dataset: {is_image_dataset}
|
251 |
+
resolution: {dataset.resolution}
|
252 |
+
batch_size: {dataset.batch_size}
|
253 |
+
caption_extension: "{dataset.caption_extension}"
|
254 |
+
enable_bucket: {dataset.enable_bucket}
|
255 |
+
bucket_no_upscale: {dataset.bucket_no_upscale}
|
256 |
+
cache_directory: "{dataset.cache_directory}"
|
257 |
+
debug_dataset: {dataset.debug_dataset}
|
258 |
+
"""
|
259 |
+
)
|
260 |
+
|
261 |
+
if is_image_dataset:
|
262 |
+
info += indent(
|
263 |
+
dedent(
|
264 |
+
f"""\
|
265 |
+
image_directory: "{dataset.image_directory}"
|
266 |
+
image_jsonl_file: "{dataset.image_jsonl_file}"
|
267 |
+
\n"""
|
268 |
+
),
|
269 |
+
" ",
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
info += indent(
|
273 |
+
dedent(
|
274 |
+
f"""\
|
275 |
+
video_directory: "{dataset.video_directory}"
|
276 |
+
video_jsonl_file: "{dataset.video_jsonl_file}"
|
277 |
+
target_frames: {dataset.target_frames}
|
278 |
+
frame_extraction: {dataset.frame_extraction}
|
279 |
+
frame_stride: {dataset.frame_stride}
|
280 |
+
frame_sample: {dataset.frame_sample}
|
281 |
+
\n"""
|
282 |
+
),
|
283 |
+
" ",
|
284 |
+
)
|
285 |
+
logger.info(f"{info}")
|
286 |
+
|
287 |
+
# make buckets first because it determines the length of dataset
|
288 |
+
# and set the same seed for all datasets
|
289 |
+
seed = random.randint(0, 2**31) # actual seed is seed + epoch_no
|
290 |
+
for i, dataset in enumerate(datasets):
|
291 |
+
# logger.info(f"[Dataset {i}]")
|
292 |
+
dataset.set_seed(seed)
|
293 |
+
if training:
|
294 |
+
dataset.prepare_for_training()
|
295 |
+
|
296 |
+
return DatasetGroup(datasets)
|
297 |
+
|
298 |
+
|
299 |
+
def load_user_config(file: str) -> dict:
|
300 |
+
file: Path = Path(file)
|
301 |
+
if not file.is_file():
|
302 |
+
raise ValueError(f"file not found / ファイルが見つかりません: {file}")
|
303 |
+
|
304 |
+
if file.name.lower().endswith(".json"):
|
305 |
+
try:
|
306 |
+
with open(file, "r") as f:
|
307 |
+
config = json.load(f)
|
308 |
+
except Exception:
|
309 |
+
logger.error(
|
310 |
+
f"Error on parsing JSON config file. Please check the format. / JSON 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
|
311 |
+
)
|
312 |
+
raise
|
313 |
+
elif file.name.lower().endswith(".toml"):
|
314 |
+
try:
|
315 |
+
config = toml.load(file)
|
316 |
+
except Exception:
|
317 |
+
logger.error(
|
318 |
+
f"Error on parsing TOML config file. Please check the format. / TOML 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
|
319 |
+
)
|
320 |
+
raise
|
321 |
+
else:
|
322 |
+
raise ValueError(f"not supported config file format / 対応していない設定ファイルの形式です: {file}")
|
323 |
+
|
324 |
+
return config
|
325 |
+
|
326 |
+
|
327 |
+
# for config test
|
328 |
+
if __name__ == "__main__":
|
329 |
+
parser = argparse.ArgumentParser()
|
330 |
+
parser.add_argument("dataset_config")
|
331 |
+
config_args, remain = parser.parse_known_args()
|
332 |
+
|
333 |
+
parser = argparse.ArgumentParser()
|
334 |
+
parser.add_argument("--debug_dataset", action="store_true")
|
335 |
+
argparse_namespace = parser.parse_args(remain)
|
336 |
+
|
337 |
+
logger.info("[argparse_namespace]")
|
338 |
+
logger.info(f"{vars(argparse_namespace)}")
|
339 |
+
|
340 |
+
user_config = load_user_config(config_args.dataset_config)
|
341 |
+
|
342 |
+
logger.info("")
|
343 |
+
logger.info("[user_config]")
|
344 |
+
logger.info(f"{user_config}")
|
345 |
+
|
346 |
+
sanitizer = ConfigSanitizer()
|
347 |
+
sanitized_user_config = sanitizer.sanitize_user_config(user_config)
|
348 |
+
|
349 |
+
logger.info("")
|
350 |
+
logger.info("[sanitized_user_config]")
|
351 |
+
logger.info(f"{sanitized_user_config}")
|
352 |
+
|
353 |
+
blueprint = BlueprintGenerator(sanitizer).generate(user_config, argparse_namespace)
|
354 |
+
|
355 |
+
logger.info("")
|
356 |
+
logger.info("[blueprint]")
|
357 |
+
logger.info(f"{blueprint}")
|
358 |
+
|
359 |
+
dataset_group = generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
dataset/dataset_config.md
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Dataset Configuration
|
2 |
+
|
3 |
+
Please create a TOML file for dataset configuration.
|
4 |
+
|
5 |
+
Image and video datasets are supported. The configuration file can include multiple datasets, either image or video datasets, with caption text files or metadata JSONL files.
|
6 |
+
|
7 |
+
### Sample for Image Dataset with Caption Text Files
|
8 |
+
|
9 |
+
```toml
|
10 |
+
# resolution, caption_extension, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
11 |
+
|
12 |
+
# general configurations
|
13 |
+
[general]
|
14 |
+
resolution = [960, 544]
|
15 |
+
caption_extension = ".txt"
|
16 |
+
batch_size = 1
|
17 |
+
enable_bucket = true
|
18 |
+
bucket_no_upscale = false
|
19 |
+
|
20 |
+
[[datasets]]
|
21 |
+
image_directory = "/path/to/image_dir"
|
22 |
+
|
23 |
+
# other datasets can be added here. each dataset can have different configurations
|
24 |
+
```
|
25 |
+
|
26 |
+
### Sample for Image Dataset with Metadata JSONL File
|
27 |
+
|
28 |
+
```toml
|
29 |
+
# resolution, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
30 |
+
# caption_extension is not required for metadata jsonl file
|
31 |
+
# cache_directory is required for each dataset with metadata jsonl file
|
32 |
+
|
33 |
+
# general configurations
|
34 |
+
[general]
|
35 |
+
resolution = [960, 544]
|
36 |
+
batch_size = 1
|
37 |
+
enable_bucket = true
|
38 |
+
bucket_no_upscale = false
|
39 |
+
|
40 |
+
[[datasets]]
|
41 |
+
image_jsonl_file = "/path/to/metadata.jsonl"
|
42 |
+
cache_directory = "/path/to/cache_directory"
|
43 |
+
|
44 |
+
# other datasets can be added here. each dataset can have different configurations
|
45 |
+
```
|
46 |
+
|
47 |
+
JSONL file format for metadata:
|
48 |
+
|
49 |
+
```json
|
50 |
+
{"image_path": "/path/to/image1.jpg", "caption": "A caption for image1"}
|
51 |
+
{"image_path": "/path/to/image2.jpg", "caption": "A caption for image2"}
|
52 |
+
```
|
53 |
+
|
54 |
+
### Sample for Video Dataset with Caption Text Files
|
55 |
+
|
56 |
+
```toml
|
57 |
+
# resolution, caption_extension, target_frames, frame_extraction, frame_stride, frame_sample, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
58 |
+
|
59 |
+
# general configurations
|
60 |
+
[general]
|
61 |
+
resolution = [960, 544]
|
62 |
+
caption_extension = ".txt"
|
63 |
+
batch_size = 1
|
64 |
+
enable_bucket = true
|
65 |
+
bucket_no_upscale = false
|
66 |
+
|
67 |
+
[[datasets]]
|
68 |
+
video_directory = "/path/to/video_dir"
|
69 |
+
target_frames = [1, 25, 45]
|
70 |
+
frame_extraction = "head"
|
71 |
+
|
72 |
+
# other datasets can be added here. each dataset can have different configurations
|
73 |
+
```
|
74 |
+
|
75 |
+
### Sample for Video Dataset with Metadata JSONL File
|
76 |
+
|
77 |
+
```toml
|
78 |
+
# resolution, target_frames, frame_extraction, frame_stride, frame_sample, batch_size, enable_bucket, bucket_no_upscale must be set in either general or datasets
|
79 |
+
# caption_extension is not required for metadata jsonl file
|
80 |
+
# cache_directory is required for each dataset with metadata jsonl file
|
81 |
+
|
82 |
+
# general configurations
|
83 |
+
[general]
|
84 |
+
resolution = [960, 544]
|
85 |
+
batch_size = 1
|
86 |
+
enable_bucket = true
|
87 |
+
bucket_no_upscale = false
|
88 |
+
|
89 |
+
[[datasets]]
|
90 |
+
video_jsonl_file = "/path/to/metadata.jsonl"
|
91 |
+
target_frames = [1, 25, 45]
|
92 |
+
frame_extraction = "head"
|
93 |
+
cache_directory = "/path/to/cache_directory"
|
94 |
+
|
95 |
+
# same metadata jsonl file can be used for multiple datasets
|
96 |
+
[[datasets]]
|
97 |
+
video_jsonl_file = "/path/to/metadata.jsonl"
|
98 |
+
target_frames = [1]
|
99 |
+
frame_stride = 10
|
100 |
+
cache_directory = "/path/to/cache_directory"
|
101 |
+
|
102 |
+
# other datasets can be added here. each dataset can have different configurations
|
103 |
+
```
|
104 |
+
|
105 |
+
JSONL file format for metadata:
|
106 |
+
|
107 |
+
```json
|
108 |
+
{"video_path": "/path/to/video1.mp4", "caption": "A caption for video1"}
|
109 |
+
{"video_path": "/path/to/video2.mp4", "caption": "A caption for video2"}
|
110 |
+
```
|
111 |
+
|
112 |
+
### fame_extraction Options
|
113 |
+
|
114 |
+
- `head`: Extract the first N frames from the video.
|
115 |
+
- `chunk`: Extract frames by splitting the video into chunks of N frames.
|
116 |
+
- `slide`: Extract frames from the video with a stride of `frame_stride`.
|
117 |
+
- `uniform`: Extract `frame_sample` samples uniformly from the video.
|
118 |
+
|
119 |
+
For example, consider a video with 40 frames. The following diagrams illustrate each extraction:
|
120 |
+
|
121 |
+
```
|
122 |
+
Original Video, 40 frames: x = frame, o = no frame
|
123 |
+
oooooooooooooooooooooooooooooooooooooooo
|
124 |
+
|
125 |
+
head, target_frames = [1, 13, 25] -> extract head frames:
|
126 |
+
xooooooooooooooooooooooooooooooooooooooo
|
127 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
128 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
129 |
+
|
130 |
+
chunk, target_frames = [13, 25] -> extract frames by splitting into chunks, into 13 and 25 frames:
|
131 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
132 |
+
oooooooooooooxxxxxxxxxxxxxoooooooooooooo
|
133 |
+
ooooooooooooooooooooooooooxxxxxxxxxxxxxo
|
134 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
135 |
+
|
136 |
+
NOTE: Please do not include 1 in target_frames if you are using the frame_extraction "chunk". It will make the all frames to be extracted.
|
137 |
+
|
138 |
+
slide, target_frames = [1, 13, 25], frame_stride = 10 -> extract N frames with a stride of 10:
|
139 |
+
xooooooooooooooooooooooooooooooooooooooo
|
140 |
+
ooooooooooxooooooooooooooooooooooooooooo
|
141 |
+
ooooooooooooooooooooxooooooooooooooooooo
|
142 |
+
ooooooooooooooooooooooooooooooxooooooooo
|
143 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
144 |
+
ooooooooooxxxxxxxxxxxxxooooooooooooooooo
|
145 |
+
ooooooooooooooooooooxxxxxxxxxxxxxooooooo
|
146 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
147 |
+
ooooooooooxxxxxxxxxxxxxxxxxxxxxxxxxooooo
|
148 |
+
|
149 |
+
uniform, target_frames =[1, 13, 25], frame_sample = 4 -> extract `frame_sample` samples uniformly, N frames each:
|
150 |
+
xooooooooooooooooooooooooooooooooooooooo
|
151 |
+
oooooooooooooxoooooooooooooooooooooooooo
|
152 |
+
oooooooooooooooooooooooooxoooooooooooooo
|
153 |
+
ooooooooooooooooooooooooooooooooooooooox
|
154 |
+
xxxxxxxxxxxxxooooooooooooooooooooooooooo
|
155 |
+
oooooooooxxxxxxxxxxxxxoooooooooooooooooo
|
156 |
+
ooooooooooooooooooxxxxxxxxxxxxxooooooooo
|
157 |
+
oooooooooooooooooooooooooooxxxxxxxxxxxxx
|
158 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxooooooooooooooo
|
159 |
+
oooooxxxxxxxxxxxxxxxxxxxxxxxxxoooooooooo
|
160 |
+
ooooooooooxxxxxxxxxxxxxxxxxxxxxxxxxooooo
|
161 |
+
oooooooooooooooxxxxxxxxxxxxxxxxxxxxxxxxx
|
162 |
+
```
|
163 |
+
|
164 |
+
## Specifications
|
165 |
+
|
166 |
+
```toml
|
167 |
+
# general configurations
|
168 |
+
[general]
|
169 |
+
resolution = [960, 544] # optional, [W, H], default is None. This is the default resolution for all datasets
|
170 |
+
caption_extension = ".txt" # optional, default is None. This is the default caption extension for all datasets
|
171 |
+
batch_size = 1 # optional, default is 1. This is the default batch size for all datasets
|
172 |
+
enable_bucket = true # optional, default is false. Enable bucketing for datasets
|
173 |
+
bucket_no_upscale = false # optional, default is false. Disable upscaling for bucketing. Ignored if enable_bucket is false
|
174 |
+
|
175 |
+
### Image Dataset
|
176 |
+
|
177 |
+
# sample image dataset with caption text files
|
178 |
+
[[datasets]]
|
179 |
+
image_directory = "/path/to/image_dir"
|
180 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
181 |
+
resolution = [960, 544] # required if general resolution is not set
|
182 |
+
batch_size = 4 # optional, overwrite the default batch size
|
183 |
+
enable_bucket = false # optional, overwrite the default bucketing setting
|
184 |
+
bucket_no_upscale = true # optional, overwrite the default bucketing setting
|
185 |
+
cache_directory = "/path/to/cache_directory" # optional, default is None to use the same directory as the image directory. NOTE: caching is always enabled
|
186 |
+
|
187 |
+
# sample image dataset with metadata **jsonl** file
|
188 |
+
[[datasets]]
|
189 |
+
image_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of image files and captions
|
190 |
+
resolution = [960, 544] # required if general resolution is not set
|
191 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
192 |
+
# caption_extension is not required for metadata jsonl file
|
193 |
+
# batch_size, enable_bucket, bucket_no_upscale are also available for metadata jsonl file
|
194 |
+
|
195 |
+
### Video Dataset
|
196 |
+
|
197 |
+
# sample video dataset with caption text files
|
198 |
+
[[datasets]]
|
199 |
+
video_directory = "/path/to/video_dir"
|
200 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
201 |
+
resolution = [960, 544] # required if general resolution is not set
|
202 |
+
|
203 |
+
target_frames = [1, 25, 79] # required for video dataset. list of video lengths to extract frames. each element must be N*4+1 (N=0,1,2,...)
|
204 |
+
|
205 |
+
# NOTE: Please do not include 1 in target_frames if you are using the frame_extraction "chunk". It will make the all frames to be extracted.
|
206 |
+
|
207 |
+
frame_extraction = "head" # optional, "head" or "chunk", "slide", "uniform". Default is "head"
|
208 |
+
frame_stride = 1 # optional, default is 1, available for "slide" frame extraction
|
209 |
+
frame_sample = 4 # optional, default is 1 (same as "head"), available for "uniform" frame extraction
|
210 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for video dataset
|
211 |
+
|
212 |
+
# sample video dataset with metadata jsonl file
|
213 |
+
[[datasets]]
|
214 |
+
video_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of video files and captions
|
215 |
+
|
216 |
+
target_frames = [1, 79]
|
217 |
+
|
218 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
219 |
+
# frame_extraction, frame_stride, frame_sample are also available for metadata jsonl file
|
220 |
+
```
|
221 |
+
|
222 |
+
<!--
|
223 |
+
# sample image dataset with lance
|
224 |
+
[[datasets]]
|
225 |
+
image_lance_dataset = "/path/to/lance_dataset"
|
226 |
+
resolution = [960, 544] # required if general resolution is not set
|
227 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for lance dataset
|
228 |
+
-->
|
229 |
+
|
230 |
+
The metadata with .json file will be supported in the near future.
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
<!--
|
235 |
+
|
236 |
+
```toml
|
237 |
+
# general configurations
|
238 |
+
[general]
|
239 |
+
resolution = [960, 544] # optional, [W, H], default is None. This is the default resolution for all datasets
|
240 |
+
caption_extension = ".txt" # optional, default is None. This is the default caption extension for all datasets
|
241 |
+
batch_size = 1 # optional, default is 1. This is the default batch size for all datasets
|
242 |
+
enable_bucket = true # optional, default is false. Enable bucketing for datasets
|
243 |
+
bucket_no_upscale = false # optional, default is false. Disable upscaling for bucketing. Ignored if enable_bucket is false
|
244 |
+
|
245 |
+
# sample image dataset with caption text files
|
246 |
+
[[datasets]]
|
247 |
+
image_directory = "/path/to/image_dir"
|
248 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
249 |
+
resolution = [960, 544] # required if general resolution is not set
|
250 |
+
batch_size = 4 # optional, overwrite the default batch size
|
251 |
+
enable_bucket = false # optional, overwrite the default bucketing setting
|
252 |
+
bucket_no_upscale = true # optional, overwrite the default bucketing setting
|
253 |
+
cache_directory = "/path/to/cache_directory" # optional, default is None to use the same directory as the image directory. NOTE: caching is always enabled
|
254 |
+
|
255 |
+
# sample image dataset with metadata **jsonl** file
|
256 |
+
[[datasets]]
|
257 |
+
image_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of image files and captions
|
258 |
+
resolution = [960, 544] # required if general resolution is not set
|
259 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
260 |
+
# caption_extension is not required for metadata jsonl file
|
261 |
+
# batch_size, enable_bucket, bucket_no_upscale are also available for metadata jsonl file
|
262 |
+
|
263 |
+
# sample video dataset with caption text files
|
264 |
+
[[datasets]]
|
265 |
+
video_directory = "/path/to/video_dir"
|
266 |
+
caption_extension = ".txt" # required for caption text files, if general caption extension is not set
|
267 |
+
resolution = [960, 544] # required if general resolution is not set
|
268 |
+
target_frames = [1, 25, 79] # required for video dataset. list of video lengths to extract frames. each element must be N*4+1 (N=0,1,2,...)
|
269 |
+
frame_extraction = "head" # optional, "head" or "chunk", "slide", "uniform". Default is "head"
|
270 |
+
frame_stride = 1 # optional, default is 1, available for "slide" frame extraction
|
271 |
+
frame_sample = 4 # optional, default is 1 (same as "head"), available for "uniform" frame extraction
|
272 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for video dataset
|
273 |
+
|
274 |
+
# sample video dataset with metadata jsonl file
|
275 |
+
[[datasets]]
|
276 |
+
video_jsonl_file = "/path/to/metadata.jsonl" # includes pairs of video files and captions
|
277 |
+
target_frames = [1, 79]
|
278 |
+
cache_directory = "/path/to/cache_directory" # required for metadata jsonl file
|
279 |
+
# frame_extraction, frame_stride, frame_sample are also available for metadata jsonl file
|
280 |
+
```
|
281 |
+
|
282 |
+
# sample image dataset with lance
|
283 |
+
[[datasets]]
|
284 |
+
image_lance_dataset = "/path/to/lance_dataset"
|
285 |
+
resolution = [960, 544] # required if general resolution is not set
|
286 |
+
# batch_size, enable_bucket, bucket_no_upscale, cache_directory are also available for lance dataset
|
287 |
+
|
288 |
+
The metadata with .json file will be supported in the near future.
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
-->
|
dataset/image_video_dataset.py
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from concurrent.futures import ThreadPoolExecutor
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
from typing import Optional, Sequence, Tuple, Union
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from safetensors.torch import save_file, load_file
|
13 |
+
from safetensors import safe_open
|
14 |
+
from PIL import Image
|
15 |
+
import cv2
|
16 |
+
import av
|
17 |
+
|
18 |
+
from utils import safetensors_utils
|
19 |
+
from utils.model_utils import dtype_to_str
|
20 |
+
|
21 |
+
import logging
|
22 |
+
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
|
26 |
+
|
27 |
+
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"]
|
28 |
+
|
29 |
+
try:
|
30 |
+
import pillow_avif
|
31 |
+
|
32 |
+
IMAGE_EXTENSIONS.extend([".avif", ".AVIF"])
|
33 |
+
except:
|
34 |
+
pass
|
35 |
+
|
36 |
+
# JPEG-XL on Linux
|
37 |
+
try:
|
38 |
+
from jxlpy import JXLImagePlugin
|
39 |
+
|
40 |
+
IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
|
41 |
+
except:
|
42 |
+
pass
|
43 |
+
|
44 |
+
# JPEG-XL on Windows
|
45 |
+
try:
|
46 |
+
import pillow_jxl
|
47 |
+
|
48 |
+
IMAGE_EXTENSIONS.extend([".jxl", ".JXL"])
|
49 |
+
except:
|
50 |
+
pass
|
51 |
+
|
52 |
+
VIDEO_EXTENSIONS = [".mp4", ".avi", ".mov", ".webm", ".MP4", ".AVI", ".MOV", ".WEBM"] # some of them are not tested
|
53 |
+
|
54 |
+
ARCHITECTURE_HUNYUAN_VIDEO = "hv"
|
55 |
+
|
56 |
+
|
57 |
+
def glob_images(directory, base="*"):
|
58 |
+
img_paths = []
|
59 |
+
for ext in IMAGE_EXTENSIONS:
|
60 |
+
if base == "*":
|
61 |
+
img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
|
62 |
+
else:
|
63 |
+
img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
|
64 |
+
img_paths = list(set(img_paths)) # remove duplicates
|
65 |
+
img_paths.sort()
|
66 |
+
return img_paths
|
67 |
+
|
68 |
+
|
69 |
+
def glob_videos(directory, base="*"):
|
70 |
+
video_paths = []
|
71 |
+
for ext in VIDEO_EXTENSIONS:
|
72 |
+
if base == "*":
|
73 |
+
video_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
|
74 |
+
else:
|
75 |
+
video_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
|
76 |
+
video_paths = list(set(video_paths)) # remove duplicates
|
77 |
+
video_paths.sort()
|
78 |
+
return video_paths
|
79 |
+
|
80 |
+
|
81 |
+
def divisible_by(num: int, divisor: int) -> int:
|
82 |
+
return num - num % divisor
|
83 |
+
|
84 |
+
|
85 |
+
def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: tuple[int, int]) -> np.ndarray:
|
86 |
+
"""
|
87 |
+
Resize the image to the bucket resolution.
|
88 |
+
"""
|
89 |
+
is_pil_image = isinstance(image, Image.Image)
|
90 |
+
if is_pil_image:
|
91 |
+
image_width, image_height = image.size
|
92 |
+
else:
|
93 |
+
image_height, image_width = image.shape[:2]
|
94 |
+
|
95 |
+
if bucket_reso == (image_width, image_height):
|
96 |
+
return np.array(image) if is_pil_image else image
|
97 |
+
|
98 |
+
bucket_width, bucket_height = bucket_reso
|
99 |
+
if bucket_width == image_width or bucket_height == image_height:
|
100 |
+
image = np.array(image) if is_pil_image else image
|
101 |
+
else:
|
102 |
+
# resize the image to the bucket resolution to match the short side
|
103 |
+
scale_width = bucket_width / image_width
|
104 |
+
scale_height = bucket_height / image_height
|
105 |
+
scale = max(scale_width, scale_height)
|
106 |
+
image_width = int(image_width * scale + 0.5)
|
107 |
+
image_height = int(image_height * scale + 0.5)
|
108 |
+
|
109 |
+
if scale > 1:
|
110 |
+
image = Image.fromarray(image) if not is_pil_image else image
|
111 |
+
image = image.resize((image_width, image_height), Image.LANCZOS)
|
112 |
+
image = np.array(image)
|
113 |
+
else:
|
114 |
+
image = np.array(image) if is_pil_image else image
|
115 |
+
image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA)
|
116 |
+
|
117 |
+
# crop the image to the bucket resolution
|
118 |
+
crop_left = (image_width - bucket_width) // 2
|
119 |
+
crop_top = (image_height - bucket_height) // 2
|
120 |
+
image = image[crop_top : crop_top + bucket_height, crop_left : crop_left + bucket_width]
|
121 |
+
return image
|
122 |
+
|
123 |
+
|
124 |
+
class ItemInfo:
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
item_key: str,
|
128 |
+
caption: str,
|
129 |
+
original_size: tuple[int, int],
|
130 |
+
bucket_size: Optional[Union[tuple[int, int], tuple[int, int, int]]] = None,
|
131 |
+
frame_count: Optional[int] = None,
|
132 |
+
content: Optional[np.ndarray] = None,
|
133 |
+
latent_cache_path: Optional[str] = None,
|
134 |
+
) -> None:
|
135 |
+
self.item_key = item_key
|
136 |
+
self.caption = caption
|
137 |
+
self.original_size = original_size
|
138 |
+
self.bucket_size = bucket_size
|
139 |
+
self.frame_count = frame_count
|
140 |
+
self.content = content
|
141 |
+
self.latent_cache_path = latent_cache_path
|
142 |
+
self.text_encoder_output_cache_path: Optional[str] = None
|
143 |
+
|
144 |
+
def __str__(self) -> str:
|
145 |
+
return (
|
146 |
+
f"ItemInfo(item_key={self.item_key}, caption={self.caption}, "
|
147 |
+
+ f"original_size={self.original_size}, bucket_size={self.bucket_size}, "
|
148 |
+
+ f"frame_count={self.frame_count}, latent_cache_path={self.latent_cache_path})"
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
def save_latent_cache(item_info: ItemInfo, latent: torch.Tensor):
|
153 |
+
assert latent.dim() == 4, "latent should be 4D tensor (frame, channel, height, width)"
|
154 |
+
metadata = {
|
155 |
+
"architecture": "hunyuan_video",
|
156 |
+
"width": f"{item_info.original_size[0]}",
|
157 |
+
"height": f"{item_info.original_size[1]}",
|
158 |
+
"format_version": "1.0.0",
|
159 |
+
}
|
160 |
+
if item_info.frame_count is not None:
|
161 |
+
metadata["frame_count"] = f"{item_info.frame_count}"
|
162 |
+
|
163 |
+
_, F, H, W = latent.shape
|
164 |
+
dtype_str = dtype_to_str(latent.dtype)
|
165 |
+
sd = {f"latents_{F}x{H}x{W}_{dtype_str}": latent.detach().cpu()}
|
166 |
+
|
167 |
+
latent_dir = os.path.dirname(item_info.latent_cache_path)
|
168 |
+
os.makedirs(latent_dir, exist_ok=True)
|
169 |
+
|
170 |
+
save_file(sd, item_info.latent_cache_path, metadata=metadata)
|
171 |
+
|
172 |
+
|
173 |
+
def save_text_encoder_output_cache(item_info: ItemInfo, embed: torch.Tensor, mask: Optional[torch.Tensor], is_llm: bool):
|
174 |
+
assert (
|
175 |
+
embed.dim() == 1 or embed.dim() == 2
|
176 |
+
), f"embed should be 2D tensor (feature, hidden_size) or (hidden_size,), got {embed.shape}"
|
177 |
+
assert mask is None or mask.dim() == 1, f"mask should be 1D tensor (feature), got {mask.shape}"
|
178 |
+
metadata = {
|
179 |
+
"architecture": "hunyuan_video",
|
180 |
+
"caption1": item_info.caption,
|
181 |
+
"format_version": "1.0.0",
|
182 |
+
}
|
183 |
+
|
184 |
+
sd = {}
|
185 |
+
if os.path.exists(item_info.text_encoder_output_cache_path):
|
186 |
+
# load existing cache and update metadata
|
187 |
+
with safetensors_utils.MemoryEfficientSafeOpen(item_info.text_encoder_output_cache_path) as f:
|
188 |
+
existing_metadata = f.metadata()
|
189 |
+
for key in f.keys():
|
190 |
+
sd[key] = f.get_tensor(key)
|
191 |
+
|
192 |
+
assert existing_metadata["architecture"] == metadata["architecture"], "architecture mismatch"
|
193 |
+
if existing_metadata["caption1"] != metadata["caption1"]:
|
194 |
+
logger.warning(f"caption mismatch: existing={existing_metadata['caption1']}, new={metadata['caption1']}, overwrite")
|
195 |
+
# TODO verify format_version
|
196 |
+
|
197 |
+
existing_metadata.pop("caption1", None)
|
198 |
+
existing_metadata.pop("format_version", None)
|
199 |
+
metadata.update(existing_metadata) # copy existing metadata
|
200 |
+
else:
|
201 |
+
text_encoder_output_dir = os.path.dirname(item_info.text_encoder_output_cache_path)
|
202 |
+
os.makedirs(text_encoder_output_dir, exist_ok=True)
|
203 |
+
|
204 |
+
dtype_str = dtype_to_str(embed.dtype)
|
205 |
+
text_encoder_type = "llm" if is_llm else "clipL"
|
206 |
+
sd[f"{text_encoder_type}_{dtype_str}"] = embed.detach().cpu()
|
207 |
+
if mask is not None:
|
208 |
+
sd[f"{text_encoder_type}_mask"] = mask.detach().cpu()
|
209 |
+
|
210 |
+
safetensors_utils.mem_eff_save_file(sd, item_info.text_encoder_output_cache_path, metadata=metadata)
|
211 |
+
|
212 |
+
|
213 |
+
class BucketSelector:
|
214 |
+
RESOLUTION_STEPS_HUNYUAN = 16
|
215 |
+
|
216 |
+
def __init__(self, resolution: Tuple[int, int], enable_bucket: bool = True, no_upscale: bool = False):
|
217 |
+
self.resolution = resolution
|
218 |
+
self.bucket_area = resolution[0] * resolution[1]
|
219 |
+
self.reso_steps = BucketSelector.RESOLUTION_STEPS_HUNYUAN
|
220 |
+
|
221 |
+
if not enable_bucket:
|
222 |
+
# only define one bucket
|
223 |
+
self.bucket_resolutions = [resolution]
|
224 |
+
self.no_upscale = False
|
225 |
+
else:
|
226 |
+
# prepare bucket resolution
|
227 |
+
self.no_upscale = no_upscale
|
228 |
+
sqrt_size = int(math.sqrt(self.bucket_area))
|
229 |
+
min_size = divisible_by(sqrt_size // 2, self.reso_steps)
|
230 |
+
self.bucket_resolutions = []
|
231 |
+
for w in range(min_size, sqrt_size + self.reso_steps, self.reso_steps):
|
232 |
+
h = divisible_by(self.bucket_area // w, self.reso_steps)
|
233 |
+
self.bucket_resolutions.append((w, h))
|
234 |
+
self.bucket_resolutions.append((h, w))
|
235 |
+
|
236 |
+
self.bucket_resolutions = list(set(self.bucket_resolutions))
|
237 |
+
self.bucket_resolutions.sort()
|
238 |
+
|
239 |
+
# calculate aspect ratio to find the nearest resolution
|
240 |
+
self.aspect_ratios = np.array([w / h for w, h in self.bucket_resolutions])
|
241 |
+
|
242 |
+
def get_bucket_resolution(self, image_size: tuple[int, int]) -> tuple[int, int]:
|
243 |
+
"""
|
244 |
+
return the bucket resolution for the given image size, (width, height)
|
245 |
+
"""
|
246 |
+
area = image_size[0] * image_size[1]
|
247 |
+
if self.no_upscale and area <= self.bucket_area:
|
248 |
+
w, h = image_size
|
249 |
+
w = divisible_by(w, self.reso_steps)
|
250 |
+
h = divisible_by(h, self.reso_steps)
|
251 |
+
return w, h
|
252 |
+
|
253 |
+
aspect_ratio = image_size[0] / image_size[1]
|
254 |
+
ar_errors = self.aspect_ratios - aspect_ratio
|
255 |
+
bucket_id = np.abs(ar_errors).argmin()
|
256 |
+
return self.bucket_resolutions[bucket_id]
|
257 |
+
|
258 |
+
|
259 |
+
def load_video(
|
260 |
+
video_path: str,
|
261 |
+
start_frame: Optional[int] = None,
|
262 |
+
end_frame: Optional[int] = None,
|
263 |
+
bucket_selector: Optional[BucketSelector] = None,
|
264 |
+
) -> list[np.ndarray]:
|
265 |
+
container = av.open(video_path)
|
266 |
+
video = []
|
267 |
+
bucket_reso = None
|
268 |
+
for i, frame in enumerate(container.decode(video=0)):
|
269 |
+
if start_frame is not None and i < start_frame:
|
270 |
+
continue
|
271 |
+
if end_frame is not None and i >= end_frame:
|
272 |
+
break
|
273 |
+
frame = frame.to_image()
|
274 |
+
|
275 |
+
if bucket_selector is not None and bucket_reso is None:
|
276 |
+
bucket_reso = bucket_selector.get_bucket_resolution(frame.size)
|
277 |
+
|
278 |
+
if bucket_reso is not None:
|
279 |
+
frame = resize_image_to_bucket(frame, bucket_reso)
|
280 |
+
else:
|
281 |
+
frame = np.array(frame)
|
282 |
+
|
283 |
+
video.append(frame)
|
284 |
+
container.close()
|
285 |
+
return video
|
286 |
+
|
287 |
+
|
288 |
+
class BucketBatchManager:
|
289 |
+
|
290 |
+
def __init__(self, bucketed_item_info: dict[tuple[int, int], list[ItemInfo]], batch_size: int):
|
291 |
+
self.batch_size = batch_size
|
292 |
+
self.buckets = bucketed_item_info
|
293 |
+
self.bucket_resos = list(self.buckets.keys())
|
294 |
+
self.bucket_resos.sort()
|
295 |
+
|
296 |
+
self.bucket_batch_indices = []
|
297 |
+
for bucket_reso in self.bucket_resos:
|
298 |
+
bucket = self.buckets[bucket_reso]
|
299 |
+
num_batches = math.ceil(len(bucket) / self.batch_size)
|
300 |
+
for i in range(num_batches):
|
301 |
+
self.bucket_batch_indices.append((bucket_reso, i))
|
302 |
+
|
303 |
+
self.shuffle()
|
304 |
+
|
305 |
+
def show_bucket_info(self):
|
306 |
+
for bucket_reso in self.bucket_resos:
|
307 |
+
bucket = self.buckets[bucket_reso]
|
308 |
+
logger.info(f"bucket: {bucket_reso}, count: {len(bucket)}")
|
309 |
+
|
310 |
+
logger.info(f"total batches: {len(self)}")
|
311 |
+
|
312 |
+
def shuffle(self):
|
313 |
+
for bucket in self.buckets.values():
|
314 |
+
random.shuffle(bucket)
|
315 |
+
random.shuffle(self.bucket_batch_indices)
|
316 |
+
|
317 |
+
def __len__(self):
|
318 |
+
return len(self.bucket_batch_indices)
|
319 |
+
|
320 |
+
def __getitem__(self, idx):
|
321 |
+
bucket_reso, batch_idx = self.bucket_batch_indices[idx]
|
322 |
+
bucket = self.buckets[bucket_reso]
|
323 |
+
start = batch_idx * self.batch_size
|
324 |
+
end = min(start + self.batch_size, len(bucket))
|
325 |
+
|
326 |
+
latents = []
|
327 |
+
llm_embeds = []
|
328 |
+
llm_masks = []
|
329 |
+
clip_l_embeds = []
|
330 |
+
for item_info in bucket[start:end]:
|
331 |
+
sd = load_file(item_info.latent_cache_path)
|
332 |
+
latent = None
|
333 |
+
for key in sd.keys():
|
334 |
+
if key.startswith("latents_"):
|
335 |
+
latent = sd[key]
|
336 |
+
break
|
337 |
+
latents.append(latent)
|
338 |
+
|
339 |
+
sd = load_file(item_info.text_encoder_output_cache_path)
|
340 |
+
llm_embed = llm_mask = clip_l_embed = None
|
341 |
+
for key in sd.keys():
|
342 |
+
if key.startswith("llm_mask"):
|
343 |
+
llm_mask = sd[key]
|
344 |
+
elif key.startswith("llm_"):
|
345 |
+
llm_embed = sd[key]
|
346 |
+
elif key.startswith("clipL_mask"):
|
347 |
+
pass
|
348 |
+
elif key.startswith("clipL_"):
|
349 |
+
clip_l_embed = sd[key]
|
350 |
+
llm_embeds.append(llm_embed)
|
351 |
+
llm_masks.append(llm_mask)
|
352 |
+
clip_l_embeds.append(clip_l_embed)
|
353 |
+
|
354 |
+
latents = torch.stack(latents)
|
355 |
+
llm_embeds = torch.stack(llm_embeds)
|
356 |
+
llm_masks = torch.stack(llm_masks)
|
357 |
+
clip_l_embeds = torch.stack(clip_l_embeds)
|
358 |
+
|
359 |
+
return latents, llm_embeds, llm_masks, clip_l_embeds
|
360 |
+
|
361 |
+
|
362 |
+
class ContentDatasource:
|
363 |
+
def __init__(self):
|
364 |
+
self.caption_only = False
|
365 |
+
|
366 |
+
def set_caption_only(self, caption_only: bool):
|
367 |
+
self.caption_only = caption_only
|
368 |
+
|
369 |
+
def is_indexable(self):
|
370 |
+
return False
|
371 |
+
|
372 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
373 |
+
"""
|
374 |
+
Returns caption. May not be called if is_indexable() returns False.
|
375 |
+
"""
|
376 |
+
raise NotImplementedError
|
377 |
+
|
378 |
+
def __len__(self):
|
379 |
+
raise NotImplementedError
|
380 |
+
|
381 |
+
def __iter__(self):
|
382 |
+
raise NotImplementedError
|
383 |
+
|
384 |
+
def __next__(self):
|
385 |
+
raise NotImplementedError
|
386 |
+
|
387 |
+
|
388 |
+
class ImageDatasource(ContentDatasource):
|
389 |
+
def __init__(self):
|
390 |
+
super().__init__()
|
391 |
+
|
392 |
+
def get_image_data(self, idx: int) -> tuple[str, Image.Image, str]:
|
393 |
+
"""
|
394 |
+
Returns image data as a tuple of image path, image, and caption for the given index.
|
395 |
+
Key must be unique and valid as a file name.
|
396 |
+
May not be called if is_indexable() returns False.
|
397 |
+
"""
|
398 |
+
raise NotImplementedError
|
399 |
+
|
400 |
+
|
401 |
+
class ImageDirectoryDatasource(ImageDatasource):
|
402 |
+
def __init__(self, image_directory: str, caption_extension: Optional[str] = None):
|
403 |
+
super().__init__()
|
404 |
+
self.image_directory = image_directory
|
405 |
+
self.caption_extension = caption_extension
|
406 |
+
self.current_idx = 0
|
407 |
+
|
408 |
+
# glob images
|
409 |
+
logger.info(f"glob images in {self.image_directory}")
|
410 |
+
self.image_paths = glob_images(self.image_directory)
|
411 |
+
logger.info(f"found {len(self.image_paths)} images")
|
412 |
+
|
413 |
+
def is_indexable(self):
|
414 |
+
return True
|
415 |
+
|
416 |
+
def __len__(self):
|
417 |
+
return len(self.image_paths)
|
418 |
+
|
419 |
+
def get_image_data(self, idx: int) -> tuple[str, Image.Image, str]:
|
420 |
+
image_path = self.image_paths[idx]
|
421 |
+
image = Image.open(image_path).convert("RGB")
|
422 |
+
|
423 |
+
_, caption = self.get_caption(idx)
|
424 |
+
|
425 |
+
return image_path, image, caption
|
426 |
+
|
427 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
428 |
+
image_path = self.image_paths[idx]
|
429 |
+
caption_path = os.path.splitext(image_path)[0] + self.caption_extension if self.caption_extension else ""
|
430 |
+
with open(caption_path, "r", encoding="utf-8") as f:
|
431 |
+
caption = f.read().strip()
|
432 |
+
return image_path, caption
|
433 |
+
|
434 |
+
def __iter__(self):
|
435 |
+
self.current_idx = 0
|
436 |
+
return self
|
437 |
+
|
438 |
+
def __next__(self) -> callable:
|
439 |
+
"""
|
440 |
+
Returns a fetcher function that returns image data.
|
441 |
+
"""
|
442 |
+
if self.current_idx >= len(self.image_paths):
|
443 |
+
raise StopIteration
|
444 |
+
|
445 |
+
if self.caption_only:
|
446 |
+
|
447 |
+
def create_caption_fetcher(index):
|
448 |
+
return lambda: self.get_caption(index)
|
449 |
+
|
450 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
451 |
+
else:
|
452 |
+
|
453 |
+
def create_image_fetcher(index):
|
454 |
+
return lambda: self.get_image_data(index)
|
455 |
+
|
456 |
+
fetcher = create_image_fetcher(self.current_idx)
|
457 |
+
|
458 |
+
self.current_idx += 1
|
459 |
+
return fetcher
|
460 |
+
|
461 |
+
|
462 |
+
class ImageJsonlDatasource(ImageDatasource):
|
463 |
+
def __init__(self, image_jsonl_file: str):
|
464 |
+
super().__init__()
|
465 |
+
self.image_jsonl_file = image_jsonl_file
|
466 |
+
self.current_idx = 0
|
467 |
+
|
468 |
+
# load jsonl
|
469 |
+
logger.info(f"load image jsonl from {self.image_jsonl_file}")
|
470 |
+
self.data = []
|
471 |
+
with open(self.image_jsonl_file, "r", encoding="utf-8") as f:
|
472 |
+
for line in f:
|
473 |
+
data = json.loads(line)
|
474 |
+
self.data.append(data)
|
475 |
+
logger.info(f"loaded {len(self.data)} images")
|
476 |
+
|
477 |
+
def is_indexable(self):
|
478 |
+
return True
|
479 |
+
|
480 |
+
def __len__(self):
|
481 |
+
return len(self.data)
|
482 |
+
|
483 |
+
def get_image_data(self, idx: int) -> tuple[str, Image.Image, str]:
|
484 |
+
data = self.data[idx]
|
485 |
+
image_path = data["image_path"]
|
486 |
+
image = Image.open(image_path).convert("RGB")
|
487 |
+
|
488 |
+
caption = data["caption"]
|
489 |
+
|
490 |
+
return image_path, image, caption
|
491 |
+
|
492 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
493 |
+
data = self.data[idx]
|
494 |
+
image_path = data["image_path"]
|
495 |
+
caption = data["caption"]
|
496 |
+
return image_path, caption
|
497 |
+
|
498 |
+
def __iter__(self):
|
499 |
+
self.current_idx = 0
|
500 |
+
return self
|
501 |
+
|
502 |
+
def __next__(self) -> callable:
|
503 |
+
if self.current_idx >= len(self.data):
|
504 |
+
raise StopIteration
|
505 |
+
|
506 |
+
if self.caption_only:
|
507 |
+
|
508 |
+
def create_caption_fetcher(index):
|
509 |
+
return lambda: self.get_caption(index)
|
510 |
+
|
511 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
512 |
+
|
513 |
+
else:
|
514 |
+
|
515 |
+
def create_fetcher(index):
|
516 |
+
return lambda: self.get_image_data(index)
|
517 |
+
|
518 |
+
fetcher = create_fetcher(self.current_idx)
|
519 |
+
|
520 |
+
self.current_idx += 1
|
521 |
+
return fetcher
|
522 |
+
|
523 |
+
|
524 |
+
class VideoDatasource(ContentDatasource):
|
525 |
+
def __init__(self):
|
526 |
+
super().__init__()
|
527 |
+
|
528 |
+
# None means all frames
|
529 |
+
self.start_frame = None
|
530 |
+
self.end_frame = None
|
531 |
+
|
532 |
+
self.bucket_selector = None
|
533 |
+
|
534 |
+
def __len__(self):
|
535 |
+
raise NotImplementedError
|
536 |
+
|
537 |
+
def get_video_data_from_path(
|
538 |
+
self,
|
539 |
+
video_path: str,
|
540 |
+
start_frame: Optional[int] = None,
|
541 |
+
end_frame: Optional[int] = None,
|
542 |
+
bucket_selector: Optional[BucketSelector] = None,
|
543 |
+
) -> tuple[str, list[Image.Image], str]:
|
544 |
+
# this method can resize the video if bucket_selector is given to reduce the memory usage
|
545 |
+
|
546 |
+
start_frame = start_frame if start_frame is not None else self.start_frame
|
547 |
+
end_frame = end_frame if end_frame is not None else self.end_frame
|
548 |
+
bucket_selector = bucket_selector if bucket_selector is not None else self.bucket_selector
|
549 |
+
|
550 |
+
video = load_video(video_path, start_frame, end_frame, bucket_selector)
|
551 |
+
return video
|
552 |
+
|
553 |
+
def set_start_and_end_frame(self, start_frame: Optional[int], end_frame: Optional[int]):
|
554 |
+
self.start_frame = start_frame
|
555 |
+
self.end_frame = end_frame
|
556 |
+
|
557 |
+
def set_bucket_selector(self, bucket_selector: BucketSelector):
|
558 |
+
self.bucket_selector = bucket_selector
|
559 |
+
|
560 |
+
def __iter__(self):
|
561 |
+
raise NotImplementedError
|
562 |
+
|
563 |
+
def __next__(self):
|
564 |
+
raise NotImplementedError
|
565 |
+
|
566 |
+
|
567 |
+
class VideoDirectoryDatasource(VideoDatasource):
|
568 |
+
def __init__(self, video_directory: str, caption_extension: Optional[str] = None):
|
569 |
+
super().__init__()
|
570 |
+
self.video_directory = video_directory
|
571 |
+
self.caption_extension = caption_extension
|
572 |
+
self.current_idx = 0
|
573 |
+
|
574 |
+
# glob images
|
575 |
+
logger.info(f"glob images in {self.video_directory}")
|
576 |
+
self.video_paths = glob_videos(self.video_directory)
|
577 |
+
logger.info(f"found {len(self.video_paths)} videos")
|
578 |
+
|
579 |
+
def is_indexable(self):
|
580 |
+
return True
|
581 |
+
|
582 |
+
def __len__(self):
|
583 |
+
return len(self.video_paths)
|
584 |
+
|
585 |
+
def get_video_data(
|
586 |
+
self,
|
587 |
+
idx: int,
|
588 |
+
start_frame: Optional[int] = None,
|
589 |
+
end_frame: Optional[int] = None,
|
590 |
+
bucket_selector: Optional[BucketSelector] = None,
|
591 |
+
) -> tuple[str, list[Image.Image], str]:
|
592 |
+
video_path = self.video_paths[idx]
|
593 |
+
video = self.get_video_data_from_path(video_path, start_frame, end_frame, bucket_selector)
|
594 |
+
|
595 |
+
_, caption = self.get_caption(idx)
|
596 |
+
|
597 |
+
return video_path, video, caption
|
598 |
+
|
599 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
600 |
+
video_path = self.video_paths[idx]
|
601 |
+
caption_path = os.path.splitext(video_path)[0] + self.caption_extension if self.caption_extension else ""
|
602 |
+
with open(caption_path, "r", encoding="utf-8") as f:
|
603 |
+
caption = f.read().strip()
|
604 |
+
return video_path, caption
|
605 |
+
|
606 |
+
def __iter__(self):
|
607 |
+
self.current_idx = 0
|
608 |
+
return self
|
609 |
+
|
610 |
+
def __next__(self):
|
611 |
+
if self.current_idx >= len(self.video_paths):
|
612 |
+
raise StopIteration
|
613 |
+
|
614 |
+
if self.caption_only:
|
615 |
+
|
616 |
+
def create_caption_fetcher(index):
|
617 |
+
return lambda: self.get_caption(index)
|
618 |
+
|
619 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
620 |
+
|
621 |
+
else:
|
622 |
+
|
623 |
+
def create_fetcher(index):
|
624 |
+
return lambda: self.get_video_data(index)
|
625 |
+
|
626 |
+
fetcher = create_fetcher(self.current_idx)
|
627 |
+
|
628 |
+
self.current_idx += 1
|
629 |
+
return fetcher
|
630 |
+
|
631 |
+
|
632 |
+
class VideoJsonlDatasource(VideoDatasource):
|
633 |
+
def __init__(self, video_jsonl_file: str):
|
634 |
+
super().__init__()
|
635 |
+
self.video_jsonl_file = video_jsonl_file
|
636 |
+
self.current_idx = 0
|
637 |
+
|
638 |
+
# load jsonl
|
639 |
+
logger.info(f"load video jsonl from {self.video_jsonl_file}")
|
640 |
+
self.data = []
|
641 |
+
with open(self.video_jsonl_file, "r", encoding="utf-8") as f:
|
642 |
+
for line in f:
|
643 |
+
data = json.loads(line)
|
644 |
+
self.data.append(data)
|
645 |
+
logger.info(f"loaded {len(self.data)} videos")
|
646 |
+
|
647 |
+
def is_indexable(self):
|
648 |
+
return True
|
649 |
+
|
650 |
+
def __len__(self):
|
651 |
+
return len(self.data)
|
652 |
+
|
653 |
+
def get_video_data(
|
654 |
+
self,
|
655 |
+
idx: int,
|
656 |
+
start_frame: Optional[int] = None,
|
657 |
+
end_frame: Optional[int] = None,
|
658 |
+
bucket_selector: Optional[BucketSelector] = None,
|
659 |
+
) -> tuple[str, list[Image.Image], str]:
|
660 |
+
data = self.data[idx]
|
661 |
+
video_path = data["video_path"]
|
662 |
+
video = self.get_video_data_from_path(video_path, start_frame, end_frame, bucket_selector)
|
663 |
+
|
664 |
+
caption = data["caption"]
|
665 |
+
|
666 |
+
return video_path, video, caption
|
667 |
+
|
668 |
+
def get_caption(self, idx: int) -> tuple[str, str]:
|
669 |
+
data = self.data[idx]
|
670 |
+
video_path = data["video_path"]
|
671 |
+
caption = data["caption"]
|
672 |
+
return video_path, caption
|
673 |
+
|
674 |
+
def __iter__(self):
|
675 |
+
self.current_idx = 0
|
676 |
+
return self
|
677 |
+
|
678 |
+
def __next__(self):
|
679 |
+
if self.current_idx >= len(self.data):
|
680 |
+
raise StopIteration
|
681 |
+
|
682 |
+
if self.caption_only:
|
683 |
+
|
684 |
+
def create_caption_fetcher(index):
|
685 |
+
return lambda: self.get_caption(index)
|
686 |
+
|
687 |
+
fetcher = create_caption_fetcher(self.current_idx)
|
688 |
+
|
689 |
+
else:
|
690 |
+
|
691 |
+
def create_fetcher(index):
|
692 |
+
return lambda: self.get_video_data(index)
|
693 |
+
|
694 |
+
fetcher = create_fetcher(self.current_idx)
|
695 |
+
|
696 |
+
self.current_idx += 1
|
697 |
+
return fetcher
|
698 |
+
|
699 |
+
|
700 |
+
class BaseDataset(torch.utils.data.Dataset):
|
701 |
+
def __init__(
|
702 |
+
self,
|
703 |
+
resolution: Tuple[int, int] = (960, 544),
|
704 |
+
caption_extension: Optional[str] = None,
|
705 |
+
batch_size: int = 1,
|
706 |
+
enable_bucket: bool = False,
|
707 |
+
bucket_no_upscale: bool = False,
|
708 |
+
cache_directory: Optional[str] = None,
|
709 |
+
debug_dataset: bool = False,
|
710 |
+
):
|
711 |
+
self.resolution = resolution
|
712 |
+
self.caption_extension = caption_extension
|
713 |
+
self.batch_size = batch_size
|
714 |
+
self.enable_bucket = enable_bucket
|
715 |
+
self.bucket_no_upscale = bucket_no_upscale
|
716 |
+
self.cache_directory = cache_directory
|
717 |
+
self.debug_dataset = debug_dataset
|
718 |
+
self.seed = None
|
719 |
+
self.current_epoch = 0
|
720 |
+
|
721 |
+
if not self.enable_bucket:
|
722 |
+
self.bucket_no_upscale = False
|
723 |
+
|
724 |
+
def get_metadata(self) -> dict:
|
725 |
+
metadata = {
|
726 |
+
"resolution": self.resolution,
|
727 |
+
"caption_extension": self.caption_extension,
|
728 |
+
"batch_size_per_device": self.batch_size,
|
729 |
+
"enable_bucket": bool(self.enable_bucket),
|
730 |
+
"bucket_no_upscale": bool(self.bucket_no_upscale),
|
731 |
+
}
|
732 |
+
return metadata
|
733 |
+
|
734 |
+
def get_latent_cache_path(self, item_info: ItemInfo) -> str:
|
735 |
+
w, h = item_info.original_size
|
736 |
+
basename = os.path.splitext(os.path.basename(item_info.item_key))[0]
|
737 |
+
assert self.cache_directory is not None, "cache_directory is required / cache_directoryは必須です"
|
738 |
+
return os.path.join(self.cache_directory, f"{basename}_{w:04d}x{h:04d}_{ARCHITECTURE_HUNYUAN_VIDEO}.safetensors")
|
739 |
+
|
740 |
+
def get_text_encoder_output_cache_path(self, item_info: ItemInfo) -> str:
|
741 |
+
basename = os.path.splitext(os.path.basename(item_info.item_key))[0]
|
742 |
+
assert self.cache_directory is not None, "cache_directory is required / cache_directoryは必須です"
|
743 |
+
return os.path.join(self.cache_directory, f"{basename}_{ARCHITECTURE_HUNYUAN_VIDEO}_te.safetensors")
|
744 |
+
|
745 |
+
def retrieve_latent_cache_batches(self, num_workers: int):
|
746 |
+
raise NotImplementedError
|
747 |
+
|
748 |
+
def retrieve_text_encoder_output_cache_batches(self, num_workers: int):
|
749 |
+
raise NotImplementedError
|
750 |
+
|
751 |
+
def prepare_for_training(self):
|
752 |
+
pass
|
753 |
+
|
754 |
+
def set_seed(self, seed: int):
|
755 |
+
self.seed = seed
|
756 |
+
|
757 |
+
def set_current_epoch(self, epoch):
|
758 |
+
if not self.current_epoch == epoch: # shuffle buckets when epoch is incremented
|
759 |
+
if epoch > self.current_epoch:
|
760 |
+
logger.info("epoch is incremented. current_epoch: {}, epoch: {}".format(self.current_epoch, epoch))
|
761 |
+
num_epochs = epoch - self.current_epoch
|
762 |
+
for _ in range(num_epochs):
|
763 |
+
self.current_epoch += 1
|
764 |
+
self.shuffle_buckets()
|
765 |
+
# self.current_epoch seem to be set to 0 again in the next epoch. it may be caused by skipped_dataloader?
|
766 |
+
else:
|
767 |
+
logger.warning("epoch is not incremented. current_epoch: {}, epoch: {}".format(self.current_epoch, epoch))
|
768 |
+
self.current_epoch = epoch
|
769 |
+
|
770 |
+
def set_current_step(self, step):
|
771 |
+
self.current_step = step
|
772 |
+
|
773 |
+
def set_max_train_steps(self, max_train_steps):
|
774 |
+
self.max_train_steps = max_train_steps
|
775 |
+
|
776 |
+
def shuffle_buckets(self):
|
777 |
+
raise NotImplementedError
|
778 |
+
|
779 |
+
def __len__(self):
|
780 |
+
return NotImplementedError
|
781 |
+
|
782 |
+
def __getitem__(self, idx):
|
783 |
+
raise NotImplementedError
|
784 |
+
|
785 |
+
def _default_retrieve_text_encoder_output_cache_batches(self, datasource: ContentDatasource, batch_size: int, num_workers: int):
|
786 |
+
datasource.set_caption_only(True)
|
787 |
+
executor = ThreadPoolExecutor(max_workers=num_workers)
|
788 |
+
|
789 |
+
data: list[ItemInfo] = []
|
790 |
+
futures = []
|
791 |
+
|
792 |
+
def aggregate_future(consume_all: bool = False):
|
793 |
+
while len(futures) >= num_workers or (consume_all and len(futures) > 0):
|
794 |
+
completed_futures = [future for future in futures if future.done()]
|
795 |
+
if len(completed_futures) == 0:
|
796 |
+
if len(futures) >= num_workers or consume_all: # to avoid adding too many futures
|
797 |
+
time.sleep(0.1)
|
798 |
+
continue
|
799 |
+
else:
|
800 |
+
break # submit batch if possible
|
801 |
+
|
802 |
+
for future in completed_futures:
|
803 |
+
item_key, caption = future.result()
|
804 |
+
item_info = ItemInfo(item_key, caption, (0, 0), (0, 0))
|
805 |
+
item_info.text_encoder_output_cache_path = self.get_text_encoder_output_cache_path(item_info)
|
806 |
+
data.append(item_info)
|
807 |
+
|
808 |
+
futures.remove(future)
|
809 |
+
|
810 |
+
def submit_batch(flush: bool = False):
|
811 |
+
nonlocal data
|
812 |
+
if len(data) >= batch_size or (len(data) > 0 and flush):
|
813 |
+
batch = data[0:batch_size]
|
814 |
+
if len(data) > batch_size:
|
815 |
+
data = data[batch_size:]
|
816 |
+
else:
|
817 |
+
data = []
|
818 |
+
return batch
|
819 |
+
return None
|
820 |
+
|
821 |
+
for fetch_op in datasource:
|
822 |
+
future = executor.submit(fetch_op)
|
823 |
+
futures.append(future)
|
824 |
+
aggregate_future()
|
825 |
+
while True:
|
826 |
+
batch = submit_batch()
|
827 |
+
if batch is None:
|
828 |
+
break
|
829 |
+
yield batch
|
830 |
+
|
831 |
+
aggregate_future(consume_all=True)
|
832 |
+
while True:
|
833 |
+
batch = submit_batch(flush=True)
|
834 |
+
if batch is None:
|
835 |
+
break
|
836 |
+
yield batch
|
837 |
+
|
838 |
+
executor.shutdown()
|
839 |
+
|
840 |
+
|
841 |
+
class ImageDataset(BaseDataset):
|
842 |
+
def __init__(
|
843 |
+
self,
|
844 |
+
resolution: Tuple[int, int],
|
845 |
+
caption_extension: Optional[str],
|
846 |
+
batch_size: int,
|
847 |
+
enable_bucket: bool,
|
848 |
+
bucket_no_upscale: bool,
|
849 |
+
image_directory: Optional[str] = None,
|
850 |
+
image_jsonl_file: Optional[str] = None,
|
851 |
+
cache_directory: Optional[str] = None,
|
852 |
+
debug_dataset: bool = False,
|
853 |
+
):
|
854 |
+
super(ImageDataset, self).__init__(
|
855 |
+
resolution, caption_extension, batch_size, enable_bucket, bucket_no_upscale, cache_directory, debug_dataset
|
856 |
+
)
|
857 |
+
self.image_directory = image_directory
|
858 |
+
self.image_jsonl_file = image_jsonl_file
|
859 |
+
if image_directory is not None:
|
860 |
+
self.datasource = ImageDirectoryDatasource(image_directory, caption_extension)
|
861 |
+
elif image_jsonl_file is not None:
|
862 |
+
self.datasource = ImageJsonlDatasource(image_jsonl_file)
|
863 |
+
else:
|
864 |
+
raise ValueError("image_directory or image_jsonl_file must be specified")
|
865 |
+
|
866 |
+
if self.cache_directory is None:
|
867 |
+
self.cache_directory = self.image_directory
|
868 |
+
|
869 |
+
self.batch_manager = None
|
870 |
+
self.num_train_items = 0
|
871 |
+
|
872 |
+
def get_metadata(self):
|
873 |
+
metadata = super().get_metadata()
|
874 |
+
if self.image_directory is not None:
|
875 |
+
metadata["image_directory"] = os.path.basename(self.image_directory)
|
876 |
+
if self.image_jsonl_file is not None:
|
877 |
+
metadata["image_jsonl_file"] = os.path.basename(self.image_jsonl_file)
|
878 |
+
return metadata
|
879 |
+
|
880 |
+
def get_total_image_count(self):
|
881 |
+
return len(self.datasource) if self.datasource.is_indexable() else None
|
882 |
+
|
883 |
+
def retrieve_latent_cache_batches(self, num_workers: int):
|
884 |
+
buckset_selector = BucketSelector(self.resolution, self.enable_bucket, self.bucket_no_upscale)
|
885 |
+
executor = ThreadPoolExecutor(max_workers=num_workers)
|
886 |
+
|
887 |
+
batches: dict[tuple[int, int], list[ItemInfo]] = {} # (width, height) -> [ItemInfo]
|
888 |
+
futures = []
|
889 |
+
|
890 |
+
def aggregate_future(consume_all: bool = False):
|
891 |
+
while len(futures) >= num_workers or (consume_all and len(futures) > 0):
|
892 |
+
completed_futures = [future for future in futures if future.done()]
|
893 |
+
if len(completed_futures) == 0:
|
894 |
+
if len(futures) >= num_workers or consume_all: # to avoid adding too many futures
|
895 |
+
time.sleep(0.1)
|
896 |
+
continue
|
897 |
+
else:
|
898 |
+
break # submit batch if possible
|
899 |
+
|
900 |
+
for future in completed_futures:
|
901 |
+
original_size, item_key, image, caption = future.result()
|
902 |
+
bucket_height, bucket_width = image.shape[:2]
|
903 |
+
bucket_reso = (bucket_width, bucket_height)
|
904 |
+
|
905 |
+
item_info = ItemInfo(item_key, caption, original_size, bucket_reso, content=image)
|
906 |
+
item_info.latent_cache_path = self.get_latent_cache_path(item_info)
|
907 |
+
|
908 |
+
if bucket_reso not in batches:
|
909 |
+
batches[bucket_reso] = []
|
910 |
+
batches[bucket_reso].append(item_info)
|
911 |
+
|
912 |
+
futures.remove(future)
|
913 |
+
|
914 |
+
def submit_batch(flush: bool = False):
|
915 |
+
for key in batches:
|
916 |
+
if len(batches[key]) >= self.batch_size or flush:
|
917 |
+
batch = batches[key][0 : self.batch_size]
|
918 |
+
if len(batches[key]) > self.batch_size:
|
919 |
+
batches[key] = batches[key][self.batch_size :]
|
920 |
+
else:
|
921 |
+
del batches[key]
|
922 |
+
return key, batch
|
923 |
+
return None, None
|
924 |
+
|
925 |
+
for fetch_op in self.datasource:
|
926 |
+
|
927 |
+
def fetch_and_resize(op: callable) -> tuple[tuple[int, int], str, Image.Image, str]:
|
928 |
+
image_key, image, caption = op()
|
929 |
+
image: Image.Image
|
930 |
+
image_size = image.size
|
931 |
+
|
932 |
+
bucket_reso = buckset_selector.get_bucket_resolution(image_size)
|
933 |
+
image = resize_image_to_bucket(image, bucket_reso)
|
934 |
+
return image_size, image_key, image, caption
|
935 |
+
|
936 |
+
future = executor.submit(fetch_and_resize, fetch_op)
|
937 |
+
futures.append(future)
|
938 |
+
aggregate_future()
|
939 |
+
while True:
|
940 |
+
key, batch = submit_batch()
|
941 |
+
if key is None:
|
942 |
+
break
|
943 |
+
yield key, batch
|
944 |
+
|
945 |
+
aggregate_future(consume_all=True)
|
946 |
+
while True:
|
947 |
+
key, batch = submit_batch(flush=True)
|
948 |
+
if key is None:
|
949 |
+
break
|
950 |
+
yield key, batch
|
951 |
+
|
952 |
+
executor.shutdown()
|
953 |
+
|
954 |
+
def retrieve_text_encoder_output_cache_batches(self, num_workers: int):
|
955 |
+
return self._default_retrieve_text_encoder_output_cache_batches(self.datasource, self.batch_size, num_workers)
|
956 |
+
|
957 |
+
def prepare_for_training(self):
|
958 |
+
bucket_selector = BucketSelector(self.resolution, self.enable_bucket, self.bucket_no_upscale)
|
959 |
+
|
960 |
+
# glob cache files
|
961 |
+
latent_cache_files = glob.glob(os.path.join(self.cache_directory, f"*_{ARCHITECTURE_HUNYUAN_VIDEO}.safetensors"))
|
962 |
+
|
963 |
+
# assign cache files to item info
|
964 |
+
bucketed_item_info: dict[tuple[int, int], list[ItemInfo]] = {} # (width, height) -> [ItemInfo]
|
965 |
+
for cache_file in latent_cache_files:
|
966 |
+
tokens = os.path.basename(cache_file).split("_")
|
967 |
+
|
968 |
+
image_size = tokens[-2] # 0000x0000
|
969 |
+
image_width, image_height = map(int, image_size.split("x"))
|
970 |
+
image_size = (image_width, image_height)
|
971 |
+
|
972 |
+
item_key = "_".join(tokens[:-2])
|
973 |
+
text_encoder_output_cache_file = os.path.join(
|
974 |
+
self.cache_directory, f"{item_key}_{ARCHITECTURE_HUNYUAN_VIDEO}_te.safetensors"
|
975 |
+
)
|
976 |
+
if not os.path.exists(text_encoder_output_cache_file):
|
977 |
+
logger.warning(f"Text encoder output cache file not found: {text_encoder_output_cache_file}")
|
978 |
+
continue
|
979 |
+
|
980 |
+
bucket_reso = bucket_selector.get_bucket_resolution(image_size)
|
981 |
+
item_info = ItemInfo(item_key, "", image_size, bucket_reso, latent_cache_path=cache_file)
|
982 |
+
item_info.text_encoder_output_cache_path = text_encoder_output_cache_file
|
983 |
+
|
984 |
+
bucket = bucketed_item_info.get(bucket_reso, [])
|
985 |
+
bucket.append(item_info)
|
986 |
+
bucketed_item_info[bucket_reso] = bucket
|
987 |
+
|
988 |
+
# prepare batch manager
|
989 |
+
self.batch_manager = BucketBatchManager(bucketed_item_info, self.batch_size)
|
990 |
+
self.batch_manager.show_bucket_info()
|
991 |
+
|
992 |
+
self.num_train_items = sum([len(bucket) for bucket in bucketed_item_info.values()])
|
993 |
+
|
994 |
+
def shuffle_buckets(self):
|
995 |
+
# set random seed for this epoch
|
996 |
+
random.seed(self.seed + self.current_epoch)
|
997 |
+
self.batch_manager.shuffle()
|
998 |
+
|
999 |
+
def __len__(self):
|
1000 |
+
if self.batch_manager is None:
|
1001 |
+
return 100 # dummy value
|
1002 |
+
return len(self.batch_manager)
|
1003 |
+
|
1004 |
+
def __getitem__(self, idx):
|
1005 |
+
return self.batch_manager[idx]
|
1006 |
+
|
1007 |
+
|
1008 |
+
class VideoDataset(BaseDataset):
|
1009 |
+
def __init__(
|
1010 |
+
self,
|
1011 |
+
resolution: Tuple[int, int],
|
1012 |
+
caption_extension: Optional[str],
|
1013 |
+
batch_size: int,
|
1014 |
+
enable_bucket: bool,
|
1015 |
+
bucket_no_upscale: bool,
|
1016 |
+
frame_extraction: Optional[str] = "head",
|
1017 |
+
frame_stride: Optional[int] = 1,
|
1018 |
+
frame_sample: Optional[int] = 1,
|
1019 |
+
target_frames: Optional[list[int]] = None,
|
1020 |
+
video_directory: Optional[str] = None,
|
1021 |
+
video_jsonl_file: Optional[str] = None,
|
1022 |
+
cache_directory: Optional[str] = None,
|
1023 |
+
debug_dataset: bool = False,
|
1024 |
+
):
|
1025 |
+
super(VideoDataset, self).__init__(
|
1026 |
+
resolution, caption_extension, batch_size, enable_bucket, bucket_no_upscale, cache_directory, debug_dataset
|
1027 |
+
)
|
1028 |
+
self.video_directory = video_directory
|
1029 |
+
self.video_jsonl_file = video_jsonl_file
|
1030 |
+
self.target_frames = target_frames
|
1031 |
+
self.frame_extraction = frame_extraction
|
1032 |
+
self.frame_stride = frame_stride
|
1033 |
+
self.frame_sample = frame_sample
|
1034 |
+
|
1035 |
+
if video_directory is not None:
|
1036 |
+
self.datasource = VideoDirectoryDatasource(video_directory, caption_extension)
|
1037 |
+
elif video_jsonl_file is not None:
|
1038 |
+
self.datasource = VideoJsonlDatasource(video_jsonl_file)
|
1039 |
+
|
1040 |
+
if self.frame_extraction == "uniform" and self.frame_sample == 1:
|
1041 |
+
self.frame_extraction = "head"
|
1042 |
+
logger.warning("frame_sample is set to 1 for frame_extraction=uniform. frame_extraction is changed to head.")
|
1043 |
+
if self.frame_extraction == "head":
|
1044 |
+
# head extraction. we can limit the number of frames to be extracted
|
1045 |
+
self.datasource.set_start_and_end_frame(0, max(self.target_frames))
|
1046 |
+
|
1047 |
+
if self.cache_directory is None:
|
1048 |
+
self.cache_directory = self.video_directory
|
1049 |
+
|
1050 |
+
self.batch_manager = None
|
1051 |
+
self.num_train_items = 0
|
1052 |
+
|
1053 |
+
def get_metadata(self):
|
1054 |
+
metadata = super().get_metadata()
|
1055 |
+
if self.video_directory is not None:
|
1056 |
+
metadata["video_directory"] = os.path.basename(self.video_directory)
|
1057 |
+
if self.video_jsonl_file is not None:
|
1058 |
+
metadata["video_jsonl_file"] = os.path.basename(self.video_jsonl_file)
|
1059 |
+
metadata["frame_extraction"] = self.frame_extraction
|
1060 |
+
metadata["frame_stride"] = self.frame_stride
|
1061 |
+
metadata["frame_sample"] = self.frame_sample
|
1062 |
+
metadata["target_frames"] = self.target_frames
|
1063 |
+
return metadata
|
1064 |
+
|
1065 |
+
def retrieve_latent_cache_batches(self, num_workers: int):
|
1066 |
+
buckset_selector = BucketSelector(self.resolution)
|
1067 |
+
self.datasource.set_bucket_selector(buckset_selector)
|
1068 |
+
|
1069 |
+
executor = ThreadPoolExecutor(max_workers=num_workers)
|
1070 |
+
|
1071 |
+
# key: (width, height, frame_count), value: [ItemInfo]
|
1072 |
+
batches: dict[tuple[int, int, int], list[ItemInfo]] = {}
|
1073 |
+
futures = []
|
1074 |
+
|
1075 |
+
def aggregate_future(consume_all: bool = False):
|
1076 |
+
while len(futures) >= num_workers or (consume_all and len(futures) > 0):
|
1077 |
+
completed_futures = [future for future in futures if future.done()]
|
1078 |
+
if len(completed_futures) == 0:
|
1079 |
+
if len(futures) >= num_workers or consume_all: # to avoid adding too many futures
|
1080 |
+
time.sleep(0.1)
|
1081 |
+
continue
|
1082 |
+
else:
|
1083 |
+
break # submit batch if possible
|
1084 |
+
|
1085 |
+
for future in completed_futures:
|
1086 |
+
original_frame_size, video_key, video, caption = future.result()
|
1087 |
+
|
1088 |
+
frame_count = len(video)
|
1089 |
+
video = np.stack(video, axis=0)
|
1090 |
+
height, width = video.shape[1:3]
|
1091 |
+
bucket_reso = (width, height) # already resized
|
1092 |
+
|
1093 |
+
crop_pos_and_frames = []
|
1094 |
+
if self.frame_extraction == "head":
|
1095 |
+
for target_frame in self.target_frames:
|
1096 |
+
if frame_count >= target_frame:
|
1097 |
+
crop_pos_and_frames.append((0, target_frame))
|
1098 |
+
elif self.frame_extraction == "chunk":
|
1099 |
+
# split by target_frames
|
1100 |
+
for target_frame in self.target_frames:
|
1101 |
+
for i in range(0, frame_count, target_frame):
|
1102 |
+
if i + target_frame <= frame_count:
|
1103 |
+
crop_pos_and_frames.append((i, target_frame))
|
1104 |
+
elif self.frame_extraction == "slide":
|
1105 |
+
# slide window
|
1106 |
+
for target_frame in self.target_frames:
|
1107 |
+
if frame_count >= target_frame:
|
1108 |
+
for i in range(0, frame_count - target_frame + 1, self.frame_stride):
|
1109 |
+
crop_pos_and_frames.append((i, target_frame))
|
1110 |
+
elif self.frame_extraction == "uniform":
|
1111 |
+
# select N frames uniformly
|
1112 |
+
for target_frame in self.target_frames:
|
1113 |
+
if frame_count >= target_frame:
|
1114 |
+
frame_indices = np.linspace(0, frame_count - target_frame, self.frame_sample, dtype=int)
|
1115 |
+
for i in frame_indices:
|
1116 |
+
crop_pos_and_frames.append((i, target_frame))
|
1117 |
+
else:
|
1118 |
+
raise ValueError(f"frame_extraction {self.frame_extraction} is not supported")
|
1119 |
+
|
1120 |
+
for crop_pos, target_frame in crop_pos_and_frames:
|
1121 |
+
cropped_video = video[crop_pos : crop_pos + target_frame]
|
1122 |
+
body, ext = os.path.splitext(video_key)
|
1123 |
+
item_key = f"{body}_{crop_pos:05d}-{target_frame:03d}{ext}"
|
1124 |
+
batch_key = (*bucket_reso, target_frame) # bucket_reso with frame_count
|
1125 |
+
|
1126 |
+
item_info = ItemInfo(
|
1127 |
+
item_key, caption, original_frame_size, batch_key, frame_count=target_frame, content=cropped_video
|
1128 |
+
)
|
1129 |
+
item_info.latent_cache_path = self.get_latent_cache_path(item_info)
|
1130 |
+
|
1131 |
+
batch = batches.get(batch_key, [])
|
1132 |
+
batch.append(item_info)
|
1133 |
+
batches[batch_key] = batch
|
1134 |
+
|
1135 |
+
futures.remove(future)
|
1136 |
+
|
1137 |
+
def submit_batch(flush: bool = False):
|
1138 |
+
for key in batches:
|
1139 |
+
if len(batches[key]) >= self.batch_size or flush:
|
1140 |
+
batch = batches[key][0 : self.batch_size]
|
1141 |
+
if len(batches[key]) > self.batch_size:
|
1142 |
+
batches[key] = batches[key][self.batch_size :]
|
1143 |
+
else:
|
1144 |
+
del batches[key]
|
1145 |
+
return key, batch
|
1146 |
+
return None, None
|
1147 |
+
|
1148 |
+
for operator in self.datasource:
|
1149 |
+
|
1150 |
+
def fetch_and_resize(op: callable) -> tuple[tuple[int, int], str, list[np.ndarray], str]:
|
1151 |
+
video_key, video, caption = op()
|
1152 |
+
video: list[np.ndarray]
|
1153 |
+
frame_size = (video[0].shape[1], video[0].shape[0])
|
1154 |
+
|
1155 |
+
# resize if necessary
|
1156 |
+
bucket_reso = buckset_selector.get_bucket_resolution(frame_size)
|
1157 |
+
video = [resize_image_to_bucket(frame, bucket_reso) for frame in video]
|
1158 |
+
|
1159 |
+
return frame_size, video_key, video, caption
|
1160 |
+
|
1161 |
+
future = executor.submit(fetch_and_resize, operator)
|
1162 |
+
futures.append(future)
|
1163 |
+
aggregate_future()
|
1164 |
+
while True:
|
1165 |
+
key, batch = submit_batch()
|
1166 |
+
if key is None:
|
1167 |
+
break
|
1168 |
+
yield key, batch
|
1169 |
+
|
1170 |
+
aggregate_future(consume_all=True)
|
1171 |
+
while True:
|
1172 |
+
key, batch = submit_batch(flush=True)
|
1173 |
+
if key is None:
|
1174 |
+
break
|
1175 |
+
yield key, batch
|
1176 |
+
|
1177 |
+
executor.shutdown()
|
1178 |
+
|
1179 |
+
def retrieve_text_encoder_output_cache_batches(self, num_workers: int):
|
1180 |
+
return self._default_retrieve_text_encoder_output_cache_batches(self.datasource, self.batch_size, num_workers)
|
1181 |
+
|
1182 |
+
def prepare_for_training(self):
|
1183 |
+
bucket_selector = BucketSelector(self.resolution, self.enable_bucket, self.bucket_no_upscale)
|
1184 |
+
|
1185 |
+
# glob cache files
|
1186 |
+
latent_cache_files = glob.glob(os.path.join(self.cache_directory, f"*_{ARCHITECTURE_HUNYUAN_VIDEO}.safetensors"))
|
1187 |
+
|
1188 |
+
# assign cache files to item info
|
1189 |
+
bucketed_item_info: dict[tuple[int, int, int], list[ItemInfo]] = {} # (width, height, frame_count) -> [ItemInfo]
|
1190 |
+
for cache_file in latent_cache_files:
|
1191 |
+
tokens = os.path.basename(cache_file).split("_")
|
1192 |
+
|
1193 |
+
image_size = tokens[-2] # 0000x0000
|
1194 |
+
image_width, image_height = map(int, image_size.split("x"))
|
1195 |
+
image_size = (image_width, image_height)
|
1196 |
+
|
1197 |
+
frame_pos, frame_count = tokens[-3].split("-")
|
1198 |
+
frame_pos, frame_count = int(frame_pos), int(frame_count)
|
1199 |
+
|
1200 |
+
item_key = "_".join(tokens[:-3])
|
1201 |
+
text_encoder_output_cache_file = os.path.join(
|
1202 |
+
self.cache_directory, f"{item_key}_{ARCHITECTURE_HUNYUAN_VIDEO}_te.safetensors"
|
1203 |
+
)
|
1204 |
+
if not os.path.exists(text_encoder_output_cache_file):
|
1205 |
+
logger.warning(f"Text encoder output cache file not found: {text_encoder_output_cache_file}")
|
1206 |
+
continue
|
1207 |
+
|
1208 |
+
bucket_reso = bucket_selector.get_bucket_resolution(image_size)
|
1209 |
+
bucket_reso = (*bucket_reso, frame_count)
|
1210 |
+
item_info = ItemInfo(item_key, "", image_size, bucket_reso, frame_count=frame_count, latent_cache_path=cache_file)
|
1211 |
+
item_info.text_encoder_output_cache_path = text_encoder_output_cache_file
|
1212 |
+
|
1213 |
+
bucket = bucketed_item_info.get(bucket_reso, [])
|
1214 |
+
bucket.append(item_info)
|
1215 |
+
bucketed_item_info[bucket_reso] = bucket
|
1216 |
+
|
1217 |
+
# prepare batch manager
|
1218 |
+
self.batch_manager = BucketBatchManager(bucketed_item_info, self.batch_size)
|
1219 |
+
self.batch_manager.show_bucket_info()
|
1220 |
+
|
1221 |
+
self.num_train_items = sum([len(bucket) for bucket in bucketed_item_info.values()])
|
1222 |
+
|
1223 |
+
def shuffle_buckets(self):
|
1224 |
+
# set random seed for this epoch
|
1225 |
+
random.seed(self.seed + self.current_epoch)
|
1226 |
+
self.batch_manager.shuffle()
|
1227 |
+
|
1228 |
+
def __len__(self):
|
1229 |
+
if self.batch_manager is None:
|
1230 |
+
return 100 # dummy value
|
1231 |
+
return len(self.batch_manager)
|
1232 |
+
|
1233 |
+
def __getitem__(self, idx):
|
1234 |
+
return self.batch_manager[idx]
|
1235 |
+
|
1236 |
+
|
1237 |
+
class DatasetGroup(torch.utils.data.ConcatDataset):
|
1238 |
+
def __init__(self, datasets: Sequence[Union[ImageDataset, VideoDataset]]):
|
1239 |
+
super().__init__(datasets)
|
1240 |
+
self.datasets: list[Union[ImageDataset, VideoDataset]] = datasets
|
1241 |
+
self.num_train_items = 0
|
1242 |
+
for dataset in self.datasets:
|
1243 |
+
self.num_train_items += dataset.num_train_items
|
1244 |
+
|
1245 |
+
def set_current_epoch(self, epoch):
|
1246 |
+
for dataset in self.datasets:
|
1247 |
+
dataset.set_current_epoch(epoch)
|
1248 |
+
|
1249 |
+
def set_current_step(self, step):
|
1250 |
+
for dataset in self.datasets:
|
1251 |
+
dataset.set_current_step(step)
|
1252 |
+
|
1253 |
+
def set_max_train_steps(self, max_train_steps):
|
1254 |
+
for dataset in self.datasets:
|
1255 |
+
dataset.set_max_train_steps(max_train_steps)
|
hunyuan_model/__init__.py
ADDED
File without changes
|
hunyuan_model/activation_layers.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def get_activation_layer(act_type):
|
5 |
+
"""get activation layer
|
6 |
+
|
7 |
+
Args:
|
8 |
+
act_type (str): the activation type
|
9 |
+
|
10 |
+
Returns:
|
11 |
+
torch.nn.functional: the activation layer
|
12 |
+
"""
|
13 |
+
if act_type == "gelu":
|
14 |
+
return lambda: nn.GELU()
|
15 |
+
elif act_type == "gelu_tanh":
|
16 |
+
# Approximate `tanh` requires torch >= 1.13
|
17 |
+
return lambda: nn.GELU(approximate="tanh")
|
18 |
+
elif act_type == "relu":
|
19 |
+
return nn.ReLU
|
20 |
+
elif act_type == "silu":
|
21 |
+
return nn.SiLU
|
22 |
+
else:
|
23 |
+
raise ValueError(f"Unknown activation type: {act_type}")
|
hunyuan_model/attention.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib.metadata
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
try:
|
9 |
+
import flash_attn
|
10 |
+
from flash_attn.flash_attn_interface import _flash_attn_forward
|
11 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
12 |
+
except ImportError:
|
13 |
+
flash_attn = None
|
14 |
+
flash_attn_varlen_func = None
|
15 |
+
_flash_attn_forward = None
|
16 |
+
|
17 |
+
try:
|
18 |
+
print(f"Trying to import sageattention")
|
19 |
+
from sageattention import sageattn_varlen
|
20 |
+
|
21 |
+
print("Successfully imported sageattention")
|
22 |
+
except ImportError:
|
23 |
+
print(f"Failed to import flash_attn and sageattention")
|
24 |
+
sageattn_varlen = None
|
25 |
+
|
26 |
+
MEMORY_LAYOUT = {
|
27 |
+
"flash": (
|
28 |
+
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
|
29 |
+
lambda x: x,
|
30 |
+
),
|
31 |
+
"sageattn": (
|
32 |
+
lambda x: x.view(x.shape[0] * x.shape[1], *x.shape[2:]),
|
33 |
+
lambda x: x,
|
34 |
+
),
|
35 |
+
"torch": (
|
36 |
+
lambda x: x.transpose(1, 2),
|
37 |
+
lambda x: x.transpose(1, 2),
|
38 |
+
),
|
39 |
+
"vanilla": (
|
40 |
+
lambda x: x.transpose(1, 2),
|
41 |
+
lambda x: x.transpose(1, 2),
|
42 |
+
),
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def get_cu_seqlens(text_mask, img_len):
|
47 |
+
"""Calculate cu_seqlens_q, cu_seqlens_kv using text_mask and img_len
|
48 |
+
|
49 |
+
Args:
|
50 |
+
text_mask (torch.Tensor): the mask of text
|
51 |
+
img_len (int): the length of image
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
torch.Tensor: the calculated cu_seqlens for flash attention
|
55 |
+
"""
|
56 |
+
batch_size = text_mask.shape[0]
|
57 |
+
text_len = text_mask.sum(dim=1)
|
58 |
+
max_len = text_mask.shape[1] + img_len
|
59 |
+
|
60 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
61 |
+
|
62 |
+
for i in range(batch_size):
|
63 |
+
s = text_len[i] + img_len
|
64 |
+
s1 = i * max_len + s
|
65 |
+
s2 = (i + 1) * max_len
|
66 |
+
cu_seqlens[2 * i + 1] = s1
|
67 |
+
cu_seqlens[2 * i + 2] = s2
|
68 |
+
|
69 |
+
return cu_seqlens
|
70 |
+
|
71 |
+
|
72 |
+
def attention(
|
73 |
+
q_or_qkv_list,
|
74 |
+
k=None,
|
75 |
+
v=None,
|
76 |
+
mode="flash",
|
77 |
+
drop_rate=0,
|
78 |
+
attn_mask=None,
|
79 |
+
causal=False,
|
80 |
+
cu_seqlens_q=None,
|
81 |
+
cu_seqlens_kv=None,
|
82 |
+
max_seqlen_q=None,
|
83 |
+
max_seqlen_kv=None,
|
84 |
+
batch_size=1,
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
Perform QKV self attention.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
|
91 |
+
k (torch.Tensor): Key tensor with shape [b, s1, a, d]
|
92 |
+
v (torch.Tensor): Value tensor with shape [b, s1, a, d]
|
93 |
+
mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
|
94 |
+
drop_rate (float): Dropout rate in attention map. (default: 0)
|
95 |
+
attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
|
96 |
+
(default: None)
|
97 |
+
causal (bool): Whether to use causal attention. (default: False)
|
98 |
+
cu_seqlens_q (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
|
99 |
+
used to index into q.
|
100 |
+
cu_seqlens_kv (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
|
101 |
+
used to index into kv.
|
102 |
+
max_seqlen_q (int): The maximum sequence length in the batch of q.
|
103 |
+
max_seqlen_kv (int): The maximum sequence length in the batch of k and v.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
torch.Tensor: Output tensor after self attention with shape [b, s, ad]
|
107 |
+
"""
|
108 |
+
q, k, v = q_or_qkv_list if type(q_or_qkv_list) == list else (q_or_qkv_list, k, v)
|
109 |
+
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
|
110 |
+
q = pre_attn_layout(q)
|
111 |
+
k = pre_attn_layout(k)
|
112 |
+
v = pre_attn_layout(v)
|
113 |
+
|
114 |
+
if mode == "torch":
|
115 |
+
if attn_mask is not None and attn_mask.dtype != torch.bool:
|
116 |
+
attn_mask = attn_mask.to(q.dtype)
|
117 |
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal)
|
118 |
+
if type(q_or_qkv_list) == list:
|
119 |
+
q_or_qkv_list.clear()
|
120 |
+
del q, k, v
|
121 |
+
del attn_mask
|
122 |
+
elif mode == "flash":
|
123 |
+
x = flash_attn_varlen_func(
|
124 |
+
q,
|
125 |
+
k,
|
126 |
+
v,
|
127 |
+
cu_seqlens_q,
|
128 |
+
cu_seqlens_kv,
|
129 |
+
max_seqlen_q,
|
130 |
+
max_seqlen_kv,
|
131 |
+
)
|
132 |
+
if type(q_or_qkv_list) == list:
|
133 |
+
q_or_qkv_list.clear()
|
134 |
+
del q, k, v
|
135 |
+
# x with shape [(bxs), a, d]
|
136 |
+
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # reshape x to [b, s, a, d]
|
137 |
+
elif mode == "sageattn":
|
138 |
+
x = sageattn_varlen(
|
139 |
+
q,
|
140 |
+
k,
|
141 |
+
v,
|
142 |
+
cu_seqlens_q,
|
143 |
+
cu_seqlens_kv,
|
144 |
+
max_seqlen_q,
|
145 |
+
max_seqlen_kv,
|
146 |
+
)
|
147 |
+
if type(q_or_qkv_list) == list:
|
148 |
+
q_or_qkv_list.clear()
|
149 |
+
del q, k, v
|
150 |
+
# x with shape [(bxs), a, d]
|
151 |
+
x = x.view(batch_size, max_seqlen_q, x.shape[-2], x.shape[-1]) # reshape x to [b, s, a, d]
|
152 |
+
elif mode == "vanilla":
|
153 |
+
scale_factor = 1 / math.sqrt(q.size(-1))
|
154 |
+
|
155 |
+
b, a, s, _ = q.shape
|
156 |
+
s1 = k.size(2)
|
157 |
+
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
|
158 |
+
if causal:
|
159 |
+
# Only applied to self attention
|
160 |
+
assert attn_mask is None, "Causal mask and attn_mask cannot be used together"
|
161 |
+
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0)
|
162 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
163 |
+
attn_bias.to(q.dtype)
|
164 |
+
|
165 |
+
if attn_mask is not None:
|
166 |
+
if attn_mask.dtype == torch.bool:
|
167 |
+
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
168 |
+
else:
|
169 |
+
attn_bias += attn_mask
|
170 |
+
|
171 |
+
# TODO: Maybe force q and k to be float32 to avoid numerical overflow
|
172 |
+
attn = (q @ k.transpose(-2, -1)) * scale_factor
|
173 |
+
attn += attn_bias
|
174 |
+
attn = attn.softmax(dim=-1)
|
175 |
+
attn = torch.dropout(attn, p=drop_rate, train=True)
|
176 |
+
x = attn @ v
|
177 |
+
else:
|
178 |
+
raise NotImplementedError(f"Unsupported attention mode: {mode}")
|
179 |
+
|
180 |
+
x = post_attn_layout(x)
|
181 |
+
b, s, a, d = x.shape
|
182 |
+
out = x.reshape(b, s, -1)
|
183 |
+
return out
|
184 |
+
|
185 |
+
|
186 |
+
def parallel_attention(hybrid_seq_parallel_attn, q, k, v, img_q_len, img_kv_len, cu_seqlens_q, cu_seqlens_kv):
|
187 |
+
attn1 = hybrid_seq_parallel_attn(
|
188 |
+
None,
|
189 |
+
q[:, :img_q_len, :, :],
|
190 |
+
k[:, :img_kv_len, :, :],
|
191 |
+
v[:, :img_kv_len, :, :],
|
192 |
+
dropout_p=0.0,
|
193 |
+
causal=False,
|
194 |
+
joint_tensor_query=q[:, img_q_len : cu_seqlens_q[1]],
|
195 |
+
joint_tensor_key=k[:, img_kv_len : cu_seqlens_kv[1]],
|
196 |
+
joint_tensor_value=v[:, img_kv_len : cu_seqlens_kv[1]],
|
197 |
+
joint_strategy="rear",
|
198 |
+
)
|
199 |
+
if flash_attn.__version__ >= "2.7.0":
|
200 |
+
attn2, *_ = _flash_attn_forward(
|
201 |
+
q[:, cu_seqlens_q[1] :],
|
202 |
+
k[:, cu_seqlens_kv[1] :],
|
203 |
+
v[:, cu_seqlens_kv[1] :],
|
204 |
+
dropout_p=0.0,
|
205 |
+
softmax_scale=q.shape[-1] ** (-0.5),
|
206 |
+
causal=False,
|
207 |
+
window_size_left=-1,
|
208 |
+
window_size_right=-1,
|
209 |
+
softcap=0.0,
|
210 |
+
alibi_slopes=None,
|
211 |
+
return_softmax=False,
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
attn2, *_ = _flash_attn_forward(
|
215 |
+
q[:, cu_seqlens_q[1] :],
|
216 |
+
k[:, cu_seqlens_kv[1] :],
|
217 |
+
v[:, cu_seqlens_kv[1] :],
|
218 |
+
dropout_p=0.0,
|
219 |
+
softmax_scale=q.shape[-1] ** (-0.5),
|
220 |
+
causal=False,
|
221 |
+
window_size=(-1, -1),
|
222 |
+
softcap=0.0,
|
223 |
+
alibi_slopes=None,
|
224 |
+
return_softmax=False,
|
225 |
+
)
|
226 |
+
attn = torch.cat([attn1, attn2], dim=1)
|
227 |
+
b, s, a, d = attn.shape
|
228 |
+
attn = attn.reshape(b, s, -1)
|
229 |
+
|
230 |
+
return attn
|
hunyuan_model/autoencoder_kl_causal_3d.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
from typing import Dict, Optional, Tuple, Union
|
20 |
+
from dataclasses import dataclass
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
|
27 |
+
try:
|
28 |
+
# This diffusers is modified and packed in the mirror.
|
29 |
+
from diffusers.loaders import FromOriginalVAEMixin
|
30 |
+
except ImportError:
|
31 |
+
# Use this to be compatible with the original diffusers.
|
32 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin
|
33 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
34 |
+
from diffusers.models.attention_processor import (
|
35 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
36 |
+
CROSS_ATTENTION_PROCESSORS,
|
37 |
+
Attention,
|
38 |
+
AttentionProcessor,
|
39 |
+
AttnAddedKVProcessor,
|
40 |
+
AttnProcessor,
|
41 |
+
)
|
42 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
44 |
+
from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class DecoderOutput2(BaseOutput):
|
49 |
+
sample: torch.FloatTensor
|
50 |
+
posterior: Optional[DiagonalGaussianDistribution] = None
|
51 |
+
|
52 |
+
|
53 |
+
class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
54 |
+
r"""
|
55 |
+
A VAE model with KL loss for encoding images/videos into latents and decoding latent representations into images/videos.
|
56 |
+
|
57 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
58 |
+
for all models (such as downloading or saving).
|
59 |
+
"""
|
60 |
+
|
61 |
+
_supports_gradient_checkpointing = True
|
62 |
+
|
63 |
+
@register_to_config
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
in_channels: int = 3,
|
67 |
+
out_channels: int = 3,
|
68 |
+
down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",),
|
69 |
+
up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",),
|
70 |
+
block_out_channels: Tuple[int] = (64,),
|
71 |
+
layers_per_block: int = 1,
|
72 |
+
act_fn: str = "silu",
|
73 |
+
latent_channels: int = 4,
|
74 |
+
norm_num_groups: int = 32,
|
75 |
+
sample_size: int = 32,
|
76 |
+
sample_tsize: int = 64,
|
77 |
+
scaling_factor: float = 0.18215,
|
78 |
+
force_upcast: float = True,
|
79 |
+
spatial_compression_ratio: int = 8,
|
80 |
+
time_compression_ratio: int = 4,
|
81 |
+
mid_block_add_attention: bool = True,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.time_compression_ratio = time_compression_ratio
|
86 |
+
|
87 |
+
self.encoder = EncoderCausal3D(
|
88 |
+
in_channels=in_channels,
|
89 |
+
out_channels=latent_channels,
|
90 |
+
down_block_types=down_block_types,
|
91 |
+
block_out_channels=block_out_channels,
|
92 |
+
layers_per_block=layers_per_block,
|
93 |
+
act_fn=act_fn,
|
94 |
+
norm_num_groups=norm_num_groups,
|
95 |
+
double_z=True,
|
96 |
+
time_compression_ratio=time_compression_ratio,
|
97 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
98 |
+
mid_block_add_attention=mid_block_add_attention,
|
99 |
+
)
|
100 |
+
|
101 |
+
self.decoder = DecoderCausal3D(
|
102 |
+
in_channels=latent_channels,
|
103 |
+
out_channels=out_channels,
|
104 |
+
up_block_types=up_block_types,
|
105 |
+
block_out_channels=block_out_channels,
|
106 |
+
layers_per_block=layers_per_block,
|
107 |
+
norm_num_groups=norm_num_groups,
|
108 |
+
act_fn=act_fn,
|
109 |
+
time_compression_ratio=time_compression_ratio,
|
110 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
111 |
+
mid_block_add_attention=mid_block_add_attention,
|
112 |
+
)
|
113 |
+
|
114 |
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
115 |
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
116 |
+
|
117 |
+
self.use_slicing = False
|
118 |
+
self.use_spatial_tiling = False
|
119 |
+
self.use_temporal_tiling = False
|
120 |
+
|
121 |
+
# only relevant if vae tiling is enabled
|
122 |
+
self.tile_sample_min_tsize = sample_tsize
|
123 |
+
self.tile_latent_min_tsize = sample_tsize // time_compression_ratio
|
124 |
+
|
125 |
+
self.tile_sample_min_size = self.config.sample_size
|
126 |
+
sample_size = self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size
|
127 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
128 |
+
self.tile_overlap_factor = 0.25
|
129 |
+
|
130 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
131 |
+
if isinstance(module, (EncoderCausal3D, DecoderCausal3D)):
|
132 |
+
module.gradient_checkpointing = value
|
133 |
+
|
134 |
+
def enable_temporal_tiling(self, use_tiling: bool = True):
|
135 |
+
self.use_temporal_tiling = use_tiling
|
136 |
+
|
137 |
+
def disable_temporal_tiling(self):
|
138 |
+
self.enable_temporal_tiling(False)
|
139 |
+
|
140 |
+
def enable_spatial_tiling(self, use_tiling: bool = True):
|
141 |
+
self.use_spatial_tiling = use_tiling
|
142 |
+
|
143 |
+
def disable_spatial_tiling(self):
|
144 |
+
self.enable_spatial_tiling(False)
|
145 |
+
|
146 |
+
def enable_tiling(self, use_tiling: bool = True):
|
147 |
+
r"""
|
148 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
149 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
150 |
+
processing larger videos.
|
151 |
+
"""
|
152 |
+
self.enable_spatial_tiling(use_tiling)
|
153 |
+
self.enable_temporal_tiling(use_tiling)
|
154 |
+
|
155 |
+
def disable_tiling(self):
|
156 |
+
r"""
|
157 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
158 |
+
decoding in one step.
|
159 |
+
"""
|
160 |
+
self.disable_spatial_tiling()
|
161 |
+
self.disable_temporal_tiling()
|
162 |
+
|
163 |
+
def enable_slicing(self):
|
164 |
+
r"""
|
165 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
166 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
167 |
+
"""
|
168 |
+
self.use_slicing = True
|
169 |
+
|
170 |
+
def disable_slicing(self):
|
171 |
+
r"""
|
172 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
173 |
+
decoding in one step.
|
174 |
+
"""
|
175 |
+
self.use_slicing = False
|
176 |
+
|
177 |
+
def set_chunk_size_for_causal_conv_3d(self, chunk_size: int):
|
178 |
+
# set chunk_size to CausalConv3d recursively
|
179 |
+
def set_chunk_size(module):
|
180 |
+
if hasattr(module, "chunk_size"):
|
181 |
+
module.chunk_size = chunk_size
|
182 |
+
|
183 |
+
self.apply(set_chunk_size)
|
184 |
+
|
185 |
+
@property
|
186 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
187 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
188 |
+
r"""
|
189 |
+
Returns:
|
190 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
191 |
+
indexed by its weight name.
|
192 |
+
"""
|
193 |
+
# set recursively
|
194 |
+
processors = {}
|
195 |
+
|
196 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
197 |
+
if hasattr(module, "get_processor"):
|
198 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
199 |
+
|
200 |
+
for sub_name, child in module.named_children():
|
201 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
202 |
+
|
203 |
+
return processors
|
204 |
+
|
205 |
+
for name, module in self.named_children():
|
206 |
+
fn_recursive_add_processors(name, module, processors)
|
207 |
+
|
208 |
+
return processors
|
209 |
+
|
210 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
211 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False):
|
212 |
+
r"""
|
213 |
+
Sets the attention processor to use to compute attention.
|
214 |
+
|
215 |
+
Parameters:
|
216 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
217 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
218 |
+
for **all** `Attention` layers.
|
219 |
+
|
220 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
221 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
222 |
+
|
223 |
+
"""
|
224 |
+
count = len(self.attn_processors.keys())
|
225 |
+
|
226 |
+
if isinstance(processor, dict) and len(processor) != count:
|
227 |
+
raise ValueError(
|
228 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
229 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
230 |
+
)
|
231 |
+
|
232 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
233 |
+
if hasattr(module, "set_processor"):
|
234 |
+
if not isinstance(processor, dict):
|
235 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
236 |
+
else:
|
237 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
238 |
+
|
239 |
+
for sub_name, child in module.named_children():
|
240 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
241 |
+
|
242 |
+
for name, module in self.named_children():
|
243 |
+
fn_recursive_attn_processor(name, module, processor)
|
244 |
+
|
245 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
246 |
+
def set_default_attn_processor(self):
|
247 |
+
"""
|
248 |
+
Disables custom attention processors and sets the default attention implementation.
|
249 |
+
"""
|
250 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
251 |
+
processor = AttnAddedKVProcessor()
|
252 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
253 |
+
processor = AttnProcessor()
|
254 |
+
else:
|
255 |
+
raise ValueError(
|
256 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
257 |
+
)
|
258 |
+
|
259 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
260 |
+
|
261 |
+
@apply_forward_hook
|
262 |
+
def encode(
|
263 |
+
self, x: torch.FloatTensor, return_dict: bool = True
|
264 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
265 |
+
"""
|
266 |
+
Encode a batch of images/videos into latents.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
270 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
271 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
The latent representations of the encoded images/videos. If `return_dict` is True, a
|
275 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
276 |
+
"""
|
277 |
+
assert len(x.shape) == 5, "The input tensor should have 5 dimensions."
|
278 |
+
|
279 |
+
if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize:
|
280 |
+
return self.temporal_tiled_encode(x, return_dict=return_dict)
|
281 |
+
|
282 |
+
if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
283 |
+
return self.spatial_tiled_encode(x, return_dict=return_dict)
|
284 |
+
|
285 |
+
if self.use_slicing and x.shape[0] > 1:
|
286 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
287 |
+
h = torch.cat(encoded_slices)
|
288 |
+
else:
|
289 |
+
h = self.encoder(x)
|
290 |
+
|
291 |
+
moments = self.quant_conv(h)
|
292 |
+
posterior = DiagonalGaussianDistribution(moments)
|
293 |
+
|
294 |
+
if not return_dict:
|
295 |
+
return (posterior,)
|
296 |
+
|
297 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
298 |
+
|
299 |
+
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
300 |
+
assert len(z.shape) == 5, "The input tensor should have 5 dimensions."
|
301 |
+
|
302 |
+
if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize:
|
303 |
+
return self.temporal_tiled_decode(z, return_dict=return_dict)
|
304 |
+
|
305 |
+
if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
|
306 |
+
return self.spatial_tiled_decode(z, return_dict=return_dict)
|
307 |
+
|
308 |
+
z = self.post_quant_conv(z)
|
309 |
+
dec = self.decoder(z)
|
310 |
+
|
311 |
+
if not return_dict:
|
312 |
+
return (dec,)
|
313 |
+
|
314 |
+
return DecoderOutput(sample=dec)
|
315 |
+
|
316 |
+
@apply_forward_hook
|
317 |
+
def decode(self, z: torch.FloatTensor, return_dict: bool = True, generator=None) -> Union[DecoderOutput, torch.FloatTensor]:
|
318 |
+
"""
|
319 |
+
Decode a batch of images/videos.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
323 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
324 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
328 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
329 |
+
returned.
|
330 |
+
|
331 |
+
"""
|
332 |
+
if self.use_slicing and z.shape[0] > 1:
|
333 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
334 |
+
decoded = torch.cat(decoded_slices)
|
335 |
+
else:
|
336 |
+
decoded = self._decode(z).sample
|
337 |
+
|
338 |
+
if not return_dict:
|
339 |
+
return (decoded,)
|
340 |
+
|
341 |
+
return DecoderOutput(sample=decoded)
|
342 |
+
|
343 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
344 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
345 |
+
for y in range(blend_extent):
|
346 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
|
347 |
+
return b
|
348 |
+
|
349 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
350 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
351 |
+
for x in range(blend_extent):
|
352 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
|
353 |
+
return b
|
354 |
+
|
355 |
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
356 |
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
357 |
+
for x in range(blend_extent):
|
358 |
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (x / blend_extent)
|
359 |
+
return b
|
360 |
+
|
361 |
+
def spatial_tiled_encode(
|
362 |
+
self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False
|
363 |
+
) -> AutoencoderKLOutput:
|
364 |
+
r"""Encode a batch of images/videos using a tiled encoder.
|
365 |
+
|
366 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
367 |
+
steps. This is useful to keep memory use constant regardless of image/videos size. The end result of tiled encoding is
|
368 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
369 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
370 |
+
output, but they should be much less noticeable.
|
371 |
+
|
372 |
+
Args:
|
373 |
+
x (`torch.FloatTensor`): Input batch of images/videos.
|
374 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
375 |
+
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
|
379 |
+
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
|
380 |
+
`tuple` is returned.
|
381 |
+
"""
|
382 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
383 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
384 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
385 |
+
|
386 |
+
# Split video into tiles and encode them separately.
|
387 |
+
rows = []
|
388 |
+
for i in range(0, x.shape[-2], overlap_size):
|
389 |
+
row = []
|
390 |
+
for j in range(0, x.shape[-1], overlap_size):
|
391 |
+
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
392 |
+
tile = self.encoder(tile)
|
393 |
+
tile = self.quant_conv(tile)
|
394 |
+
row.append(tile)
|
395 |
+
rows.append(row)
|
396 |
+
result_rows = []
|
397 |
+
for i, row in enumerate(rows):
|
398 |
+
result_row = []
|
399 |
+
for j, tile in enumerate(row):
|
400 |
+
# blend the above tile and the left tile
|
401 |
+
# to the current tile and add the current tile to the result row
|
402 |
+
if i > 0:
|
403 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
404 |
+
if j > 0:
|
405 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
406 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
407 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
408 |
+
|
409 |
+
moments = torch.cat(result_rows, dim=-2)
|
410 |
+
if return_moments:
|
411 |
+
return moments
|
412 |
+
|
413 |
+
posterior = DiagonalGaussianDistribution(moments)
|
414 |
+
if not return_dict:
|
415 |
+
return (posterior,)
|
416 |
+
|
417 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
418 |
+
|
419 |
+
def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
420 |
+
r"""
|
421 |
+
Decode a batch of images/videos using a tiled decoder.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
z (`torch.FloatTensor`): Input batch of latent vectors.
|
425 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
426 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
430 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
431 |
+
returned.
|
432 |
+
"""
|
433 |
+
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
434 |
+
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
435 |
+
row_limit = self.tile_sample_min_size - blend_extent
|
436 |
+
|
437 |
+
# Split z into overlapping tiles and decode them separately.
|
438 |
+
# The tiles have an overlap to avoid seams between tiles.
|
439 |
+
rows = []
|
440 |
+
for i in range(0, z.shape[-2], overlap_size):
|
441 |
+
row = []
|
442 |
+
for j in range(0, z.shape[-1], overlap_size):
|
443 |
+
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
|
444 |
+
tile = self.post_quant_conv(tile)
|
445 |
+
decoded = self.decoder(tile)
|
446 |
+
row.append(decoded)
|
447 |
+
rows.append(row)
|
448 |
+
result_rows = []
|
449 |
+
for i, row in enumerate(rows):
|
450 |
+
result_row = []
|
451 |
+
for j, tile in enumerate(row):
|
452 |
+
# blend the above tile and the left tile
|
453 |
+
# to the current tile and add the current tile to the result row
|
454 |
+
if i > 0:
|
455 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
456 |
+
if j > 0:
|
457 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
458 |
+
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
459 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
460 |
+
|
461 |
+
dec = torch.cat(result_rows, dim=-2)
|
462 |
+
if not return_dict:
|
463 |
+
return (dec,)
|
464 |
+
|
465 |
+
return DecoderOutput(sample=dec)
|
466 |
+
|
467 |
+
def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
468 |
+
|
469 |
+
B, C, T, H, W = x.shape
|
470 |
+
overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))
|
471 |
+
blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)
|
472 |
+
t_limit = self.tile_latent_min_tsize - blend_extent
|
473 |
+
|
474 |
+
# Split the video into tiles and encode them separately.
|
475 |
+
row = []
|
476 |
+
for i in range(0, T, overlap_size):
|
477 |
+
tile = x[:, :, i : i + self.tile_sample_min_tsize + 1, :, :]
|
478 |
+
if self.use_spatial_tiling and (
|
479 |
+
tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size
|
480 |
+
):
|
481 |
+
tile = self.spatial_tiled_encode(tile, return_moments=True)
|
482 |
+
else:
|
483 |
+
tile = self.encoder(tile)
|
484 |
+
tile = self.quant_conv(tile)
|
485 |
+
if i > 0:
|
486 |
+
tile = tile[:, :, 1:, :, :]
|
487 |
+
row.append(tile)
|
488 |
+
result_row = []
|
489 |
+
for i, tile in enumerate(row):
|
490 |
+
if i > 0:
|
491 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
492 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
493 |
+
else:
|
494 |
+
result_row.append(tile[:, :, : t_limit + 1, :, :])
|
495 |
+
|
496 |
+
moments = torch.cat(result_row, dim=2)
|
497 |
+
posterior = DiagonalGaussianDistribution(moments)
|
498 |
+
|
499 |
+
if not return_dict:
|
500 |
+
return (posterior,)
|
501 |
+
|
502 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
503 |
+
|
504 |
+
def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
505 |
+
# Split z into overlapping tiles and decode them separately.
|
506 |
+
|
507 |
+
B, C, T, H, W = z.shape
|
508 |
+
overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))
|
509 |
+
blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)
|
510 |
+
t_limit = self.tile_sample_min_tsize - blend_extent
|
511 |
+
|
512 |
+
row = []
|
513 |
+
for i in range(0, T, overlap_size):
|
514 |
+
tile = z[:, :, i : i + self.tile_latent_min_tsize + 1, :, :]
|
515 |
+
if self.use_spatial_tiling and (
|
516 |
+
tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size
|
517 |
+
):
|
518 |
+
decoded = self.spatial_tiled_decode(tile, return_dict=True).sample
|
519 |
+
else:
|
520 |
+
tile = self.post_quant_conv(tile)
|
521 |
+
decoded = self.decoder(tile)
|
522 |
+
if i > 0:
|
523 |
+
decoded = decoded[:, :, 1:, :, :]
|
524 |
+
row.append(decoded)
|
525 |
+
result_row = []
|
526 |
+
for i, tile in enumerate(row):
|
527 |
+
if i > 0:
|
528 |
+
tile = self.blend_t(row[i - 1], tile, blend_extent)
|
529 |
+
result_row.append(tile[:, :, :t_limit, :, :])
|
530 |
+
else:
|
531 |
+
result_row.append(tile[:, :, : t_limit + 1, :, :])
|
532 |
+
|
533 |
+
dec = torch.cat(result_row, dim=2)
|
534 |
+
if not return_dict:
|
535 |
+
return (dec,)
|
536 |
+
|
537 |
+
return DecoderOutput(sample=dec)
|
538 |
+
|
539 |
+
def forward(
|
540 |
+
self,
|
541 |
+
sample: torch.FloatTensor,
|
542 |
+
sample_posterior: bool = False,
|
543 |
+
return_dict: bool = True,
|
544 |
+
return_posterior: bool = False,
|
545 |
+
generator: Optional[torch.Generator] = None,
|
546 |
+
) -> Union[DecoderOutput2, torch.FloatTensor]:
|
547 |
+
r"""
|
548 |
+
Args:
|
549 |
+
sample (`torch.FloatTensor`): Input sample.
|
550 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
551 |
+
Whether to sample from the posterior.
|
552 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
553 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
554 |
+
"""
|
555 |
+
x = sample
|
556 |
+
posterior = self.encode(x).latent_dist
|
557 |
+
if sample_posterior:
|
558 |
+
z = posterior.sample(generator=generator)
|
559 |
+
else:
|
560 |
+
z = posterior.mode()
|
561 |
+
dec = self.decode(z).sample
|
562 |
+
|
563 |
+
if not return_dict:
|
564 |
+
if return_posterior:
|
565 |
+
return (dec, posterior)
|
566 |
+
else:
|
567 |
+
return (dec,)
|
568 |
+
if return_posterior:
|
569 |
+
return DecoderOutput2(sample=dec, posterior=posterior)
|
570 |
+
else:
|
571 |
+
return DecoderOutput2(sample=dec)
|
572 |
+
|
573 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
574 |
+
def fuse_qkv_projections(self):
|
575 |
+
"""
|
576 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
577 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
578 |
+
|
579 |
+
<Tip warning={true}>
|
580 |
+
|
581 |
+
This API is 🧪 experimental.
|
582 |
+
|
583 |
+
</Tip>
|
584 |
+
"""
|
585 |
+
self.original_attn_processors = None
|
586 |
+
|
587 |
+
for _, attn_processor in self.attn_processors.items():
|
588 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
589 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
590 |
+
|
591 |
+
self.original_attn_processors = self.attn_processors
|
592 |
+
|
593 |
+
for module in self.modules():
|
594 |
+
if isinstance(module, Attention):
|
595 |
+
module.fuse_projections(fuse=True)
|
596 |
+
|
597 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
598 |
+
def unfuse_qkv_projections(self):
|
599 |
+
"""Disables the fused QKV projection if enabled.
|
600 |
+
|
601 |
+
<Tip warning={true}>
|
602 |
+
|
603 |
+
This API is 🧪 experimental.
|
604 |
+
|
605 |
+
</Tip>
|
606 |
+
|
607 |
+
"""
|
608 |
+
if self.original_attn_processors is not None:
|
609 |
+
self.set_attn_processor(self.original_attn_processors)
|
hunyuan_model/embed_layers.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
from .helpers import to_2tuple
|
8 |
+
|
9 |
+
class PatchEmbed(nn.Module):
|
10 |
+
"""2D Image to Patch Embedding
|
11 |
+
|
12 |
+
Image to Patch Embedding using Conv2d
|
13 |
+
|
14 |
+
A convolution based approach to patchifying a 2D image w/ embedding projection.
|
15 |
+
|
16 |
+
Based on the impl in https://github.com/google-research/vision_transformer
|
17 |
+
|
18 |
+
Hacked together by / Copyright 2020 Ross Wightman
|
19 |
+
|
20 |
+
Remove the _assert function in forward function to be compatible with multi-resolution images.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
patch_size=16,
|
26 |
+
in_chans=3,
|
27 |
+
embed_dim=768,
|
28 |
+
norm_layer=None,
|
29 |
+
flatten=True,
|
30 |
+
bias=True,
|
31 |
+
dtype=None,
|
32 |
+
device=None,
|
33 |
+
):
|
34 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
35 |
+
super().__init__()
|
36 |
+
patch_size = to_2tuple(patch_size)
|
37 |
+
self.patch_size = patch_size
|
38 |
+
self.flatten = flatten
|
39 |
+
|
40 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, **factory_kwargs)
|
41 |
+
nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1))
|
42 |
+
if bias:
|
43 |
+
nn.init.zeros_(self.proj.bias)
|
44 |
+
|
45 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
x = self.proj(x)
|
49 |
+
if self.flatten:
|
50 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
51 |
+
x = self.norm(x)
|
52 |
+
return x
|
53 |
+
|
54 |
+
|
55 |
+
class TextProjection(nn.Module):
|
56 |
+
"""
|
57 |
+
Projects text embeddings. Also handles dropout for classifier-free guidance.
|
58 |
+
|
59 |
+
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
|
63 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
64 |
+
super().__init__()
|
65 |
+
self.linear_1 = nn.Linear(in_features=in_channels, out_features=hidden_size, bias=True, **factory_kwargs)
|
66 |
+
self.act_1 = act_layer()
|
67 |
+
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True, **factory_kwargs)
|
68 |
+
|
69 |
+
def forward(self, caption):
|
70 |
+
hidden_states = self.linear_1(caption)
|
71 |
+
hidden_states = self.act_1(hidden_states)
|
72 |
+
hidden_states = self.linear_2(hidden_states)
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
def timestep_embedding(t, dim, max_period=10000):
|
77 |
+
"""
|
78 |
+
Create sinusoidal timestep embeddings.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
82 |
+
dim (int): the dimension of the output.
|
83 |
+
max_period (int): controls the minimum frequency of the embeddings.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
|
87 |
+
|
88 |
+
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
89 |
+
"""
|
90 |
+
half = dim // 2
|
91 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
|
92 |
+
args = t[:, None].float() * freqs[None]
|
93 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
94 |
+
if dim % 2:
|
95 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
96 |
+
return embedding
|
97 |
+
|
98 |
+
|
99 |
+
class TimestepEmbedder(nn.Module):
|
100 |
+
"""
|
101 |
+
Embeds scalar timesteps into vector representations.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
hidden_size,
|
107 |
+
act_layer,
|
108 |
+
frequency_embedding_size=256,
|
109 |
+
max_period=10000,
|
110 |
+
out_size=None,
|
111 |
+
dtype=None,
|
112 |
+
device=None,
|
113 |
+
):
|
114 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
115 |
+
super().__init__()
|
116 |
+
self.frequency_embedding_size = frequency_embedding_size
|
117 |
+
self.max_period = max_period
|
118 |
+
if out_size is None:
|
119 |
+
out_size = hidden_size
|
120 |
+
|
121 |
+
self.mlp = nn.Sequential(
|
122 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True, **factory_kwargs),
|
123 |
+
act_layer(),
|
124 |
+
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
|
125 |
+
)
|
126 |
+
nn.init.normal_(self.mlp[0].weight, std=0.02)
|
127 |
+
nn.init.normal_(self.mlp[2].weight, std=0.02)
|
128 |
+
|
129 |
+
def forward(self, t):
|
130 |
+
t_freq = timestep_embedding(t, self.frequency_embedding_size, self.max_period).type(self.mlp[0].weight.dtype)
|
131 |
+
t_emb = self.mlp(t_freq)
|
132 |
+
return t_emb
|
hunyuan_model/helpers.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
|
3 |
+
from itertools import repeat
|
4 |
+
|
5 |
+
|
6 |
+
def _ntuple(n):
|
7 |
+
def parse(x):
|
8 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
9 |
+
x = tuple(x)
|
10 |
+
if len(x) == 1:
|
11 |
+
x = tuple(repeat(x[0], n))
|
12 |
+
return x
|
13 |
+
return tuple(repeat(x, n))
|
14 |
+
return parse
|
15 |
+
|
16 |
+
|
17 |
+
to_1tuple = _ntuple(1)
|
18 |
+
to_2tuple = _ntuple(2)
|
19 |
+
to_3tuple = _ntuple(3)
|
20 |
+
to_4tuple = _ntuple(4)
|
21 |
+
|
22 |
+
|
23 |
+
def as_tuple(x):
|
24 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
25 |
+
return tuple(x)
|
26 |
+
if x is None or isinstance(x, (int, float, str)):
|
27 |
+
return (x,)
|
28 |
+
else:
|
29 |
+
raise ValueError(f"Unknown type {type(x)}")
|
30 |
+
|
31 |
+
|
32 |
+
def as_list_of_2tuple(x):
|
33 |
+
x = as_tuple(x)
|
34 |
+
if len(x) == 1:
|
35 |
+
x = (x[0], x[0])
|
36 |
+
assert len(x) % 2 == 0, f"Expect even length, got {len(x)}."
|
37 |
+
lst = []
|
38 |
+
for i in range(0, len(x), 2):
|
39 |
+
lst.append((x[i], x[i + 1]))
|
40 |
+
return lst
|
hunyuan_model/mlp_layers.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from timm library:
|
2 |
+
# https://github.com/huggingface/pytorch-image-models/blob/648aaa41233ba83eb38faf5ba9d415d574823241/timm/layers/mlp.py#L13
|
3 |
+
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from .modulate_layers import modulate
|
10 |
+
from .helpers import to_2tuple
|
11 |
+
|
12 |
+
|
13 |
+
class MLP(nn.Module):
|
14 |
+
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
in_channels,
|
19 |
+
hidden_channels=None,
|
20 |
+
out_features=None,
|
21 |
+
act_layer=nn.GELU,
|
22 |
+
norm_layer=None,
|
23 |
+
bias=True,
|
24 |
+
drop=0.0,
|
25 |
+
use_conv=False,
|
26 |
+
device=None,
|
27 |
+
dtype=None,
|
28 |
+
):
|
29 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
30 |
+
super().__init__()
|
31 |
+
out_features = out_features or in_channels
|
32 |
+
hidden_channels = hidden_channels or in_channels
|
33 |
+
bias = to_2tuple(bias)
|
34 |
+
drop_probs = to_2tuple(drop)
|
35 |
+
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
36 |
+
|
37 |
+
self.fc1 = linear_layer(
|
38 |
+
in_channels, hidden_channels, bias=bias[0], **factory_kwargs
|
39 |
+
)
|
40 |
+
self.act = act_layer()
|
41 |
+
self.drop1 = nn.Dropout(drop_probs[0])
|
42 |
+
self.norm = (
|
43 |
+
norm_layer(hidden_channels, **factory_kwargs)
|
44 |
+
if norm_layer is not None
|
45 |
+
else nn.Identity()
|
46 |
+
)
|
47 |
+
self.fc2 = linear_layer(
|
48 |
+
hidden_channels, out_features, bias=bias[1], **factory_kwargs
|
49 |
+
)
|
50 |
+
self.drop2 = nn.Dropout(drop_probs[1])
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
x = self.fc1(x)
|
54 |
+
x = self.act(x)
|
55 |
+
x = self.drop1(x)
|
56 |
+
x = self.norm(x)
|
57 |
+
x = self.fc2(x)
|
58 |
+
x = self.drop2(x)
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
#
|
63 |
+
class MLPEmbedder(nn.Module):
|
64 |
+
"""copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py"""
|
65 |
+
def __init__(self, in_dim: int, hidden_dim: int, device=None, dtype=None):
|
66 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
67 |
+
super().__init__()
|
68 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True, **factory_kwargs)
|
69 |
+
self.silu = nn.SiLU()
|
70 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True, **factory_kwargs)
|
71 |
+
|
72 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
73 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
74 |
+
|
75 |
+
|
76 |
+
class FinalLayer(nn.Module):
|
77 |
+
"""The final layer of DiT."""
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self, hidden_size, patch_size, out_channels, act_layer, device=None, dtype=None
|
81 |
+
):
|
82 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
# Just use LayerNorm for the final layer
|
86 |
+
self.norm_final = nn.LayerNorm(
|
87 |
+
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs
|
88 |
+
)
|
89 |
+
if isinstance(patch_size, int):
|
90 |
+
self.linear = nn.Linear(
|
91 |
+
hidden_size,
|
92 |
+
patch_size * patch_size * out_channels,
|
93 |
+
bias=True,
|
94 |
+
**factory_kwargs
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
self.linear = nn.Linear(
|
98 |
+
hidden_size,
|
99 |
+
patch_size[0] * patch_size[1] * patch_size[2] * out_channels,
|
100 |
+
bias=True,
|
101 |
+
)
|
102 |
+
nn.init.zeros_(self.linear.weight)
|
103 |
+
nn.init.zeros_(self.linear.bias)
|
104 |
+
|
105 |
+
# Here we don't distinguish between the modulate types. Just use the simple one.
|
106 |
+
self.adaLN_modulation = nn.Sequential(
|
107 |
+
act_layer(),
|
108 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
|
109 |
+
)
|
110 |
+
# Zero-initialize the modulation
|
111 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
112 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
113 |
+
|
114 |
+
def forward(self, x, c):
|
115 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
116 |
+
x = modulate(self.norm_final(x), shift=shift, scale=scale)
|
117 |
+
x = self.linear(x)
|
118 |
+
return x
|
hunyuan_model/models.py
ADDED
@@ -0,0 +1,997 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, List, Tuple, Optional, Union, Dict
|
3 |
+
import accelerate
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.utils.checkpoint import checkpoint
|
9 |
+
|
10 |
+
from .activation_layers import get_activation_layer
|
11 |
+
from .norm_layers import get_norm_layer
|
12 |
+
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
|
13 |
+
from .attention import attention, parallel_attention, get_cu_seqlens
|
14 |
+
from .posemb_layers import apply_rotary_emb
|
15 |
+
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
|
16 |
+
from .modulate_layers import ModulateDiT, modulate, apply_gate
|
17 |
+
from .token_refiner import SingleTokenRefiner
|
18 |
+
from modules.custom_offloading_utils import ModelOffloader, synchronize_device, clean_memory_on_device
|
19 |
+
from hunyuan_model.posemb_layers import get_nd_rotary_pos_embed
|
20 |
+
|
21 |
+
from utils.safetensors_utils import MemoryEfficientSafeOpen
|
22 |
+
|
23 |
+
|
24 |
+
class MMDoubleStreamBlock(nn.Module):
|
25 |
+
"""
|
26 |
+
A multimodal dit block with seperate modulation for
|
27 |
+
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206
|
28 |
+
(Flux.1): https://github.com/black-forest-labs/flux
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
hidden_size: int,
|
34 |
+
heads_num: int,
|
35 |
+
mlp_width_ratio: float,
|
36 |
+
mlp_act_type: str = "gelu_tanh",
|
37 |
+
qk_norm: bool = True,
|
38 |
+
qk_norm_type: str = "rms",
|
39 |
+
qkv_bias: bool = False,
|
40 |
+
dtype: Optional[torch.dtype] = None,
|
41 |
+
device: Optional[torch.device] = None,
|
42 |
+
attn_mode: str = "flash",
|
43 |
+
):
|
44 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
45 |
+
super().__init__()
|
46 |
+
self.attn_mode = attn_mode
|
47 |
+
|
48 |
+
self.deterministic = False
|
49 |
+
self.heads_num = heads_num
|
50 |
+
head_dim = hidden_size // heads_num
|
51 |
+
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
|
52 |
+
|
53 |
+
self.img_mod = ModulateDiT(
|
54 |
+
hidden_size,
|
55 |
+
factor=6,
|
56 |
+
act_layer=get_activation_layer("silu"),
|
57 |
+
**factory_kwargs,
|
58 |
+
)
|
59 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
60 |
+
|
61 |
+
self.img_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
|
62 |
+
qk_norm_layer = get_norm_layer(qk_norm_type)
|
63 |
+
self.img_attn_q_norm = (
|
64 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
65 |
+
)
|
66 |
+
self.img_attn_k_norm = (
|
67 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
68 |
+
)
|
69 |
+
self.img_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
|
70 |
+
|
71 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
72 |
+
self.img_mlp = MLP(
|
73 |
+
hidden_size,
|
74 |
+
mlp_hidden_dim,
|
75 |
+
act_layer=get_activation_layer(mlp_act_type),
|
76 |
+
bias=True,
|
77 |
+
**factory_kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
self.txt_mod = ModulateDiT(
|
81 |
+
hidden_size,
|
82 |
+
factor=6,
|
83 |
+
act_layer=get_activation_layer("silu"),
|
84 |
+
**factory_kwargs,
|
85 |
+
)
|
86 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
87 |
+
|
88 |
+
self.txt_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
|
89 |
+
self.txt_attn_q_norm = (
|
90 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
91 |
+
)
|
92 |
+
self.txt_attn_k_norm = (
|
93 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
94 |
+
)
|
95 |
+
self.txt_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
|
96 |
+
|
97 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
98 |
+
self.txt_mlp = MLP(
|
99 |
+
hidden_size,
|
100 |
+
mlp_hidden_dim,
|
101 |
+
act_layer=get_activation_layer(mlp_act_type),
|
102 |
+
bias=True,
|
103 |
+
**factory_kwargs,
|
104 |
+
)
|
105 |
+
self.hybrid_seq_parallel_attn = None
|
106 |
+
|
107 |
+
self.gradient_checkpointing = False
|
108 |
+
|
109 |
+
def enable_deterministic(self):
|
110 |
+
self.deterministic = True
|
111 |
+
|
112 |
+
def disable_deterministic(self):
|
113 |
+
self.deterministic = False
|
114 |
+
|
115 |
+
def enable_gradient_checkpointing(self):
|
116 |
+
self.gradient_checkpointing = True
|
117 |
+
|
118 |
+
def _forward(
|
119 |
+
self,
|
120 |
+
img: torch.Tensor,
|
121 |
+
txt: torch.Tensor,
|
122 |
+
vec: torch.Tensor,
|
123 |
+
attn_mask: Optional[torch.Tensor] = None,
|
124 |
+
cu_seqlens_q: Optional[torch.Tensor] = None,
|
125 |
+
cu_seqlens_kv: Optional[torch.Tensor] = None,
|
126 |
+
max_seqlen_q: Optional[int] = None,
|
127 |
+
max_seqlen_kv: Optional[int] = None,
|
128 |
+
freqs_cis: tuple = None,
|
129 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
130 |
+
(img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate) = self.img_mod(vec).chunk(
|
131 |
+
6, dim=-1
|
132 |
+
)
|
133 |
+
(txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate) = self.txt_mod(vec).chunk(
|
134 |
+
6, dim=-1
|
135 |
+
)
|
136 |
+
|
137 |
+
# Prepare image for attention.
|
138 |
+
img_modulated = self.img_norm1(img)
|
139 |
+
img_modulated = modulate(img_modulated, shift=img_mod1_shift, scale=img_mod1_scale)
|
140 |
+
img_qkv = self.img_attn_qkv(img_modulated)
|
141 |
+
img_modulated = None
|
142 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
|
143 |
+
img_qkv = None
|
144 |
+
# Apply QK-Norm if needed
|
145 |
+
img_q = self.img_attn_q_norm(img_q).to(img_v)
|
146 |
+
img_k = self.img_attn_k_norm(img_k).to(img_v)
|
147 |
+
|
148 |
+
# Apply RoPE if needed.
|
149 |
+
if freqs_cis is not None:
|
150 |
+
img_q_shape = img_q.shape
|
151 |
+
img_k_shape = img_k.shape
|
152 |
+
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
|
153 |
+
assert (
|
154 |
+
img_q.shape == img_q_shape and img_k.shape == img_k_shape
|
155 |
+
), f"img_kk: {img_q.shape}, img_q: {img_q_shape}, img_kk: {img_k.shape}, img_k: {img_k_shape}"
|
156 |
+
# img_q, img_k = img_qq, img_kk
|
157 |
+
|
158 |
+
# Prepare txt for attention.
|
159 |
+
txt_modulated = self.txt_norm1(txt)
|
160 |
+
txt_modulated = modulate(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale)
|
161 |
+
txt_qkv = self.txt_attn_qkv(txt_modulated)
|
162 |
+
txt_modulated = None
|
163 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
|
164 |
+
txt_qkv = None
|
165 |
+
# Apply QK-Norm if needed.
|
166 |
+
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
|
167 |
+
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
|
168 |
+
|
169 |
+
# Run actual attention.
|
170 |
+
img_q_len = img_q.shape[1]
|
171 |
+
img_kv_len = img_k.shape[1]
|
172 |
+
batch_size = img_k.shape[0]
|
173 |
+
q = torch.cat((img_q, txt_q), dim=1)
|
174 |
+
img_q = txt_q = None
|
175 |
+
k = torch.cat((img_k, txt_k), dim=1)
|
176 |
+
img_k = txt_k = None
|
177 |
+
v = torch.cat((img_v, txt_v), dim=1)
|
178 |
+
img_v = txt_v = None
|
179 |
+
|
180 |
+
assert (
|
181 |
+
cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
|
182 |
+
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}"
|
183 |
+
|
184 |
+
# attention computation start
|
185 |
+
if not self.hybrid_seq_parallel_attn:
|
186 |
+
l = [q, k, v]
|
187 |
+
q = k = v = None
|
188 |
+
attn = attention(
|
189 |
+
l,
|
190 |
+
mode=self.attn_mode,
|
191 |
+
attn_mask=attn_mask,
|
192 |
+
cu_seqlens_q=cu_seqlens_q,
|
193 |
+
cu_seqlens_kv=cu_seqlens_kv,
|
194 |
+
max_seqlen_q=max_seqlen_q,
|
195 |
+
max_seqlen_kv=max_seqlen_kv,
|
196 |
+
batch_size=batch_size,
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
attn = parallel_attention(
|
200 |
+
self.hybrid_seq_parallel_attn,
|
201 |
+
q,
|
202 |
+
k,
|
203 |
+
v,
|
204 |
+
img_q_len=img_q_len,
|
205 |
+
img_kv_len=img_kv_len,
|
206 |
+
cu_seqlens_q=cu_seqlens_q,
|
207 |
+
cu_seqlens_kv=cu_seqlens_kv,
|
208 |
+
)
|
209 |
+
|
210 |
+
# attention computation end
|
211 |
+
|
212 |
+
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :]
|
213 |
+
attn = None
|
214 |
+
|
215 |
+
# Calculate the img bloks.
|
216 |
+
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
|
217 |
+
img_attn = None
|
218 |
+
img = img + apply_gate(
|
219 |
+
self.img_mlp(modulate(self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale)),
|
220 |
+
gate=img_mod2_gate,
|
221 |
+
)
|
222 |
+
|
223 |
+
# Calculate the txt bloks.
|
224 |
+
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
|
225 |
+
txt_attn = None
|
226 |
+
txt = txt + apply_gate(
|
227 |
+
self.txt_mlp(modulate(self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale)),
|
228 |
+
gate=txt_mod2_gate,
|
229 |
+
)
|
230 |
+
|
231 |
+
return img, txt
|
232 |
+
|
233 |
+
# def forward(
|
234 |
+
# self,
|
235 |
+
# img: torch.Tensor,
|
236 |
+
# txt: torch.Tensor,
|
237 |
+
# vec: torch.Tensor,
|
238 |
+
# attn_mask: Optional[torch.Tensor] = None,
|
239 |
+
# cu_seqlens_q: Optional[torch.Tensor] = None,
|
240 |
+
# cu_seqlens_kv: Optional[torch.Tensor] = None,
|
241 |
+
# max_seqlen_q: Optional[int] = None,
|
242 |
+
# max_seqlen_kv: Optional[int] = None,
|
243 |
+
# freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
|
244 |
+
# ) -> Tuple[torch.Tensor, torch.Tensor]:
|
245 |
+
def forward(self, *args, **kwargs):
|
246 |
+
if self.training and self.gradient_checkpointing:
|
247 |
+
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
|
248 |
+
else:
|
249 |
+
return self._forward(*args, **kwargs)
|
250 |
+
|
251 |
+
|
252 |
+
class MMSingleStreamBlock(nn.Module):
|
253 |
+
"""
|
254 |
+
A DiT block with parallel linear layers as described in
|
255 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
256 |
+
Also refer to (SD3): https://arxiv.org/abs/2403.03206
|
257 |
+
(Flux.1): https://github.com/black-forest-labs/flux
|
258 |
+
"""
|
259 |
+
|
260 |
+
def __init__(
|
261 |
+
self,
|
262 |
+
hidden_size: int,
|
263 |
+
heads_num: int,
|
264 |
+
mlp_width_ratio: float = 4.0,
|
265 |
+
mlp_act_type: str = "gelu_tanh",
|
266 |
+
qk_norm: bool = True,
|
267 |
+
qk_norm_type: str = "rms",
|
268 |
+
qk_scale: float = None,
|
269 |
+
dtype: Optional[torch.dtype] = None,
|
270 |
+
device: Optional[torch.device] = None,
|
271 |
+
attn_mode: str = "flash",
|
272 |
+
):
|
273 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
274 |
+
super().__init__()
|
275 |
+
self.attn_mode = attn_mode
|
276 |
+
|
277 |
+
self.deterministic = False
|
278 |
+
self.hidden_size = hidden_size
|
279 |
+
self.heads_num = heads_num
|
280 |
+
head_dim = hidden_size // heads_num
|
281 |
+
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
|
282 |
+
self.mlp_hidden_dim = mlp_hidden_dim
|
283 |
+
self.scale = qk_scale or head_dim**-0.5
|
284 |
+
|
285 |
+
# qkv and mlp_in
|
286 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs)
|
287 |
+
# proj and mlp_out
|
288 |
+
self.linear2 = nn.Linear(hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs)
|
289 |
+
|
290 |
+
qk_norm_layer = get_norm_layer(qk_norm_type)
|
291 |
+
self.q_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
292 |
+
self.k_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
293 |
+
|
294 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
295 |
+
|
296 |
+
self.mlp_act = get_activation_layer(mlp_act_type)()
|
297 |
+
self.modulation = ModulateDiT(hidden_size, factor=3, act_layer=get_activation_layer("silu"), **factory_kwargs)
|
298 |
+
self.hybrid_seq_parallel_attn = None
|
299 |
+
|
300 |
+
self.gradient_checkpointing = False
|
301 |
+
|
302 |
+
def enable_deterministic(self):
|
303 |
+
self.deterministic = True
|
304 |
+
|
305 |
+
def disable_deterministic(self):
|
306 |
+
self.deterministic = False
|
307 |
+
|
308 |
+
def enable_gradient_checkpointing(self):
|
309 |
+
self.gradient_checkpointing = True
|
310 |
+
|
311 |
+
def _forward(
|
312 |
+
self,
|
313 |
+
x: torch.Tensor,
|
314 |
+
vec: torch.Tensor,
|
315 |
+
txt_len: int,
|
316 |
+
attn_mask: Optional[torch.Tensor] = None,
|
317 |
+
cu_seqlens_q: Optional[torch.Tensor] = None,
|
318 |
+
cu_seqlens_kv: Optional[torch.Tensor] = None,
|
319 |
+
max_seqlen_q: Optional[int] = None,
|
320 |
+
max_seqlen_kv: Optional[int] = None,
|
321 |
+
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
|
322 |
+
) -> torch.Tensor:
|
323 |
+
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
|
324 |
+
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
|
325 |
+
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
326 |
+
x_mod = None
|
327 |
+
# mlp = mlp.to("cpu", non_blocking=True)
|
328 |
+
# clean_memory_on_device(x.device)
|
329 |
+
|
330 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
|
331 |
+
qkv = None
|
332 |
+
|
333 |
+
# Apply QK-Norm if needed.
|
334 |
+
q = self.q_norm(q).to(v)
|
335 |
+
k = self.k_norm(k).to(v)
|
336 |
+
|
337 |
+
# Apply RoPE if needed.
|
338 |
+
if freqs_cis is not None:
|
339 |
+
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
|
340 |
+
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
|
341 |
+
q = k = None
|
342 |
+
img_q_shape = img_q.shape
|
343 |
+
img_k_shape = img_k.shape
|
344 |
+
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
|
345 |
+
assert (
|
346 |
+
img_q.shape == img_q_shape and img_k_shape == img_k.shape
|
347 |
+
), f"img_kk: {img_q.shape}, img_q: {img_q.shape}, img_kk: {img_k.shape}, img_k: {img_k.shape}"
|
348 |
+
# img_q, img_k = img_qq, img_kk
|
349 |
+
# del img_qq, img_kk
|
350 |
+
q = torch.cat((img_q, txt_q), dim=1)
|
351 |
+
k = torch.cat((img_k, txt_k), dim=1)
|
352 |
+
del img_q, txt_q, img_k, txt_k
|
353 |
+
|
354 |
+
# Compute attention.
|
355 |
+
assert cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1, f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
|
356 |
+
|
357 |
+
# attention computation start
|
358 |
+
if not self.hybrid_seq_parallel_attn:
|
359 |
+
l = [q, k, v]
|
360 |
+
q = k = v = None
|
361 |
+
attn = attention(
|
362 |
+
l,
|
363 |
+
mode=self.attn_mode,
|
364 |
+
attn_mask=attn_mask,
|
365 |
+
cu_seqlens_q=cu_seqlens_q,
|
366 |
+
cu_seqlens_kv=cu_seqlens_kv,
|
367 |
+
max_seqlen_q=max_seqlen_q,
|
368 |
+
max_seqlen_kv=max_seqlen_kv,
|
369 |
+
batch_size=x.shape[0],
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
attn = parallel_attention(
|
373 |
+
self.hybrid_seq_parallel_attn,
|
374 |
+
q,
|
375 |
+
k,
|
376 |
+
v,
|
377 |
+
img_q_len=img_q.shape[1],
|
378 |
+
img_kv_len=img_k.shape[1],
|
379 |
+
cu_seqlens_q=cu_seqlens_q,
|
380 |
+
cu_seqlens_kv=cu_seqlens_kv,
|
381 |
+
)
|
382 |
+
# attention computation end
|
383 |
+
|
384 |
+
# Compute activation in mlp stream, cat again and run second linear layer.
|
385 |
+
# mlp = mlp.to(x.device)
|
386 |
+
mlp = self.mlp_act(mlp)
|
387 |
+
attn_mlp = torch.cat((attn, mlp), 2)
|
388 |
+
attn = None
|
389 |
+
mlp = None
|
390 |
+
output = self.linear2(attn_mlp)
|
391 |
+
attn_mlp = None
|
392 |
+
return x + apply_gate(output, gate=mod_gate)
|
393 |
+
|
394 |
+
# def forward(
|
395 |
+
# self,
|
396 |
+
# x: torch.Tensor,
|
397 |
+
# vec: torch.Tensor,
|
398 |
+
# txt_len: int,
|
399 |
+
# attn_mask: Optional[torch.Tensor] = None,
|
400 |
+
# cu_seqlens_q: Optional[torch.Tensor] = None,
|
401 |
+
# cu_seqlens_kv: Optional[torch.Tensor] = None,
|
402 |
+
# max_seqlen_q: Optional[int] = None,
|
403 |
+
# max_seqlen_kv: Optional[int] = None,
|
404 |
+
# freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
|
405 |
+
# ) -> torch.Tensor:
|
406 |
+
def forward(self, *args, **kwargs):
|
407 |
+
if self.training and self.gradient_checkpointing:
|
408 |
+
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
|
409 |
+
else:
|
410 |
+
return self._forward(*args, **kwargs)
|
411 |
+
|
412 |
+
|
413 |
+
class HYVideoDiffusionTransformer(nn.Module): # ModelMixin, ConfigMixin):
|
414 |
+
"""
|
415 |
+
HunyuanVideo Transformer backbone
|
416 |
+
|
417 |
+
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
|
418 |
+
|
419 |
+
Reference:
|
420 |
+
[1] Flux.1: https://github.com/black-forest-labs/flux
|
421 |
+
[2] MMDiT: http://arxiv.org/abs/2403.03206
|
422 |
+
|
423 |
+
Parameters
|
424 |
+
----------
|
425 |
+
args: argparse.Namespace
|
426 |
+
The arguments parsed by argparse.
|
427 |
+
patch_size: list
|
428 |
+
The size of the patch.
|
429 |
+
in_channels: int
|
430 |
+
The number of input channels.
|
431 |
+
out_channels: int
|
432 |
+
The number of output channels.
|
433 |
+
hidden_size: int
|
434 |
+
The hidden size of the transformer backbone.
|
435 |
+
heads_num: int
|
436 |
+
The number of attention heads.
|
437 |
+
mlp_width_ratio: float
|
438 |
+
The ratio of the hidden size of the MLP in the transformer block.
|
439 |
+
mlp_act_type: str
|
440 |
+
The activation function of the MLP in the transformer block.
|
441 |
+
depth_double_blocks: int
|
442 |
+
The number of transformer blocks in the double blocks.
|
443 |
+
depth_single_blocks: int
|
444 |
+
The number of transformer blocks in the single blocks.
|
445 |
+
rope_dim_list: list
|
446 |
+
The dimension of the rotary embedding for t, h, w.
|
447 |
+
qkv_bias: bool
|
448 |
+
Whether to use bias in the qkv linear layer.
|
449 |
+
qk_norm: bool
|
450 |
+
Whether to use qk norm.
|
451 |
+
qk_norm_type: str
|
452 |
+
The type of qk norm.
|
453 |
+
guidance_embed: bool
|
454 |
+
Whether to use guidance embedding for distillation.
|
455 |
+
text_projection: str
|
456 |
+
The type of the text projection, default is single_refiner.
|
457 |
+
use_attention_mask: bool
|
458 |
+
Whether to use attention mask for text encoder.
|
459 |
+
dtype: torch.dtype
|
460 |
+
The dtype of the model.
|
461 |
+
device: torch.device
|
462 |
+
The device of the model.
|
463 |
+
attn_mode: str
|
464 |
+
The mode of the attention, default is flash.
|
465 |
+
"""
|
466 |
+
|
467 |
+
# @register_to_config
|
468 |
+
def __init__(
|
469 |
+
self,
|
470 |
+
text_states_dim: int,
|
471 |
+
text_states_dim_2: int,
|
472 |
+
patch_size: list = [1, 2, 2],
|
473 |
+
in_channels: int = 4, # Should be VAE.config.latent_channels.
|
474 |
+
out_channels: int = None,
|
475 |
+
hidden_size: int = 3072,
|
476 |
+
heads_num: int = 24,
|
477 |
+
mlp_width_ratio: float = 4.0,
|
478 |
+
mlp_act_type: str = "gelu_tanh",
|
479 |
+
mm_double_blocks_depth: int = 20,
|
480 |
+
mm_single_blocks_depth: int = 40,
|
481 |
+
rope_dim_list: List[int] = [16, 56, 56],
|
482 |
+
qkv_bias: bool = True,
|
483 |
+
qk_norm: bool = True,
|
484 |
+
qk_norm_type: str = "rms",
|
485 |
+
guidance_embed: bool = False, # For modulation.
|
486 |
+
text_projection: str = "single_refiner",
|
487 |
+
use_attention_mask: bool = True,
|
488 |
+
dtype: Optional[torch.dtype] = None,
|
489 |
+
device: Optional[torch.device] = None,
|
490 |
+
attn_mode: str = "flash",
|
491 |
+
):
|
492 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
493 |
+
super().__init__()
|
494 |
+
|
495 |
+
self.patch_size = patch_size
|
496 |
+
self.in_channels = in_channels
|
497 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
498 |
+
self.unpatchify_channels = self.out_channels
|
499 |
+
self.guidance_embed = guidance_embed
|
500 |
+
self.rope_dim_list = rope_dim_list
|
501 |
+
|
502 |
+
# Text projection. Default to linear projection.
|
503 |
+
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
|
504 |
+
self.use_attention_mask = use_attention_mask
|
505 |
+
self.text_projection = text_projection
|
506 |
+
|
507 |
+
self.text_states_dim = text_states_dim
|
508 |
+
self.text_states_dim_2 = text_states_dim_2
|
509 |
+
|
510 |
+
if hidden_size % heads_num != 0:
|
511 |
+
raise ValueError(f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}")
|
512 |
+
pe_dim = hidden_size // heads_num
|
513 |
+
if sum(rope_dim_list) != pe_dim:
|
514 |
+
raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}")
|
515 |
+
self.hidden_size = hidden_size
|
516 |
+
self.heads_num = heads_num
|
517 |
+
|
518 |
+
self.attn_mode = attn_mode
|
519 |
+
|
520 |
+
# image projection
|
521 |
+
self.img_in = PatchEmbed(self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs)
|
522 |
+
|
523 |
+
# text projection
|
524 |
+
if self.text_projection == "linear":
|
525 |
+
self.txt_in = TextProjection(
|
526 |
+
self.text_states_dim,
|
527 |
+
self.hidden_size,
|
528 |
+
get_activation_layer("silu"),
|
529 |
+
**factory_kwargs,
|
530 |
+
)
|
531 |
+
elif self.text_projection == "single_refiner":
|
532 |
+
self.txt_in = SingleTokenRefiner(self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs)
|
533 |
+
else:
|
534 |
+
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
|
535 |
+
|
536 |
+
# time modulation
|
537 |
+
self.time_in = TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)
|
538 |
+
|
539 |
+
# text modulation
|
540 |
+
self.vector_in = MLPEmbedder(self.text_states_dim_2, self.hidden_size, **factory_kwargs)
|
541 |
+
|
542 |
+
# guidance modulation
|
543 |
+
self.guidance_in = (
|
544 |
+
TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs) if guidance_embed else None
|
545 |
+
)
|
546 |
+
|
547 |
+
# double blocks
|
548 |
+
self.double_blocks = nn.ModuleList(
|
549 |
+
[
|
550 |
+
MMDoubleStreamBlock(
|
551 |
+
self.hidden_size,
|
552 |
+
self.heads_num,
|
553 |
+
mlp_width_ratio=mlp_width_ratio,
|
554 |
+
mlp_act_type=mlp_act_type,
|
555 |
+
qk_norm=qk_norm,
|
556 |
+
qk_norm_type=qk_norm_type,
|
557 |
+
qkv_bias=qkv_bias,
|
558 |
+
attn_mode=attn_mode,
|
559 |
+
**factory_kwargs,
|
560 |
+
)
|
561 |
+
for _ in range(mm_double_blocks_depth)
|
562 |
+
]
|
563 |
+
)
|
564 |
+
|
565 |
+
# single blocks
|
566 |
+
self.single_blocks = nn.ModuleList(
|
567 |
+
[
|
568 |
+
MMSingleStreamBlock(
|
569 |
+
self.hidden_size,
|
570 |
+
self.heads_num,
|
571 |
+
mlp_width_ratio=mlp_width_ratio,
|
572 |
+
mlp_act_type=mlp_act_type,
|
573 |
+
qk_norm=qk_norm,
|
574 |
+
qk_norm_type=qk_norm_type,
|
575 |
+
attn_mode=attn_mode,
|
576 |
+
**factory_kwargs,
|
577 |
+
)
|
578 |
+
for _ in range(mm_single_blocks_depth)
|
579 |
+
]
|
580 |
+
)
|
581 |
+
|
582 |
+
self.final_layer = FinalLayer(
|
583 |
+
self.hidden_size,
|
584 |
+
self.patch_size,
|
585 |
+
self.out_channels,
|
586 |
+
get_activation_layer("silu"),
|
587 |
+
**factory_kwargs,
|
588 |
+
)
|
589 |
+
|
590 |
+
self.gradient_checkpointing = False
|
591 |
+
self.blocks_to_swap = None
|
592 |
+
self.offloader_double = None
|
593 |
+
self.offloader_single = None
|
594 |
+
self._enable_img_in_txt_in_offloading = False
|
595 |
+
|
596 |
+
@property
|
597 |
+
def device(self):
|
598 |
+
return next(self.parameters()).device
|
599 |
+
|
600 |
+
@property
|
601 |
+
def dtype(self):
|
602 |
+
return next(self.parameters()).dtype
|
603 |
+
|
604 |
+
def enable_gradient_checkpointing(self):
|
605 |
+
self.gradient_checkpointing = True
|
606 |
+
|
607 |
+
self.txt_in.enable_gradient_checkpointing()
|
608 |
+
|
609 |
+
for block in self.double_blocks + self.single_blocks:
|
610 |
+
block.enable_gradient_checkpointing()
|
611 |
+
|
612 |
+
print(f"HYVideoDiffusionTransformer: Gradient checkpointing enabled.")
|
613 |
+
|
614 |
+
def enable_img_in_txt_in_offloading(self):
|
615 |
+
self._enable_img_in_txt_in_offloading = True
|
616 |
+
|
617 |
+
def enable_block_swap(self, num_blocks: int, device: torch.device, supports_backward: bool):
|
618 |
+
self.blocks_to_swap = num_blocks
|
619 |
+
self.num_double_blocks = len(self.double_blocks)
|
620 |
+
self.num_single_blocks = len(self.single_blocks)
|
621 |
+
double_blocks_to_swap = num_blocks // 2
|
622 |
+
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2 + 1
|
623 |
+
|
624 |
+
assert double_blocks_to_swap <= self.num_double_blocks - 1 and single_blocks_to_swap <= self.num_single_blocks - 1, (
|
625 |
+
f"Cannot swap more than {self.num_double_blocks - 1} double blocks and {self.num_single_blocks - 1} single blocks. "
|
626 |
+
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks."
|
627 |
+
)
|
628 |
+
|
629 |
+
self.offloader_double = ModelOffloader(
|
630 |
+
"double", self.double_blocks, self.num_double_blocks, double_blocks_to_swap, supports_backward, device # , debug=True
|
631 |
+
)
|
632 |
+
self.offloader_single = ModelOffloader(
|
633 |
+
"single", self.single_blocks, self.num_single_blocks, single_blocks_to_swap, supports_backward, device # , debug=True
|
634 |
+
)
|
635 |
+
print(
|
636 |
+
f"HYVideoDiffusionTransformer: Block swap enabled. Swapping {num_blocks} blocks, double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}."
|
637 |
+
)
|
638 |
+
|
639 |
+
def move_to_device_except_swap_blocks(self, device: torch.device):
|
640 |
+
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage
|
641 |
+
if self.blocks_to_swap:
|
642 |
+
save_double_blocks = self.double_blocks
|
643 |
+
save_single_blocks = self.single_blocks
|
644 |
+
self.double_blocks = None
|
645 |
+
self.single_blocks = None
|
646 |
+
|
647 |
+
self.to(device)
|
648 |
+
|
649 |
+
if self.blocks_to_swap:
|
650 |
+
self.double_blocks = save_double_blocks
|
651 |
+
self.single_blocks = save_single_blocks
|
652 |
+
|
653 |
+
def prepare_block_swap_before_forward(self):
|
654 |
+
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
|
655 |
+
return
|
656 |
+
self.offloader_double.prepare_block_devices_before_forward(self.double_blocks)
|
657 |
+
self.offloader_single.prepare_block_devices_before_forward(self.single_blocks)
|
658 |
+
|
659 |
+
def enable_deterministic(self):
|
660 |
+
for block in self.double_blocks:
|
661 |
+
block.enable_deterministic()
|
662 |
+
for block in self.single_blocks:
|
663 |
+
block.enable_deterministic()
|
664 |
+
|
665 |
+
def disable_deterministic(self):
|
666 |
+
for block in self.double_blocks:
|
667 |
+
block.disable_deterministic()
|
668 |
+
for block in self.single_blocks:
|
669 |
+
block.disable_deterministic()
|
670 |
+
|
671 |
+
def forward(
|
672 |
+
self,
|
673 |
+
x: torch.Tensor,
|
674 |
+
t: torch.Tensor, # Should be in range(0, 1000).
|
675 |
+
text_states: torch.Tensor = None,
|
676 |
+
text_mask: torch.Tensor = None, # Now we don't use it.
|
677 |
+
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
|
678 |
+
freqs_cos: Optional[torch.Tensor] = None,
|
679 |
+
freqs_sin: Optional[torch.Tensor] = None,
|
680 |
+
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
|
681 |
+
return_dict: bool = True,
|
682 |
+
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
683 |
+
out = {}
|
684 |
+
img = x
|
685 |
+
txt = text_states
|
686 |
+
_, _, ot, oh, ow = x.shape
|
687 |
+
tt, th, tw = (
|
688 |
+
ot // self.patch_size[0],
|
689 |
+
oh // self.patch_size[1],
|
690 |
+
ow // self.patch_size[2],
|
691 |
+
)
|
692 |
+
|
693 |
+
# Prepare modulation vectors.
|
694 |
+
vec = self.time_in(t)
|
695 |
+
|
696 |
+
# text modulation
|
697 |
+
vec = vec + self.vector_in(text_states_2)
|
698 |
+
|
699 |
+
# guidance modulation
|
700 |
+
if self.guidance_embed:
|
701 |
+
if guidance is None:
|
702 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
703 |
+
|
704 |
+
# our timestep_embedding is merged into guidance_in(TimestepEmbedder)
|
705 |
+
vec = vec + self.guidance_in(guidance)
|
706 |
+
|
707 |
+
# Embed image and text.
|
708 |
+
if self._enable_img_in_txt_in_offloading:
|
709 |
+
self.img_in.to(x.device, non_blocking=True)
|
710 |
+
self.txt_in.to(x.device, non_blocking=True)
|
711 |
+
synchronize_device(x.device)
|
712 |
+
|
713 |
+
img = self.img_in(img)
|
714 |
+
if self.text_projection == "linear":
|
715 |
+
txt = self.txt_in(txt)
|
716 |
+
elif self.text_projection == "single_refiner":
|
717 |
+
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
|
718 |
+
else:
|
719 |
+
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
|
720 |
+
|
721 |
+
if self._enable_img_in_txt_in_offloading:
|
722 |
+
self.img_in.to(torch.device("cpu"), non_blocking=True)
|
723 |
+
self.txt_in.to(torch.device("cpu"), non_blocking=True)
|
724 |
+
synchronize_device(x.device)
|
725 |
+
clean_memory_on_device(x.device)
|
726 |
+
|
727 |
+
txt_seq_len = txt.shape[1]
|
728 |
+
img_seq_len = img.shape[1]
|
729 |
+
|
730 |
+
# Compute cu_squlens and max_seqlen for flash attention
|
731 |
+
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
|
732 |
+
cu_seqlens_kv = cu_seqlens_q
|
733 |
+
max_seqlen_q = img_seq_len + txt_seq_len
|
734 |
+
max_seqlen_kv = max_seqlen_q
|
735 |
+
|
736 |
+
attn_mask = None
|
737 |
+
if self.attn_mode == "torch":
|
738 |
+
# initialize attention mask: bool tensor for sdpa, (b, 1, n, n)
|
739 |
+
bs = img.shape[0]
|
740 |
+
attn_mask = torch.zeros((bs, 1, max_seqlen_q, max_seqlen_q), dtype=torch.bool, device=text_mask.device)
|
741 |
+
|
742 |
+
# calculate text length and total length
|
743 |
+
text_len = text_mask.sum(dim=1) # (bs, )
|
744 |
+
total_len = img_seq_len + text_len # (bs, )
|
745 |
+
|
746 |
+
# set attention mask
|
747 |
+
for i in range(bs):
|
748 |
+
attn_mask[i, :, : total_len[i], : total_len[i]] = True
|
749 |
+
|
750 |
+
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
|
751 |
+
# --------------------- Pass through DiT blocks ------------------------
|
752 |
+
for block_idx, block in enumerate(self.double_blocks):
|
753 |
+
double_block_args = [
|
754 |
+
img,
|
755 |
+
txt,
|
756 |
+
vec,
|
757 |
+
attn_mask,
|
758 |
+
cu_seqlens_q,
|
759 |
+
cu_seqlens_kv,
|
760 |
+
max_seqlen_q,
|
761 |
+
max_seqlen_kv,
|
762 |
+
freqs_cis,
|
763 |
+
]
|
764 |
+
|
765 |
+
if self.blocks_to_swap:
|
766 |
+
self.offloader_double.wait_for_block(block_idx)
|
767 |
+
|
768 |
+
img, txt = block(*double_block_args)
|
769 |
+
|
770 |
+
if self.blocks_to_swap:
|
771 |
+
self.offloader_double.submit_move_blocks_forward(self.double_blocks, block_idx)
|
772 |
+
|
773 |
+
# Merge txt and img to pass through single stream blocks.
|
774 |
+
x = torch.cat((img, txt), 1)
|
775 |
+
if self.blocks_to_swap:
|
776 |
+
# delete img, txt to reduce memory usage
|
777 |
+
del img, txt
|
778 |
+
clean_memory_on_device(x.device)
|
779 |
+
|
780 |
+
if len(self.single_blocks) > 0:
|
781 |
+
for block_idx, block in enumerate(self.single_blocks):
|
782 |
+
single_block_args = [
|
783 |
+
x,
|
784 |
+
vec,
|
785 |
+
txt_seq_len,
|
786 |
+
attn_mask,
|
787 |
+
cu_seqlens_q,
|
788 |
+
cu_seqlens_kv,
|
789 |
+
max_seqlen_q,
|
790 |
+
max_seqlen_kv,
|
791 |
+
(freqs_cos, freqs_sin),
|
792 |
+
]
|
793 |
+
if self.blocks_to_swap:
|
794 |
+
self.offloader_single.wait_for_block(block_idx)
|
795 |
+
|
796 |
+
x = block(*single_block_args)
|
797 |
+
|
798 |
+
if self.blocks_to_swap:
|
799 |
+
self.offloader_single.submit_move_blocks_forward(self.single_blocks, block_idx)
|
800 |
+
|
801 |
+
img = x[:, :img_seq_len, ...]
|
802 |
+
x = None
|
803 |
+
|
804 |
+
# ---------------------------- Final layer ------------------------------
|
805 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
806 |
+
|
807 |
+
img = self.unpatchify(img, tt, th, tw)
|
808 |
+
if return_dict:
|
809 |
+
out["x"] = img
|
810 |
+
return out
|
811 |
+
return img
|
812 |
+
|
813 |
+
def unpatchify(self, x, t, h, w):
|
814 |
+
"""
|
815 |
+
x: (N, T, patch_size**2 * C)
|
816 |
+
imgs: (N, H, W, C)
|
817 |
+
"""
|
818 |
+
c = self.unpatchify_channels
|
819 |
+
pt, ph, pw = self.patch_size
|
820 |
+
assert t * h * w == x.shape[1]
|
821 |
+
|
822 |
+
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
|
823 |
+
x = torch.einsum("nthwcopq->nctohpwq", x)
|
824 |
+
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
|
825 |
+
|
826 |
+
return imgs
|
827 |
+
|
828 |
+
def params_count(self):
|
829 |
+
counts = {
|
830 |
+
"double": sum(
|
831 |
+
[
|
832 |
+
sum(p.numel() for p in block.img_attn_qkv.parameters())
|
833 |
+
+ sum(p.numel() for p in block.img_attn_proj.parameters())
|
834 |
+
+ sum(p.numel() for p in block.img_mlp.parameters())
|
835 |
+
+ sum(p.numel() for p in block.txt_attn_qkv.parameters())
|
836 |
+
+ sum(p.numel() for p in block.txt_attn_proj.parameters())
|
837 |
+
+ sum(p.numel() for p in block.txt_mlp.parameters())
|
838 |
+
for block in self.double_blocks
|
839 |
+
]
|
840 |
+
),
|
841 |
+
"single": sum(
|
842 |
+
[
|
843 |
+
sum(p.numel() for p in block.linear1.parameters()) + sum(p.numel() for p in block.linear2.parameters())
|
844 |
+
for block in self.single_blocks
|
845 |
+
]
|
846 |
+
),
|
847 |
+
"total": sum(p.numel() for p in self.parameters()),
|
848 |
+
}
|
849 |
+
counts["attn+mlp"] = counts["double"] + counts["single"]
|
850 |
+
return counts
|
851 |
+
|
852 |
+
|
853 |
+
#################################################################################
|
854 |
+
# HunyuanVideo Configs #
|
855 |
+
#################################################################################
|
856 |
+
|
857 |
+
HUNYUAN_VIDEO_CONFIG = {
|
858 |
+
"HYVideo-T/2": {
|
859 |
+
"mm_double_blocks_depth": 20,
|
860 |
+
"mm_single_blocks_depth": 40,
|
861 |
+
"rope_dim_list": [16, 56, 56],
|
862 |
+
"hidden_size": 3072,
|
863 |
+
"heads_num": 24,
|
864 |
+
"mlp_width_ratio": 4,
|
865 |
+
},
|
866 |
+
"HYVideo-T/2-cfgdistill": {
|
867 |
+
"mm_double_blocks_depth": 20,
|
868 |
+
"mm_single_blocks_depth": 40,
|
869 |
+
"rope_dim_list": [16, 56, 56],
|
870 |
+
"hidden_size": 3072,
|
871 |
+
"heads_num": 24,
|
872 |
+
"mlp_width_ratio": 4,
|
873 |
+
"guidance_embed": True,
|
874 |
+
},
|
875 |
+
}
|
876 |
+
|
877 |
+
|
878 |
+
def load_dit_model(text_states_dim, text_states_dim_2, in_channels, out_channels, factor_kwargs):
|
879 |
+
"""load hunyuan video model
|
880 |
+
|
881 |
+
NOTE: Only support HYVideo-T/2-cfgdistill now.
|
882 |
+
|
883 |
+
Args:
|
884 |
+
text_state_dim (int): text state dimension
|
885 |
+
text_state_dim_2 (int): text state dimension 2
|
886 |
+
in_channels (int): input channels number
|
887 |
+
out_channels (int): output channels number
|
888 |
+
factor_kwargs (dict): factor kwargs
|
889 |
+
|
890 |
+
Returns:
|
891 |
+
model (nn.Module): The hunyuan video model
|
892 |
+
"""
|
893 |
+
# if args.model in HUNYUAN_VIDEO_CONFIG.keys():
|
894 |
+
model = HYVideoDiffusionTransformer(
|
895 |
+
text_states_dim=text_states_dim,
|
896 |
+
text_states_dim_2=text_states_dim_2,
|
897 |
+
in_channels=in_channels,
|
898 |
+
out_channels=out_channels,
|
899 |
+
**HUNYUAN_VIDEO_CONFIG["HYVideo-T/2-cfgdistill"],
|
900 |
+
**factor_kwargs,
|
901 |
+
)
|
902 |
+
return model
|
903 |
+
# else:
|
904 |
+
# raise NotImplementedError()
|
905 |
+
|
906 |
+
|
907 |
+
def load_state_dict(model, model_path):
|
908 |
+
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
|
909 |
+
|
910 |
+
load_key = "module"
|
911 |
+
if load_key in state_dict:
|
912 |
+
state_dict = state_dict[load_key]
|
913 |
+
else:
|
914 |
+
raise KeyError(
|
915 |
+
f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
|
916 |
+
f"are: {list(state_dict.keys())}."
|
917 |
+
)
|
918 |
+
model.load_state_dict(state_dict, strict=True, assign=True)
|
919 |
+
return model
|
920 |
+
|
921 |
+
|
922 |
+
def load_transformer(dit_path, attn_mode, device, dtype) -> HYVideoDiffusionTransformer:
|
923 |
+
# =========================== Build main model ===========================
|
924 |
+
factor_kwargs = {"device": device, "dtype": dtype, "attn_mode": attn_mode}
|
925 |
+
latent_channels = 16
|
926 |
+
in_channels = latent_channels
|
927 |
+
out_channels = latent_channels
|
928 |
+
|
929 |
+
with accelerate.init_empty_weights():
|
930 |
+
transformer = load_dit_model(
|
931 |
+
text_states_dim=4096,
|
932 |
+
text_states_dim_2=768,
|
933 |
+
in_channels=in_channels,
|
934 |
+
out_channels=out_channels,
|
935 |
+
factor_kwargs=factor_kwargs,
|
936 |
+
)
|
937 |
+
|
938 |
+
if os.path.splitext(dit_path)[-1] == ".safetensors":
|
939 |
+
# loading safetensors: may be already fp8
|
940 |
+
with MemoryEfficientSafeOpen(dit_path) as f:
|
941 |
+
state_dict = {}
|
942 |
+
for k in f.keys():
|
943 |
+
tensor = f.get_tensor(k)
|
944 |
+
tensor = tensor.to(device=device, dtype=dtype)
|
945 |
+
# TODO support comfy model
|
946 |
+
# if k.startswith("model.model."):
|
947 |
+
# k = convert_comfy_model_key(k)
|
948 |
+
state_dict[k] = tensor
|
949 |
+
transformer.load_state_dict(state_dict, strict=True, assign=True)
|
950 |
+
else:
|
951 |
+
transformer = load_state_dict(transformer, dit_path)
|
952 |
+
|
953 |
+
return transformer
|
954 |
+
|
955 |
+
|
956 |
+
def get_rotary_pos_embed_by_shape(model, latents_size):
|
957 |
+
target_ndim = 3
|
958 |
+
ndim = 5 - 2
|
959 |
+
|
960 |
+
if isinstance(model.patch_size, int):
|
961 |
+
assert all(s % model.patch_size == 0 for s in latents_size), (
|
962 |
+
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
|
963 |
+
f"but got {latents_size}."
|
964 |
+
)
|
965 |
+
rope_sizes = [s // model.patch_size for s in latents_size]
|
966 |
+
elif isinstance(model.patch_size, list):
|
967 |
+
assert all(s % model.patch_size[idx] == 0 for idx, s in enumerate(latents_size)), (
|
968 |
+
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
|
969 |
+
f"but got {latents_size}."
|
970 |
+
)
|
971 |
+
rope_sizes = [s // model.patch_size[idx] for idx, s in enumerate(latents_size)]
|
972 |
+
|
973 |
+
if len(rope_sizes) != target_ndim:
|
974 |
+
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
|
975 |
+
head_dim = model.hidden_size // model.heads_num
|
976 |
+
rope_dim_list = model.rope_dim_list
|
977 |
+
if rope_dim_list is None:
|
978 |
+
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
|
979 |
+
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
|
980 |
+
|
981 |
+
rope_theta = 256
|
982 |
+
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
|
983 |
+
rope_dim_list, rope_sizes, theta=rope_theta, use_real=True, theta_rescale_factor=1
|
984 |
+
)
|
985 |
+
return freqs_cos, freqs_sin
|
986 |
+
|
987 |
+
|
988 |
+
def get_rotary_pos_embed(vae_name, model, video_length, height, width):
|
989 |
+
# 884
|
990 |
+
if "884" in vae_name:
|
991 |
+
latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
|
992 |
+
elif "888" in vae_name:
|
993 |
+
latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
|
994 |
+
else:
|
995 |
+
latents_size = [video_length, height // 8, width // 8]
|
996 |
+
|
997 |
+
return get_rotary_pos_embed_by_shape(model, latents_size)
|
hunyuan_model/modulate_layers.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ModulateDiT(nn.Module):
|
8 |
+
"""Modulation layer for DiT."""
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
hidden_size: int,
|
12 |
+
factor: int,
|
13 |
+
act_layer: Callable,
|
14 |
+
dtype=None,
|
15 |
+
device=None,
|
16 |
+
):
|
17 |
+
factory_kwargs = {"dtype": dtype, "device": device}
|
18 |
+
super().__init__()
|
19 |
+
self.act = act_layer()
|
20 |
+
self.linear = nn.Linear(
|
21 |
+
hidden_size, factor * hidden_size, bias=True, **factory_kwargs
|
22 |
+
)
|
23 |
+
# Zero-initialize the modulation
|
24 |
+
nn.init.zeros_(self.linear.weight)
|
25 |
+
nn.init.zeros_(self.linear.bias)
|
26 |
+
|
27 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
return self.linear(self.act(x))
|
29 |
+
|
30 |
+
|
31 |
+
def modulate(x, shift=None, scale=None):
|
32 |
+
"""modulate by shift and scale
|
33 |
+
|
34 |
+
Args:
|
35 |
+
x (torch.Tensor): input tensor.
|
36 |
+
shift (torch.Tensor, optional): shift tensor. Defaults to None.
|
37 |
+
scale (torch.Tensor, optional): scale tensor. Defaults to None.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
torch.Tensor: the output tensor after modulate.
|
41 |
+
"""
|
42 |
+
if scale is None and shift is None:
|
43 |
+
return x
|
44 |
+
elif shift is None:
|
45 |
+
return x * (1 + scale.unsqueeze(1))
|
46 |
+
elif scale is None:
|
47 |
+
return x + shift.unsqueeze(1)
|
48 |
+
else:
|
49 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
50 |
+
|
51 |
+
|
52 |
+
def apply_gate(x, gate=None, tanh=False):
|
53 |
+
"""AI is creating summary for apply_gate
|
54 |
+
|
55 |
+
Args:
|
56 |
+
x (torch.Tensor): input tensor.
|
57 |
+
gate (torch.Tensor, optional): gate tensor. Defaults to None.
|
58 |
+
tanh (bool, optional): whether to use tanh function. Defaults to False.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
torch.Tensor: the output tensor after apply gate.
|
62 |
+
"""
|
63 |
+
if gate is None:
|
64 |
+
return x
|
65 |
+
if tanh:
|
66 |
+
return x * gate.unsqueeze(1).tanh()
|
67 |
+
else:
|
68 |
+
return x * gate.unsqueeze(1)
|
69 |
+
|
70 |
+
|
71 |
+
def ckpt_wrapper(module):
|
72 |
+
def ckpt_forward(*inputs):
|
73 |
+
outputs = module(*inputs)
|
74 |
+
return outputs
|
75 |
+
|
76 |
+
return ckpt_forward
|
hunyuan_model/norm_layers.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class RMSNorm(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
dim: int,
|
9 |
+
elementwise_affine=True,
|
10 |
+
eps: float = 1e-6,
|
11 |
+
device=None,
|
12 |
+
dtype=None,
|
13 |
+
):
|
14 |
+
"""
|
15 |
+
Initialize the RMSNorm normalization layer.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
dim (int): The dimension of the input tensor.
|
19 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
20 |
+
|
21 |
+
Attributes:
|
22 |
+
eps (float): A small value added to the denominator for numerical stability.
|
23 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
24 |
+
|
25 |
+
"""
|
26 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
27 |
+
super().__init__()
|
28 |
+
self.eps = eps
|
29 |
+
if elementwise_affine:
|
30 |
+
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))
|
31 |
+
|
32 |
+
def _norm(self, x):
|
33 |
+
"""
|
34 |
+
Apply the RMSNorm normalization to the input tensor.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
x (torch.Tensor): The input tensor.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
torch.Tensor: The normalized tensor.
|
41 |
+
|
42 |
+
"""
|
43 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
"""
|
47 |
+
Forward pass through the RMSNorm layer.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
x (torch.Tensor): The input tensor.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
54 |
+
|
55 |
+
"""
|
56 |
+
output = self._norm(x.float()).type_as(x)
|
57 |
+
if hasattr(self, "weight"):
|
58 |
+
# output = output * self.weight
|
59 |
+
# support fp8
|
60 |
+
output = output * self.weight.to(output.dtype)
|
61 |
+
return output
|
62 |
+
|
63 |
+
|
64 |
+
def get_norm_layer(norm_layer):
|
65 |
+
"""
|
66 |
+
Get the normalization layer.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
norm_layer (str): The type of normalization layer.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
norm_layer (nn.Module): The normalization layer.
|
73 |
+
"""
|
74 |
+
if norm_layer == "layer":
|
75 |
+
return nn.LayerNorm
|
76 |
+
elif norm_layer == "rms":
|
77 |
+
return RMSNorm
|
78 |
+
else:
|
79 |
+
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
|
hunyuan_model/pipeline_hunyuan_video.py
ADDED
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ==============================================================================
|
15 |
+
#
|
16 |
+
# Modified from diffusers==0.29.2
|
17 |
+
#
|
18 |
+
# ==============================================================================
|
19 |
+
import inspect
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
import numpy as np
|
24 |
+
from dataclasses import dataclass
|
25 |
+
from packaging import version
|
26 |
+
|
27 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
28 |
+
from diffusers.configuration_utils import FrozenDict
|
29 |
+
from diffusers.image_processor import VaeImageProcessor
|
30 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
31 |
+
from diffusers.models import AutoencoderKL
|
32 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
33 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
34 |
+
from diffusers.utils import (
|
35 |
+
USE_PEFT_BACKEND,
|
36 |
+
deprecate,
|
37 |
+
logging,
|
38 |
+
replace_example_docstring,
|
39 |
+
scale_lora_layers,
|
40 |
+
unscale_lora_layers,
|
41 |
+
)
|
42 |
+
from diffusers.utils.torch_utils import randn_tensor
|
43 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
44 |
+
from diffusers.utils import BaseOutput
|
45 |
+
|
46 |
+
from ...constants import PRECISION_TO_TYPE
|
47 |
+
from ...vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
48 |
+
from ...text_encoder import TextEncoder
|
49 |
+
from ...modules import HYVideoDiffusionTransformer
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
+
|
53 |
+
EXAMPLE_DOC_STRING = """"""
|
54 |
+
|
55 |
+
|
56 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
57 |
+
"""
|
58 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
59 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
60 |
+
"""
|
61 |
+
std_text = noise_pred_text.std(
|
62 |
+
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
|
63 |
+
)
|
64 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
65 |
+
# rescale the results from guidance (fixes overexposure)
|
66 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
67 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
68 |
+
noise_cfg = (
|
69 |
+
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
70 |
+
)
|
71 |
+
return noise_cfg
|
72 |
+
|
73 |
+
|
74 |
+
def retrieve_timesteps(
|
75 |
+
scheduler,
|
76 |
+
num_inference_steps: Optional[int] = None,
|
77 |
+
device: Optional[Union[str, torch.device]] = None,
|
78 |
+
timesteps: Optional[List[int]] = None,
|
79 |
+
sigmas: Optional[List[float]] = None,
|
80 |
+
**kwargs,
|
81 |
+
):
|
82 |
+
"""
|
83 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
84 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
scheduler (`SchedulerMixin`):
|
88 |
+
The scheduler to get timesteps from.
|
89 |
+
num_inference_steps (`int`):
|
90 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
91 |
+
must be `None`.
|
92 |
+
device (`str` or `torch.device`, *optional*):
|
93 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
94 |
+
timesteps (`List[int]`, *optional*):
|
95 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
96 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
97 |
+
sigmas (`List[float]`, *optional*):
|
98 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
99 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
103 |
+
second element is the number of inference steps.
|
104 |
+
"""
|
105 |
+
if timesteps is not None and sigmas is not None:
|
106 |
+
raise ValueError(
|
107 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
108 |
+
)
|
109 |
+
if timesteps is not None:
|
110 |
+
accepts_timesteps = "timesteps" in set(
|
111 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
112 |
+
)
|
113 |
+
if not accepts_timesteps:
|
114 |
+
raise ValueError(
|
115 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
116 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
117 |
+
)
|
118 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
119 |
+
timesteps = scheduler.timesteps
|
120 |
+
num_inference_steps = len(timesteps)
|
121 |
+
elif sigmas is not None:
|
122 |
+
accept_sigmas = "sigmas" in set(
|
123 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
124 |
+
)
|
125 |
+
if not accept_sigmas:
|
126 |
+
raise ValueError(
|
127 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
128 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
129 |
+
)
|
130 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
131 |
+
timesteps = scheduler.timesteps
|
132 |
+
num_inference_steps = len(timesteps)
|
133 |
+
else:
|
134 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
135 |
+
timesteps = scheduler.timesteps
|
136 |
+
return timesteps, num_inference_steps
|
137 |
+
|
138 |
+
|
139 |
+
@dataclass
|
140 |
+
class HunyuanVideoPipelineOutput(BaseOutput):
|
141 |
+
videos: Union[torch.Tensor, np.ndarray]
|
142 |
+
|
143 |
+
|
144 |
+
class HunyuanVideoPipeline(DiffusionPipeline):
|
145 |
+
r"""
|
146 |
+
Pipeline for text-to-video generation using HunyuanVideo.
|
147 |
+
|
148 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
149 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
150 |
+
|
151 |
+
Args:
|
152 |
+
vae ([`AutoencoderKL`]):
|
153 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
154 |
+
text_encoder ([`TextEncoder`]):
|
155 |
+
Frozen text-encoder.
|
156 |
+
text_encoder_2 ([`TextEncoder`]):
|
157 |
+
Frozen text-encoder_2.
|
158 |
+
transformer ([`HYVideoDiffusionTransformer`]):
|
159 |
+
A `HYVideoDiffusionTransformer` to denoise the encoded video latents.
|
160 |
+
scheduler ([`SchedulerMixin`]):
|
161 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
162 |
+
"""
|
163 |
+
|
164 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
165 |
+
_optional_components = ["text_encoder_2"]
|
166 |
+
_exclude_from_cpu_offload = ["transformer"]
|
167 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
vae: AutoencoderKL,
|
172 |
+
text_encoder: TextEncoder,
|
173 |
+
transformer: HYVideoDiffusionTransformer,
|
174 |
+
scheduler: KarrasDiffusionSchedulers,
|
175 |
+
text_encoder_2: Optional[TextEncoder] = None,
|
176 |
+
progress_bar_config: Dict[str, Any] = None,
|
177 |
+
args=None,
|
178 |
+
):
|
179 |
+
super().__init__()
|
180 |
+
|
181 |
+
# ==========================================================================================
|
182 |
+
if progress_bar_config is None:
|
183 |
+
progress_bar_config = {}
|
184 |
+
if not hasattr(self, "_progress_bar_config"):
|
185 |
+
self._progress_bar_config = {}
|
186 |
+
self._progress_bar_config.update(progress_bar_config)
|
187 |
+
|
188 |
+
self.args = args
|
189 |
+
# ==========================================================================================
|
190 |
+
|
191 |
+
if (
|
192 |
+
hasattr(scheduler.config, "steps_offset")
|
193 |
+
and scheduler.config.steps_offset != 1
|
194 |
+
):
|
195 |
+
deprecation_message = (
|
196 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
197 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
198 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
199 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
200 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
201 |
+
" file"
|
202 |
+
)
|
203 |
+
deprecate(
|
204 |
+
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
205 |
+
)
|
206 |
+
new_config = dict(scheduler.config)
|
207 |
+
new_config["steps_offset"] = 1
|
208 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
209 |
+
|
210 |
+
if (
|
211 |
+
hasattr(scheduler.config, "clip_sample")
|
212 |
+
and scheduler.config.clip_sample is True
|
213 |
+
):
|
214 |
+
deprecation_message = (
|
215 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
216 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
217 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
218 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
219 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
220 |
+
)
|
221 |
+
deprecate(
|
222 |
+
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
|
223 |
+
)
|
224 |
+
new_config = dict(scheduler.config)
|
225 |
+
new_config["clip_sample"] = False
|
226 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
227 |
+
|
228 |
+
self.register_modules(
|
229 |
+
vae=vae,
|
230 |
+
text_encoder=text_encoder,
|
231 |
+
transformer=transformer,
|
232 |
+
scheduler=scheduler,
|
233 |
+
text_encoder_2=text_encoder_2,
|
234 |
+
)
|
235 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
236 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
237 |
+
|
238 |
+
def encode_prompt(
|
239 |
+
self,
|
240 |
+
prompt,
|
241 |
+
device,
|
242 |
+
num_videos_per_prompt,
|
243 |
+
do_classifier_free_guidance,
|
244 |
+
negative_prompt=None,
|
245 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
247 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
248 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
249 |
+
lora_scale: Optional[float] = None,
|
250 |
+
clip_skip: Optional[int] = None,
|
251 |
+
text_encoder: Optional[TextEncoder] = None,
|
252 |
+
data_type: Optional[str] = "image",
|
253 |
+
):
|
254 |
+
r"""
|
255 |
+
Encodes the prompt into text encoder hidden states.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
prompt (`str` or `List[str]`, *optional*):
|
259 |
+
prompt to be encoded
|
260 |
+
device: (`torch.device`):
|
261 |
+
torch device
|
262 |
+
num_videos_per_prompt (`int`):
|
263 |
+
number of videos that should be generated per prompt
|
264 |
+
do_classifier_free_guidance (`bool`):
|
265 |
+
whether to use classifier free guidance or not
|
266 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
267 |
+
The prompt or prompts not to guide the video generation. If not defined, one has to pass
|
268 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
269 |
+
less than `1`).
|
270 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
271 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
272 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
273 |
+
attention_mask (`torch.Tensor`, *optional*):
|
274 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
275 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
276 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
277 |
+
argument.
|
278 |
+
negative_attention_mask (`torch.Tensor`, *optional*):
|
279 |
+
lora_scale (`float`, *optional*):
|
280 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
281 |
+
clip_skip (`int`, *optional*):
|
282 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
283 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
284 |
+
text_encoder (TextEncoder, *optional*):
|
285 |
+
data_type (`str`, *optional*):
|
286 |
+
"""
|
287 |
+
if text_encoder is None:
|
288 |
+
text_encoder = self.text_encoder
|
289 |
+
|
290 |
+
# set lora scale so that monkey patched LoRA
|
291 |
+
# function of text encoder can correctly access it
|
292 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
293 |
+
self._lora_scale = lora_scale
|
294 |
+
|
295 |
+
# dynamically adjust the LoRA scale
|
296 |
+
if not USE_PEFT_BACKEND:
|
297 |
+
adjust_lora_scale_text_encoder(text_encoder.model, lora_scale)
|
298 |
+
else:
|
299 |
+
scale_lora_layers(text_encoder.model, lora_scale)
|
300 |
+
|
301 |
+
if prompt is not None and isinstance(prompt, str):
|
302 |
+
batch_size = 1
|
303 |
+
elif prompt is not None and isinstance(prompt, list):
|
304 |
+
batch_size = len(prompt)
|
305 |
+
else:
|
306 |
+
batch_size = prompt_embeds.shape[0]
|
307 |
+
|
308 |
+
if prompt_embeds is None:
|
309 |
+
# textual inversion: process multi-vector tokens if necessary
|
310 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
311 |
+
prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer)
|
312 |
+
|
313 |
+
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
|
314 |
+
|
315 |
+
if clip_skip is None:
|
316 |
+
prompt_outputs = text_encoder.encode(
|
317 |
+
text_inputs, data_type=data_type, device=device
|
318 |
+
)
|
319 |
+
prompt_embeds = prompt_outputs.hidden_state
|
320 |
+
else:
|
321 |
+
prompt_outputs = text_encoder.encode(
|
322 |
+
text_inputs,
|
323 |
+
output_hidden_states=True,
|
324 |
+
data_type=data_type,
|
325 |
+
device=device,
|
326 |
+
)
|
327 |
+
# Access the `hidden_states` first, that contains a tuple of
|
328 |
+
# all the hidden states from the encoder layers. Then index into
|
329 |
+
# the tuple to access the hidden states from the desired layer.
|
330 |
+
prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)]
|
331 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
332 |
+
# representations. The `last_hidden_states` that we typically use for
|
333 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
334 |
+
# layer.
|
335 |
+
prompt_embeds = text_encoder.model.text_model.final_layer_norm(
|
336 |
+
prompt_embeds
|
337 |
+
)
|
338 |
+
|
339 |
+
attention_mask = prompt_outputs.attention_mask
|
340 |
+
if attention_mask is not None:
|
341 |
+
attention_mask = attention_mask.to(device)
|
342 |
+
bs_embed, seq_len = attention_mask.shape
|
343 |
+
attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
|
344 |
+
attention_mask = attention_mask.view(
|
345 |
+
bs_embed * num_videos_per_prompt, seq_len
|
346 |
+
)
|
347 |
+
|
348 |
+
if text_encoder is not None:
|
349 |
+
prompt_embeds_dtype = text_encoder.dtype
|
350 |
+
elif self.transformer is not None:
|
351 |
+
prompt_embeds_dtype = self.transformer.dtype
|
352 |
+
else:
|
353 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
354 |
+
|
355 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
356 |
+
|
357 |
+
if prompt_embeds.ndim == 2:
|
358 |
+
bs_embed, _ = prompt_embeds.shape
|
359 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
360 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
|
361 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
|
362 |
+
else:
|
363 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
364 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
365 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
366 |
+
prompt_embeds = prompt_embeds.view(
|
367 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
368 |
+
)
|
369 |
+
|
370 |
+
# get unconditional embeddings for classifier free guidance
|
371 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
372 |
+
uncond_tokens: List[str]
|
373 |
+
if negative_prompt is None:
|
374 |
+
uncond_tokens = [""] * batch_size
|
375 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
376 |
+
raise TypeError(
|
377 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
378 |
+
f" {type(prompt)}."
|
379 |
+
)
|
380 |
+
elif isinstance(negative_prompt, str):
|
381 |
+
uncond_tokens = [negative_prompt]
|
382 |
+
elif batch_size != len(negative_prompt):
|
383 |
+
raise ValueError(
|
384 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
385 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
386 |
+
" the batch size of `prompt`."
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
uncond_tokens = negative_prompt
|
390 |
+
|
391 |
+
# textual inversion: process multi-vector tokens if necessary
|
392 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
393 |
+
uncond_tokens = self.maybe_convert_prompt(
|
394 |
+
uncond_tokens, text_encoder.tokenizer
|
395 |
+
)
|
396 |
+
|
397 |
+
# max_length = prompt_embeds.shape[1]
|
398 |
+
uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type)
|
399 |
+
|
400 |
+
negative_prompt_outputs = text_encoder.encode(
|
401 |
+
uncond_input, data_type=data_type, device=device
|
402 |
+
)
|
403 |
+
negative_prompt_embeds = negative_prompt_outputs.hidden_state
|
404 |
+
|
405 |
+
negative_attention_mask = negative_prompt_outputs.attention_mask
|
406 |
+
if negative_attention_mask is not None:
|
407 |
+
negative_attention_mask = negative_attention_mask.to(device)
|
408 |
+
_, seq_len = negative_attention_mask.shape
|
409 |
+
negative_attention_mask = negative_attention_mask.repeat(
|
410 |
+
1, num_videos_per_prompt
|
411 |
+
)
|
412 |
+
negative_attention_mask = negative_attention_mask.view(
|
413 |
+
batch_size * num_videos_per_prompt, seq_len
|
414 |
+
)
|
415 |
+
|
416 |
+
if do_classifier_free_guidance:
|
417 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
418 |
+
seq_len = negative_prompt_embeds.shape[1]
|
419 |
+
|
420 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
421 |
+
dtype=prompt_embeds_dtype, device=device
|
422 |
+
)
|
423 |
+
|
424 |
+
if negative_prompt_embeds.ndim == 2:
|
425 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
426 |
+
1, num_videos_per_prompt
|
427 |
+
)
|
428 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
429 |
+
batch_size * num_videos_per_prompt, -1
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
433 |
+
1, num_videos_per_prompt, 1
|
434 |
+
)
|
435 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
436 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
437 |
+
)
|
438 |
+
|
439 |
+
if text_encoder is not None:
|
440 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
441 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
442 |
+
unscale_lora_layers(text_encoder.model, lora_scale)
|
443 |
+
|
444 |
+
return (
|
445 |
+
prompt_embeds,
|
446 |
+
negative_prompt_embeds,
|
447 |
+
attention_mask,
|
448 |
+
negative_attention_mask,
|
449 |
+
)
|
450 |
+
|
451 |
+
def decode_latents(self, latents, enable_tiling=True):
|
452 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
453 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
454 |
+
|
455 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
456 |
+
if enable_tiling:
|
457 |
+
self.vae.enable_tiling()
|
458 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
459 |
+
else:
|
460 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
461 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
462 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
463 |
+
if image.ndim == 4:
|
464 |
+
image = image.cpu().permute(0, 2, 3, 1).float()
|
465 |
+
else:
|
466 |
+
image = image.cpu().float()
|
467 |
+
return image
|
468 |
+
|
469 |
+
def prepare_extra_func_kwargs(self, func, kwargs):
|
470 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
471 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
472 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
473 |
+
# and should be between [0, 1]
|
474 |
+
extra_step_kwargs = {}
|
475 |
+
|
476 |
+
for k, v in kwargs.items():
|
477 |
+
accepts = k in set(inspect.signature(func).parameters.keys())
|
478 |
+
if accepts:
|
479 |
+
extra_step_kwargs[k] = v
|
480 |
+
return extra_step_kwargs
|
481 |
+
|
482 |
+
def check_inputs(
|
483 |
+
self,
|
484 |
+
prompt,
|
485 |
+
height,
|
486 |
+
width,
|
487 |
+
video_length,
|
488 |
+
callback_steps,
|
489 |
+
negative_prompt=None,
|
490 |
+
prompt_embeds=None,
|
491 |
+
negative_prompt_embeds=None,
|
492 |
+
callback_on_step_end_tensor_inputs=None,
|
493 |
+
vae_ver="88-4c-sd",
|
494 |
+
):
|
495 |
+
if height % 8 != 0 or width % 8 != 0:
|
496 |
+
raise ValueError(
|
497 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
498 |
+
)
|
499 |
+
|
500 |
+
if video_length is not None:
|
501 |
+
if "884" in vae_ver:
|
502 |
+
if video_length != 1 and (video_length - 1) % 4 != 0:
|
503 |
+
raise ValueError(
|
504 |
+
f"`video_length` has to be 1 or a multiple of 4 but is {video_length}."
|
505 |
+
)
|
506 |
+
elif "888" in vae_ver:
|
507 |
+
if video_length != 1 and (video_length - 1) % 8 != 0:
|
508 |
+
raise ValueError(
|
509 |
+
f"`video_length` has to be 1 or a multiple of 8 but is {video_length}."
|
510 |
+
)
|
511 |
+
|
512 |
+
if callback_steps is not None and (
|
513 |
+
not isinstance(callback_steps, int) or callback_steps <= 0
|
514 |
+
):
|
515 |
+
raise ValueError(
|
516 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
517 |
+
f" {type(callback_steps)}."
|
518 |
+
)
|
519 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
520 |
+
k in self._callback_tensor_inputs
|
521 |
+
for k in callback_on_step_end_tensor_inputs
|
522 |
+
):
|
523 |
+
raise ValueError(
|
524 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
525 |
+
)
|
526 |
+
|
527 |
+
if prompt is not None and prompt_embeds is not None:
|
528 |
+
raise ValueError(
|
529 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
530 |
+
" only forward one of the two."
|
531 |
+
)
|
532 |
+
elif prompt is None and prompt_embeds is None:
|
533 |
+
raise ValueError(
|
534 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
535 |
+
)
|
536 |
+
elif prompt is not None and (
|
537 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
538 |
+
):
|
539 |
+
raise ValueError(
|
540 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
541 |
+
)
|
542 |
+
|
543 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
544 |
+
raise ValueError(
|
545 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
546 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
547 |
+
)
|
548 |
+
|
549 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
550 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
551 |
+
raise ValueError(
|
552 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
553 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
554 |
+
f" {negative_prompt_embeds.shape}."
|
555 |
+
)
|
556 |
+
|
557 |
+
|
558 |
+
def prepare_latents(
|
559 |
+
self,
|
560 |
+
batch_size,
|
561 |
+
num_channels_latents,
|
562 |
+
height,
|
563 |
+
width,
|
564 |
+
video_length,
|
565 |
+
dtype,
|
566 |
+
device,
|
567 |
+
generator,
|
568 |
+
latents=None,
|
569 |
+
):
|
570 |
+
shape = (
|
571 |
+
batch_size,
|
572 |
+
num_channels_latents,
|
573 |
+
video_length,
|
574 |
+
int(height) // self.vae_scale_factor,
|
575 |
+
int(width) // self.vae_scale_factor,
|
576 |
+
)
|
577 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
578 |
+
raise ValueError(
|
579 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
580 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
581 |
+
)
|
582 |
+
|
583 |
+
if latents is None:
|
584 |
+
latents = randn_tensor(
|
585 |
+
shape, generator=generator, device=device, dtype=dtype
|
586 |
+
)
|
587 |
+
else:
|
588 |
+
latents = latents.to(device)
|
589 |
+
|
590 |
+
# Check existence to make it compatible with FlowMatchEulerDiscreteScheduler
|
591 |
+
if hasattr(self.scheduler, "init_noise_sigma"):
|
592 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
593 |
+
latents = latents * self.scheduler.init_noise_sigma
|
594 |
+
return latents
|
595 |
+
|
596 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
597 |
+
def get_guidance_scale_embedding(
|
598 |
+
self,
|
599 |
+
w: torch.Tensor,
|
600 |
+
embedding_dim: int = 512,
|
601 |
+
dtype: torch.dtype = torch.float32,
|
602 |
+
) -> torch.Tensor:
|
603 |
+
"""
|
604 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
605 |
+
|
606 |
+
Args:
|
607 |
+
w (`torch.Tensor`):
|
608 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
609 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
610 |
+
Dimension of the embeddings to generate.
|
611 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
612 |
+
Data type of the generated embeddings.
|
613 |
+
|
614 |
+
Returns:
|
615 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
616 |
+
"""
|
617 |
+
assert len(w.shape) == 1
|
618 |
+
w = w * 1000.0
|
619 |
+
|
620 |
+
half_dim = embedding_dim // 2
|
621 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
622 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
623 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
624 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
625 |
+
if embedding_dim % 2 == 1: # zero pad
|
626 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
627 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
628 |
+
return emb
|
629 |
+
|
630 |
+
@property
|
631 |
+
def guidance_scale(self):
|
632 |
+
return self._guidance_scale
|
633 |
+
|
634 |
+
@property
|
635 |
+
def guidance_rescale(self):
|
636 |
+
return self._guidance_rescale
|
637 |
+
|
638 |
+
@property
|
639 |
+
def clip_skip(self):
|
640 |
+
return self._clip_skip
|
641 |
+
|
642 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
643 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
644 |
+
# corresponds to doing no classifier free guidance.
|
645 |
+
@property
|
646 |
+
def do_classifier_free_guidance(self):
|
647 |
+
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
|
648 |
+
return self._guidance_scale > 1
|
649 |
+
|
650 |
+
@property
|
651 |
+
def cross_attention_kwargs(self):
|
652 |
+
return self._cross_attention_kwargs
|
653 |
+
|
654 |
+
@property
|
655 |
+
def num_timesteps(self):
|
656 |
+
return self._num_timesteps
|
657 |
+
|
658 |
+
@property
|
659 |
+
def interrupt(self):
|
660 |
+
return self._interrupt
|
661 |
+
|
662 |
+
@torch.no_grad()
|
663 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
664 |
+
def __call__(
|
665 |
+
self,
|
666 |
+
prompt: Union[str, List[str]],
|
667 |
+
height: int,
|
668 |
+
width: int,
|
669 |
+
video_length: int,
|
670 |
+
data_type: str = "video",
|
671 |
+
num_inference_steps: int = 50,
|
672 |
+
timesteps: List[int] = None,
|
673 |
+
sigmas: List[float] = None,
|
674 |
+
guidance_scale: float = 7.5,
|
675 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
676 |
+
num_videos_per_prompt: Optional[int] = 1,
|
677 |
+
eta: float = 0.0,
|
678 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
679 |
+
latents: Optional[torch.Tensor] = None,
|
680 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
681 |
+
attention_mask: Optional[torch.Tensor] = None,
|
682 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
683 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
684 |
+
output_type: Optional[str] = "pil",
|
685 |
+
return_dict: bool = True,
|
686 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
687 |
+
guidance_rescale: float = 0.0,
|
688 |
+
clip_skip: Optional[int] = None,
|
689 |
+
callback_on_step_end: Optional[
|
690 |
+
Union[
|
691 |
+
Callable[[int, int, Dict], None],
|
692 |
+
PipelineCallback,
|
693 |
+
MultiPipelineCallbacks,
|
694 |
+
]
|
695 |
+
] = None,
|
696 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
697 |
+
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
|
698 |
+
vae_ver: str = "88-4c-sd",
|
699 |
+
enable_tiling: bool = False,
|
700 |
+
n_tokens: Optional[int] = None,
|
701 |
+
embedded_guidance_scale: Optional[float] = None,
|
702 |
+
**kwargs,
|
703 |
+
):
|
704 |
+
r"""
|
705 |
+
The call function to the pipeline for generation.
|
706 |
+
|
707 |
+
Args:
|
708 |
+
prompt (`str` or `List[str]`):
|
709 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
710 |
+
height (`int`):
|
711 |
+
The height in pixels of the generated image.
|
712 |
+
width (`int`):
|
713 |
+
The width in pixels of the generated image.
|
714 |
+
video_length (`int`):
|
715 |
+
The number of frames in the generated video.
|
716 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
717 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
718 |
+
expense of slower inference.
|
719 |
+
timesteps (`List[int]`, *optional*):
|
720 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
721 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
722 |
+
passed will be used. Must be in descending order.
|
723 |
+
sigmas (`List[float]`, *optional*):
|
724 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
725 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
726 |
+
will be used.
|
727 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
728 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
729 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
730 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
731 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
732 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
733 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
734 |
+
The number of images to generate per prompt.
|
735 |
+
eta (`float`, *optional*, defaults to 0.0):
|
736 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
737 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
738 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
739 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
740 |
+
generation deterministic.
|
741 |
+
latents (`torch.Tensor`, *optional*):
|
742 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
743 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
744 |
+
tensor is generated by sampling using the supplied random `generator`.
|
745 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
746 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
747 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
748 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
749 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
750 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
751 |
+
|
752 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
753 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
754 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
755 |
+
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a
|
756 |
+
plain tuple.
|
757 |
+
cross_attention_kwargs (`dict`, *optional*):
|
758 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
759 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
760 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
761 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
762 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
763 |
+
using zero terminal SNR.
|
764 |
+
clip_skip (`int`, *optional*):
|
765 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
766 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
767 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
768 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
769 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
770 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
771 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
772 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
773 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
774 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
775 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
776 |
+
|
777 |
+
Examples:
|
778 |
+
|
779 |
+
Returns:
|
780 |
+
[`~HunyuanVideoPipelineOutput`] or `tuple`:
|
781 |
+
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned,
|
782 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
783 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
784 |
+
"not-safe-for-work" (nsfw) content.
|
785 |
+
"""
|
786 |
+
callback = kwargs.pop("callback", None)
|
787 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
788 |
+
|
789 |
+
if callback is not None:
|
790 |
+
deprecate(
|
791 |
+
"callback",
|
792 |
+
"1.0.0",
|
793 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
794 |
+
)
|
795 |
+
if callback_steps is not None:
|
796 |
+
deprecate(
|
797 |
+
"callback_steps",
|
798 |
+
"1.0.0",
|
799 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
800 |
+
)
|
801 |
+
|
802 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
803 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
804 |
+
|
805 |
+
# 0. Default height and width to unet
|
806 |
+
# height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
807 |
+
# width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
808 |
+
# to deal with lora scaling and other possible forward hooks
|
809 |
+
|
810 |
+
# 1. Check inputs. Raise error if not correct
|
811 |
+
self.check_inputs(
|
812 |
+
prompt,
|
813 |
+
height,
|
814 |
+
width,
|
815 |
+
video_length,
|
816 |
+
callback_steps,
|
817 |
+
negative_prompt,
|
818 |
+
prompt_embeds,
|
819 |
+
negative_prompt_embeds,
|
820 |
+
callback_on_step_end_tensor_inputs,
|
821 |
+
vae_ver=vae_ver,
|
822 |
+
)
|
823 |
+
|
824 |
+
self._guidance_scale = guidance_scale
|
825 |
+
self._guidance_rescale = guidance_rescale
|
826 |
+
self._clip_skip = clip_skip
|
827 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
828 |
+
self._interrupt = False
|
829 |
+
|
830 |
+
# 2. Define call parameters
|
831 |
+
if prompt is not None and isinstance(prompt, str):
|
832 |
+
batch_size = 1
|
833 |
+
elif prompt is not None and isinstance(prompt, list):
|
834 |
+
batch_size = len(prompt)
|
835 |
+
else:
|
836 |
+
batch_size = prompt_embeds.shape[0]
|
837 |
+
|
838 |
+
device = torch.device(f"cuda:{dist.get_rank()}") if dist.is_initialized() else self._execution_device
|
839 |
+
|
840 |
+
# 3. Encode input prompt
|
841 |
+
lora_scale = (
|
842 |
+
self.cross_attention_kwargs.get("scale", None)
|
843 |
+
if self.cross_attention_kwargs is not None
|
844 |
+
else None
|
845 |
+
)
|
846 |
+
|
847 |
+
(
|
848 |
+
prompt_embeds,
|
849 |
+
negative_prompt_embeds,
|
850 |
+
prompt_mask,
|
851 |
+
negative_prompt_mask,
|
852 |
+
) = self.encode_prompt(
|
853 |
+
prompt,
|
854 |
+
device,
|
855 |
+
num_videos_per_prompt,
|
856 |
+
self.do_classifier_free_guidance,
|
857 |
+
negative_prompt,
|
858 |
+
prompt_embeds=prompt_embeds,
|
859 |
+
attention_mask=attention_mask,
|
860 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
861 |
+
negative_attention_mask=negative_attention_mask,
|
862 |
+
lora_scale=lora_scale,
|
863 |
+
clip_skip=self.clip_skip,
|
864 |
+
data_type=data_type,
|
865 |
+
)
|
866 |
+
if self.text_encoder_2 is not None:
|
867 |
+
(
|
868 |
+
prompt_embeds_2,
|
869 |
+
negative_prompt_embeds_2,
|
870 |
+
prompt_mask_2,
|
871 |
+
negative_prompt_mask_2,
|
872 |
+
) = self.encode_prompt(
|
873 |
+
prompt,
|
874 |
+
device,
|
875 |
+
num_videos_per_prompt,
|
876 |
+
self.do_classifier_free_guidance,
|
877 |
+
negative_prompt,
|
878 |
+
prompt_embeds=None,
|
879 |
+
attention_mask=None,
|
880 |
+
negative_prompt_embeds=None,
|
881 |
+
negative_attention_mask=None,
|
882 |
+
lora_scale=lora_scale,
|
883 |
+
clip_skip=self.clip_skip,
|
884 |
+
text_encoder=self.text_encoder_2,
|
885 |
+
data_type=data_type,
|
886 |
+
)
|
887 |
+
else:
|
888 |
+
prompt_embeds_2 = None
|
889 |
+
negative_prompt_embeds_2 = None
|
890 |
+
prompt_mask_2 = None
|
891 |
+
negative_prompt_mask_2 = None
|
892 |
+
|
893 |
+
# For classifier free guidance, we need to do two forward passes.
|
894 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
895 |
+
# to avoid doing two forward passes
|
896 |
+
if self.do_classifier_free_guidance:
|
897 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
898 |
+
if prompt_mask is not None:
|
899 |
+
prompt_mask = torch.cat([negative_prompt_mask, prompt_mask])
|
900 |
+
if prompt_embeds_2 is not None:
|
901 |
+
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
|
902 |
+
if prompt_mask_2 is not None:
|
903 |
+
prompt_mask_2 = torch.cat([negative_prompt_mask_2, prompt_mask_2])
|
904 |
+
|
905 |
+
|
906 |
+
# 4. Prepare timesteps
|
907 |
+
extra_set_timesteps_kwargs = self.prepare_extra_func_kwargs(
|
908 |
+
self.scheduler.set_timesteps, {"n_tokens": n_tokens}
|
909 |
+
)
|
910 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
911 |
+
self.scheduler,
|
912 |
+
num_inference_steps,
|
913 |
+
device,
|
914 |
+
timesteps,
|
915 |
+
sigmas,
|
916 |
+
**extra_set_timesteps_kwargs,
|
917 |
+
)
|
918 |
+
|
919 |
+
if "884" in vae_ver:
|
920 |
+
video_length = (video_length - 1) // 4 + 1
|
921 |
+
elif "888" in vae_ver:
|
922 |
+
video_length = (video_length - 1) // 8 + 1
|
923 |
+
else:
|
924 |
+
video_length = video_length
|
925 |
+
|
926 |
+
# 5. Prepare latent variables
|
927 |
+
num_channels_latents = self.transformer.config.in_channels
|
928 |
+
latents = self.prepare_latents(
|
929 |
+
batch_size * num_videos_per_prompt,
|
930 |
+
num_channels_latents,
|
931 |
+
height,
|
932 |
+
width,
|
933 |
+
video_length,
|
934 |
+
prompt_embeds.dtype,
|
935 |
+
device,
|
936 |
+
generator,
|
937 |
+
latents,
|
938 |
+
)
|
939 |
+
|
940 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
941 |
+
extra_step_kwargs = self.prepare_extra_func_kwargs(
|
942 |
+
self.scheduler.step,
|
943 |
+
{"generator": generator, "eta": eta},
|
944 |
+
)
|
945 |
+
|
946 |
+
target_dtype = PRECISION_TO_TYPE[self.args.precision]
|
947 |
+
autocast_enabled = (
|
948 |
+
target_dtype != torch.float32
|
949 |
+
) and not self.args.disable_autocast
|
950 |
+
vae_dtype = PRECISION_TO_TYPE[self.args.vae_precision]
|
951 |
+
vae_autocast_enabled = (
|
952 |
+
vae_dtype != torch.float32
|
953 |
+
) and not self.args.disable_autocast
|
954 |
+
|
955 |
+
# 7. Denoising loop
|
956 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
957 |
+
self._num_timesteps = len(timesteps)
|
958 |
+
|
959 |
+
# if is_progress_bar:
|
960 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
961 |
+
for i, t in enumerate(timesteps):
|
962 |
+
if self.interrupt:
|
963 |
+
continue
|
964 |
+
|
965 |
+
# expand the latents if we are doing classifier free guidance
|
966 |
+
latent_model_input = (
|
967 |
+
torch.cat([latents] * 2)
|
968 |
+
if self.do_classifier_free_guidance
|
969 |
+
else latents
|
970 |
+
)
|
971 |
+
latent_model_input = self.scheduler.scale_model_input(
|
972 |
+
latent_model_input, t
|
973 |
+
)
|
974 |
+
|
975 |
+
t_expand = t.repeat(latent_model_input.shape[0])
|
976 |
+
guidance_expand = (
|
977 |
+
torch.tensor(
|
978 |
+
[embedded_guidance_scale] * latent_model_input.shape[0],
|
979 |
+
dtype=torch.float32,
|
980 |
+
device=device,
|
981 |
+
).to(target_dtype)
|
982 |
+
* 1000.0
|
983 |
+
if embedded_guidance_scale is not None
|
984 |
+
else None
|
985 |
+
)
|
986 |
+
|
987 |
+
# predict the noise residual
|
988 |
+
with torch.autocast(
|
989 |
+
device_type="cuda", dtype=target_dtype, enabled=autocast_enabled
|
990 |
+
):
|
991 |
+
noise_pred = self.transformer( # For an input image (129, 192, 336) (1, 256, 256)
|
992 |
+
latent_model_input, # [2, 16, 33, 24, 42]
|
993 |
+
t_expand, # [2]
|
994 |
+
text_states=prompt_embeds, # [2, 256, 4096]
|
995 |
+
text_mask=prompt_mask, # [2, 256]
|
996 |
+
text_states_2=prompt_embeds_2, # [2, 768]
|
997 |
+
freqs_cos=freqs_cis[0], # [seqlen, head_dim]
|
998 |
+
freqs_sin=freqs_cis[1], # [seqlen, head_dim]
|
999 |
+
guidance=guidance_expand,
|
1000 |
+
return_dict=True,
|
1001 |
+
)[
|
1002 |
+
"x"
|
1003 |
+
]
|
1004 |
+
|
1005 |
+
# perform guidance
|
1006 |
+
if self.do_classifier_free_guidance:
|
1007 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1008 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
1009 |
+
noise_pred_text - noise_pred_uncond
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1013 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1014 |
+
noise_pred = rescale_noise_cfg(
|
1015 |
+
noise_pred,
|
1016 |
+
noise_pred_text,
|
1017 |
+
guidance_rescale=self.guidance_rescale,
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1021 |
+
latents = self.scheduler.step(
|
1022 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
1023 |
+
)[0]
|
1024 |
+
|
1025 |
+
if callback_on_step_end is not None:
|
1026 |
+
callback_kwargs = {}
|
1027 |
+
for k in callback_on_step_end_tensor_inputs:
|
1028 |
+
callback_kwargs[k] = locals()[k]
|
1029 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1030 |
+
|
1031 |
+
latents = callback_outputs.pop("latents", latents)
|
1032 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1033 |
+
negative_prompt_embeds = callback_outputs.pop(
|
1034 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
# call the callback, if provided
|
1038 |
+
if i == len(timesteps) - 1 or (
|
1039 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1040 |
+
):
|
1041 |
+
if progress_bar is not None:
|
1042 |
+
progress_bar.update()
|
1043 |
+
if callback is not None and i % callback_steps == 0:
|
1044 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1045 |
+
callback(step_idx, t, latents)
|
1046 |
+
|
1047 |
+
if not output_type == "latent":
|
1048 |
+
expand_temporal_dim = False
|
1049 |
+
if len(latents.shape) == 4:
|
1050 |
+
if isinstance(self.vae, AutoencoderKLCausal3D):
|
1051 |
+
latents = latents.unsqueeze(2)
|
1052 |
+
expand_temporal_dim = True
|
1053 |
+
elif len(latents.shape) == 5:
|
1054 |
+
pass
|
1055 |
+
else:
|
1056 |
+
raise ValueError(
|
1057 |
+
f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}."
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
if (
|
1061 |
+
hasattr(self.vae.config, "shift_factor")
|
1062 |
+
and self.vae.config.shift_factor
|
1063 |
+
):
|
1064 |
+
latents = (
|
1065 |
+
latents / self.vae.config.scaling_factor
|
1066 |
+
+ self.vae.config.shift_factor
|
1067 |
+
)
|
1068 |
+
else:
|
1069 |
+
latents = latents / self.vae.config.scaling_factor
|
1070 |
+
|
1071 |
+
with torch.autocast(
|
1072 |
+
device_type="cuda", dtype=vae_dtype, enabled=vae_autocast_enabled
|
1073 |
+
):
|
1074 |
+
if enable_tiling:
|
1075 |
+
self.vae.enable_tiling()
|
1076 |
+
image = self.vae.decode(
|
1077 |
+
latents, return_dict=False, generator=generator
|
1078 |
+
)[0]
|
1079 |
+
else:
|
1080 |
+
image = self.vae.decode(
|
1081 |
+
latents, return_dict=False, generator=generator
|
1082 |
+
)[0]
|
1083 |
+
|
1084 |
+
if expand_temporal_dim or image.shape[2] == 1:
|
1085 |
+
image = image.squeeze(2)
|
1086 |
+
|
1087 |
+
else:
|
1088 |
+
image = latents
|
1089 |
+
|
1090 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
1091 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
1092 |
+
image = image.cpu().float()
|
1093 |
+
|
1094 |
+
# Offload all models
|
1095 |
+
self.maybe_free_model_hooks()
|
1096 |
+
|
1097 |
+
if not return_dict:
|
1098 |
+
return image
|
1099 |
+
|
1100 |
+
return HunyuanVideoPipelineOutput(videos=image)
|
hunyuan_model/posemb_layers.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Union, Tuple, List
|
3 |
+
|
4 |
+
|
5 |
+
def _to_tuple(x, dim=2):
|
6 |
+
if isinstance(x, int):
|
7 |
+
return (x,) * dim
|
8 |
+
elif len(x) == dim:
|
9 |
+
return x
|
10 |
+
else:
|
11 |
+
raise ValueError(f"Expected length {dim} or int, but got {x}")
|
12 |
+
|
13 |
+
|
14 |
+
def get_meshgrid_nd(start, *args, dim=2):
|
15 |
+
"""
|
16 |
+
Get n-D meshgrid with start, stop and num.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop,
|
20 |
+
step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num
|
21 |
+
should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in
|
22 |
+
n-tuples.
|
23 |
+
*args: See above.
|
24 |
+
dim (int): Dimension of the meshgrid. Defaults to 2.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
grid (np.ndarray): [dim, ...]
|
28 |
+
"""
|
29 |
+
if len(args) == 0:
|
30 |
+
# start is grid_size
|
31 |
+
num = _to_tuple(start, dim=dim)
|
32 |
+
start = (0,) * dim
|
33 |
+
stop = num
|
34 |
+
elif len(args) == 1:
|
35 |
+
# start is start, args[0] is stop, step is 1
|
36 |
+
start = _to_tuple(start, dim=dim)
|
37 |
+
stop = _to_tuple(args[0], dim=dim)
|
38 |
+
num = [stop[i] - start[i] for i in range(dim)]
|
39 |
+
elif len(args) == 2:
|
40 |
+
# start is start, args[0] is stop, args[1] is num
|
41 |
+
start = _to_tuple(start, dim=dim) # Left-Top eg: 12,0
|
42 |
+
stop = _to_tuple(args[0], dim=dim) # Right-Bottom eg: 20,32
|
43 |
+
num = _to_tuple(args[1], dim=dim) # Target Size eg: 32,124
|
44 |
+
else:
|
45 |
+
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
|
46 |
+
|
47 |
+
# PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False)
|
48 |
+
axis_grid = []
|
49 |
+
for i in range(dim):
|
50 |
+
a, b, n = start[i], stop[i], num[i]
|
51 |
+
g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n]
|
52 |
+
axis_grid.append(g)
|
53 |
+
grid = torch.meshgrid(*axis_grid, indexing="ij") # dim x [W, H, D]
|
54 |
+
grid = torch.stack(grid, dim=0) # [dim, W, H, D]
|
55 |
+
|
56 |
+
return grid
|
57 |
+
|
58 |
+
|
59 |
+
#################################################################################
|
60 |
+
# Rotary Positional Embedding Functions #
|
61 |
+
#################################################################################
|
62 |
+
# https://github.com/meta-llama/llama/blob/be327c427cc5e89cc1d3ab3d3fec4484df771245/llama/model.py#L80
|
63 |
+
|
64 |
+
|
65 |
+
def reshape_for_broadcast(
|
66 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
67 |
+
x: torch.Tensor,
|
68 |
+
head_first=False,
|
69 |
+
):
|
70 |
+
"""
|
71 |
+
Reshape frequency tensor for broadcasting it with another tensor.
|
72 |
+
|
73 |
+
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
74 |
+
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
75 |
+
|
76 |
+
Notes:
|
77 |
+
When using FlashMHAModified, head_first should be False.
|
78 |
+
When using Attention, head_first should be True.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
|
82 |
+
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
83 |
+
head_first (bool): head dimension first (except batch dim) or not.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
torch.Tensor: Reshaped frequency tensor.
|
87 |
+
|
88 |
+
Raises:
|
89 |
+
AssertionError: If the frequency tensor doesn't match the expected shape.
|
90 |
+
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
|
91 |
+
"""
|
92 |
+
ndim = x.ndim
|
93 |
+
assert 0 <= 1 < ndim
|
94 |
+
|
95 |
+
if isinstance(freqs_cis, tuple):
|
96 |
+
# freqs_cis: (cos, sin) in real space
|
97 |
+
if head_first:
|
98 |
+
assert freqs_cis[0].shape == (
|
99 |
+
x.shape[-2],
|
100 |
+
x.shape[-1],
|
101 |
+
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
|
102 |
+
shape = [
|
103 |
+
d if i == ndim - 2 or i == ndim - 1 else 1
|
104 |
+
for i, d in enumerate(x.shape)
|
105 |
+
]
|
106 |
+
else:
|
107 |
+
assert freqs_cis[0].shape == (
|
108 |
+
x.shape[1],
|
109 |
+
x.shape[-1],
|
110 |
+
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
|
111 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
112 |
+
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
|
113 |
+
else:
|
114 |
+
# freqs_cis: values in complex space
|
115 |
+
if head_first:
|
116 |
+
assert freqs_cis.shape == (
|
117 |
+
x.shape[-2],
|
118 |
+
x.shape[-1],
|
119 |
+
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
|
120 |
+
shape = [
|
121 |
+
d if i == ndim - 2 or i == ndim - 1 else 1
|
122 |
+
for i, d in enumerate(x.shape)
|
123 |
+
]
|
124 |
+
else:
|
125 |
+
assert freqs_cis.shape == (
|
126 |
+
x.shape[1],
|
127 |
+
x.shape[-1],
|
128 |
+
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
|
129 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
130 |
+
return freqs_cis.view(*shape)
|
131 |
+
|
132 |
+
|
133 |
+
def rotate_half(x):
|
134 |
+
x_real, x_imag = (
|
135 |
+
x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
|
136 |
+
) # [B, S, H, D//2]
|
137 |
+
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
138 |
+
|
139 |
+
|
140 |
+
def apply_rotary_emb(
|
141 |
+
xq: torch.Tensor,
|
142 |
+
xk: torch.Tensor,
|
143 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
|
144 |
+
head_first: bool = False,
|
145 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
146 |
+
"""
|
147 |
+
Apply rotary embeddings to input tensors using the given frequency tensor.
|
148 |
+
|
149 |
+
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
150 |
+
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
151 |
+
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
152 |
+
returned as real tensors.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
|
156 |
+
xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
|
157 |
+
freqs_cis (torch.Tensor or tuple): Precomputed frequency tensor for complex exponential.
|
158 |
+
head_first (bool): head dimension first (except batch dim) or not.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
162 |
+
|
163 |
+
"""
|
164 |
+
xk_out = None
|
165 |
+
if isinstance(freqs_cis, tuple):
|
166 |
+
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
|
167 |
+
cos, sin = cos.to(xq.device), sin.to(xq.device)
|
168 |
+
# real * cos - imag * sin
|
169 |
+
# imag * cos + real * sin
|
170 |
+
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
|
171 |
+
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
|
172 |
+
else:
|
173 |
+
# view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
|
174 |
+
xq_ = torch.view_as_complex(
|
175 |
+
xq.float().reshape(*xq.shape[:-1], -1, 2)
|
176 |
+
) # [B, S, H, D//2]
|
177 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(
|
178 |
+
xq.device
|
179 |
+
) # [S, D//2] --> [1, S, 1, D//2]
|
180 |
+
# (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
|
181 |
+
# view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
|
182 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
|
183 |
+
xk_ = torch.view_as_complex(
|
184 |
+
xk.float().reshape(*xk.shape[:-1], -1, 2)
|
185 |
+
) # [B, S, H, D//2]
|
186 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
|
187 |
+
|
188 |
+
return xq_out, xk_out
|
189 |
+
|
190 |
+
|
191 |
+
def get_nd_rotary_pos_embed(
|
192 |
+
rope_dim_list,
|
193 |
+
start,
|
194 |
+
*args,
|
195 |
+
theta=10000.0,
|
196 |
+
use_real=False,
|
197 |
+
theta_rescale_factor: Union[float, List[float]] = 1.0,
|
198 |
+
interpolation_factor: Union[float, List[float]] = 1.0,
|
199 |
+
):
|
200 |
+
"""
|
201 |
+
This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n.
|
205 |
+
sum(rope_dim_list) should equal to head_dim of attention layer.
|
206 |
+
start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start,
|
207 |
+
args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num.
|
208 |
+
*args: See above.
|
209 |
+
theta (float): Scaling factor for frequency computation. Defaults to 10000.0.
|
210 |
+
use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
211 |
+
Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real
|
212 |
+
part and an imaginary part separately.
|
213 |
+
theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0.
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
pos_embed (torch.Tensor): [HW, D/2]
|
217 |
+
"""
|
218 |
+
|
219 |
+
grid = get_meshgrid_nd(
|
220 |
+
start, *args, dim=len(rope_dim_list)
|
221 |
+
) # [3, W, H, D] / [2, W, H]
|
222 |
+
|
223 |
+
if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
|
224 |
+
theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
|
225 |
+
elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
|
226 |
+
theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
|
227 |
+
assert len(theta_rescale_factor) == len(
|
228 |
+
rope_dim_list
|
229 |
+
), "len(theta_rescale_factor) should equal to len(rope_dim_list)"
|
230 |
+
|
231 |
+
if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
|
232 |
+
interpolation_factor = [interpolation_factor] * len(rope_dim_list)
|
233 |
+
elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
|
234 |
+
interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
|
235 |
+
assert len(interpolation_factor) == len(
|
236 |
+
rope_dim_list
|
237 |
+
), "len(interpolation_factor) should equal to len(rope_dim_list)"
|
238 |
+
|
239 |
+
# use 1/ndim of dimensions to encode grid_axis
|
240 |
+
embs = []
|
241 |
+
for i in range(len(rope_dim_list)):
|
242 |
+
emb = get_1d_rotary_pos_embed(
|
243 |
+
rope_dim_list[i],
|
244 |
+
grid[i].reshape(-1),
|
245 |
+
theta,
|
246 |
+
use_real=use_real,
|
247 |
+
theta_rescale_factor=theta_rescale_factor[i],
|
248 |
+
interpolation_factor=interpolation_factor[i],
|
249 |
+
) # 2 x [WHD, rope_dim_list[i]]
|
250 |
+
embs.append(emb)
|
251 |
+
|
252 |
+
if use_real:
|
253 |
+
cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2)
|
254 |
+
sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2)
|
255 |
+
return cos, sin
|
256 |
+
else:
|
257 |
+
emb = torch.cat(embs, dim=1) # (WHD, D/2)
|
258 |
+
return emb
|
259 |
+
|
260 |
+
|
261 |
+
def get_1d_rotary_pos_embed(
|
262 |
+
dim: int,
|
263 |
+
pos: Union[torch.FloatTensor, int],
|
264 |
+
theta: float = 10000.0,
|
265 |
+
use_real: bool = False,
|
266 |
+
theta_rescale_factor: float = 1.0,
|
267 |
+
interpolation_factor: float = 1.0,
|
268 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
269 |
+
"""
|
270 |
+
Precompute the frequency tensor for complex exponential (cis) with given dimensions.
|
271 |
+
(Note: `cis` means `cos + i * sin`, where i is the imaginary unit.)
|
272 |
+
|
273 |
+
This function calculates a frequency tensor with complex exponential using the given dimension 'dim'
|
274 |
+
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
275 |
+
The returned tensor contains complex values in complex64 data type.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
dim (int): Dimension of the frequency tensor.
|
279 |
+
pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar
|
280 |
+
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
281 |
+
use_real (bool, optional): If True, return real part and imaginary part separately.
|
282 |
+
Otherwise, return complex numbers.
|
283 |
+
theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2]
|
287 |
+
freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D]
|
288 |
+
"""
|
289 |
+
if isinstance(pos, int):
|
290 |
+
pos = torch.arange(pos).float()
|
291 |
+
|
292 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
293 |
+
# has some connection to NTK literature
|
294 |
+
if theta_rescale_factor != 1.0:
|
295 |
+
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
296 |
+
|
297 |
+
freqs = 1.0 / (
|
298 |
+
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
|
299 |
+
) # [D/2]
|
300 |
+
# assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}"
|
301 |
+
freqs = torch.outer(pos * interpolation_factor, freqs) # [S, D/2]
|
302 |
+
if use_real:
|
303 |
+
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
304 |
+
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
305 |
+
return freqs_cos, freqs_sin
|
306 |
+
else:
|
307 |
+
freqs_cis = torch.polar(
|
308 |
+
torch.ones_like(freqs), freqs
|
309 |
+
) # complex64 # [S, D/2]
|
310 |
+
return freqs_cis
|
hunyuan_model/text_encoder.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, AutoTokenizer, AutoModel
|
8 |
+
from transformers.utils import ModelOutput
|
9 |
+
from transformers.models.llama import LlamaModel
|
10 |
+
|
11 |
+
import logging
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
|
16 |
+
|
17 |
+
# When using decoder-only models, we must provide a prompt template to instruct the text encoder
|
18 |
+
# on how to generate the text.
|
19 |
+
# --------------------------------------------------------------------
|
20 |
+
PROMPT_TEMPLATE_ENCODE = (
|
21 |
+
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
|
22 |
+
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
|
23 |
+
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
24 |
+
)
|
25 |
+
PROMPT_TEMPLATE_ENCODE_VIDEO = (
|
26 |
+
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
|
27 |
+
"1. The main content and theme of the video."
|
28 |
+
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
|
29 |
+
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
|
30 |
+
"4. background environment, light, style and atmosphere."
|
31 |
+
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
|
32 |
+
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
|
33 |
+
)
|
34 |
+
|
35 |
+
NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
|
36 |
+
|
37 |
+
PROMPT_TEMPLATE = {
|
38 |
+
"dit-llm-encode": {
|
39 |
+
"template": PROMPT_TEMPLATE_ENCODE,
|
40 |
+
"crop_start": 36,
|
41 |
+
},
|
42 |
+
"dit-llm-encode-video": {
|
43 |
+
"template": PROMPT_TEMPLATE_ENCODE_VIDEO,
|
44 |
+
"crop_start": 95,
|
45 |
+
},
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
def use_default(value, default):
|
50 |
+
return value if value is not None else default
|
51 |
+
|
52 |
+
|
53 |
+
def load_text_encoder(
|
54 |
+
text_encoder_type: str,
|
55 |
+
text_encoder_path: str,
|
56 |
+
text_encoder_dtype: Optional[Union[str, torch.dtype]] = None,
|
57 |
+
):
|
58 |
+
logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}")
|
59 |
+
|
60 |
+
# reduce peak memory usage by specifying the dtype of the model
|
61 |
+
dtype = text_encoder_dtype
|
62 |
+
if text_encoder_type == "clipL":
|
63 |
+
text_encoder = CLIPTextModel.from_pretrained(text_encoder_path, torch_dtype=dtype)
|
64 |
+
text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm
|
65 |
+
elif text_encoder_type == "llm":
|
66 |
+
text_encoder = AutoModel.from_pretrained(text_encoder_path, low_cpu_mem_usage=True, torch_dtype=dtype)
|
67 |
+
text_encoder.final_layer_norm = text_encoder.norm
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
|
70 |
+
# from_pretrained will ensure that the model is in eval mode.
|
71 |
+
|
72 |
+
if dtype is not None:
|
73 |
+
text_encoder = text_encoder.to(dtype=dtype)
|
74 |
+
|
75 |
+
text_encoder.requires_grad_(False)
|
76 |
+
|
77 |
+
logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
|
78 |
+
return text_encoder, text_encoder_path
|
79 |
+
|
80 |
+
|
81 |
+
def load_tokenizer(tokenizer_type, tokenizer_path=None, padding_side="right"):
|
82 |
+
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")
|
83 |
+
|
84 |
+
if tokenizer_type == "clipL":
|
85 |
+
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77)
|
86 |
+
elif tokenizer_type == "llm":
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, padding_side=padding_side)
|
88 |
+
else:
|
89 |
+
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")
|
90 |
+
|
91 |
+
return tokenizer, tokenizer_path
|
92 |
+
|
93 |
+
|
94 |
+
@dataclass
|
95 |
+
class TextEncoderModelOutput(ModelOutput):
|
96 |
+
"""
|
97 |
+
Base class for model's outputs that also contains a pooling of the last hidden states.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
101 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
102 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
103 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
104 |
+
hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed):
|
105 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
106 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
107 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
108 |
+
text_outputs (`list`, *optional*, returned when `return_texts=True` is passed):
|
109 |
+
List of decoded texts.
|
110 |
+
"""
|
111 |
+
|
112 |
+
hidden_state: torch.FloatTensor = None
|
113 |
+
attention_mask: Optional[torch.LongTensor] = None
|
114 |
+
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
|
115 |
+
text_outputs: Optional[list] = None
|
116 |
+
|
117 |
+
|
118 |
+
class TextEncoder(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
text_encoder_type: str,
|
122 |
+
max_length: int,
|
123 |
+
text_encoder_dtype: Optional[Union[str, torch.dtype]] = None,
|
124 |
+
text_encoder_path: Optional[str] = None,
|
125 |
+
tokenizer_type: Optional[str] = None,
|
126 |
+
tokenizer_path: Optional[str] = None,
|
127 |
+
output_key: Optional[str] = None,
|
128 |
+
use_attention_mask: bool = True,
|
129 |
+
input_max_length: Optional[int] = None,
|
130 |
+
prompt_template: Optional[dict] = None,
|
131 |
+
prompt_template_video: Optional[dict] = None,
|
132 |
+
hidden_state_skip_layer: Optional[int] = None,
|
133 |
+
apply_final_norm: bool = False,
|
134 |
+
reproduce: bool = False,
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
self.text_encoder_type = text_encoder_type
|
138 |
+
self.max_length = max_length
|
139 |
+
# self.precision = text_encoder_precision
|
140 |
+
self.model_path = text_encoder_path
|
141 |
+
self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type
|
142 |
+
self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path
|
143 |
+
self.use_attention_mask = use_attention_mask
|
144 |
+
if prompt_template_video is not None:
|
145 |
+
assert use_attention_mask is True, "Attention mask is True required when training videos."
|
146 |
+
self.input_max_length = input_max_length if input_max_length is not None else max_length
|
147 |
+
self.prompt_template = prompt_template
|
148 |
+
self.prompt_template_video = prompt_template_video
|
149 |
+
self.hidden_state_skip_layer = hidden_state_skip_layer
|
150 |
+
self.apply_final_norm = apply_final_norm
|
151 |
+
self.reproduce = reproduce
|
152 |
+
|
153 |
+
self.use_template = self.prompt_template is not None
|
154 |
+
if self.use_template:
|
155 |
+
assert (
|
156 |
+
isinstance(self.prompt_template, dict) and "template" in self.prompt_template
|
157 |
+
), f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
|
158 |
+
assert "{}" in str(self.prompt_template["template"]), (
|
159 |
+
"`prompt_template['template']` must contain a placeholder `{}` for the input text, "
|
160 |
+
f"got {self.prompt_template['template']}"
|
161 |
+
)
|
162 |
+
|
163 |
+
self.use_video_template = self.prompt_template_video is not None
|
164 |
+
if self.use_video_template:
|
165 |
+
if self.prompt_template_video is not None:
|
166 |
+
assert (
|
167 |
+
isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video
|
168 |
+
), f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
|
169 |
+
assert "{}" in str(self.prompt_template_video["template"]), (
|
170 |
+
"`prompt_template_video['template']` must contain a placeholder `{}` for the input text, "
|
171 |
+
f"got {self.prompt_template_video['template']}"
|
172 |
+
)
|
173 |
+
|
174 |
+
if "t5" in text_encoder_type:
|
175 |
+
self.output_key = output_key or "last_hidden_state"
|
176 |
+
elif "clip" in text_encoder_type:
|
177 |
+
self.output_key = output_key or "pooler_output"
|
178 |
+
elif "llm" in text_encoder_type or "glm" in text_encoder_type:
|
179 |
+
self.output_key = output_key or "last_hidden_state"
|
180 |
+
else:
|
181 |
+
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
|
182 |
+
|
183 |
+
self.model, self.model_path = load_text_encoder(
|
184 |
+
text_encoder_type=self.text_encoder_type, text_encoder_path=self.model_path, text_encoder_dtype=text_encoder_dtype
|
185 |
+
)
|
186 |
+
self.dtype = self.model.dtype
|
187 |
+
|
188 |
+
self.tokenizer, self.tokenizer_path = load_tokenizer(
|
189 |
+
tokenizer_type=self.tokenizer_type, tokenizer_path=self.tokenizer_path, padding_side="right"
|
190 |
+
)
|
191 |
+
|
192 |
+
def __repr__(self):
|
193 |
+
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"
|
194 |
+
|
195 |
+
@property
|
196 |
+
def device(self):
|
197 |
+
return self.model.device
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def apply_text_to_template(text, template, prevent_empty_text=True):
|
201 |
+
"""
|
202 |
+
Apply text to template.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
text (str): Input text.
|
206 |
+
template (str or list): Template string or list of chat conversation.
|
207 |
+
prevent_empty_text (bool): If Ture, we will prevent the user text from being empty
|
208 |
+
by adding a space. Defaults to True.
|
209 |
+
"""
|
210 |
+
if isinstance(template, str):
|
211 |
+
# Will send string to tokenizer. Used for llm
|
212 |
+
return template.format(text)
|
213 |
+
else:
|
214 |
+
raise TypeError(f"Unsupported template type: {type(template)}")
|
215 |
+
|
216 |
+
def text2tokens(self, text, data_type="image"):
|
217 |
+
"""
|
218 |
+
Tokenize the input text.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
text (str or list): Input text.
|
222 |
+
"""
|
223 |
+
tokenize_input_type = "str"
|
224 |
+
if self.use_template:
|
225 |
+
if data_type == "image":
|
226 |
+
prompt_template = self.prompt_template["template"]
|
227 |
+
elif data_type == "video":
|
228 |
+
prompt_template = self.prompt_template_video["template"]
|
229 |
+
else:
|
230 |
+
raise ValueError(f"Unsupported data type: {data_type}")
|
231 |
+
if isinstance(text, (list, tuple)):
|
232 |
+
text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text]
|
233 |
+
if isinstance(text[0], list):
|
234 |
+
tokenize_input_type = "list"
|
235 |
+
elif isinstance(text, str):
|
236 |
+
text = self.apply_text_to_template(text, prompt_template)
|
237 |
+
if isinstance(text, list):
|
238 |
+
tokenize_input_type = "list"
|
239 |
+
else:
|
240 |
+
raise TypeError(f"Unsupported text type: {type(text)}")
|
241 |
+
|
242 |
+
kwargs = dict(
|
243 |
+
truncation=True,
|
244 |
+
max_length=self.max_length,
|
245 |
+
padding="max_length",
|
246 |
+
return_tensors="pt",
|
247 |
+
)
|
248 |
+
if tokenize_input_type == "str":
|
249 |
+
return self.tokenizer(
|
250 |
+
text,
|
251 |
+
return_length=False,
|
252 |
+
return_overflowing_tokens=False,
|
253 |
+
return_attention_mask=True,
|
254 |
+
**kwargs,
|
255 |
+
)
|
256 |
+
elif tokenize_input_type == "list":
|
257 |
+
return self.tokenizer.apply_chat_template(
|
258 |
+
text,
|
259 |
+
add_generation_prompt=True,
|
260 |
+
tokenize=True,
|
261 |
+
return_dict=True,
|
262 |
+
**kwargs,
|
263 |
+
)
|
264 |
+
else:
|
265 |
+
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")
|
266 |
+
|
267 |
+
def encode(
|
268 |
+
self,
|
269 |
+
batch_encoding,
|
270 |
+
use_attention_mask=None,
|
271 |
+
output_hidden_states=False,
|
272 |
+
do_sample=None,
|
273 |
+
hidden_state_skip_layer=None,
|
274 |
+
return_texts=False,
|
275 |
+
data_type="image",
|
276 |
+
device=None,
|
277 |
+
):
|
278 |
+
"""
|
279 |
+
Args:
|
280 |
+
batch_encoding (dict): Batch encoding from tokenizer.
|
281 |
+
use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask.
|
282 |
+
Defaults to None.
|
283 |
+
output_hidden_states (bool): Whether to output hidden states. If False, return the value of
|
284 |
+
self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer,
|
285 |
+
output_hidden_states will be set True. Defaults to False.
|
286 |
+
do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None.
|
287 |
+
When self.produce is False, do_sample is set to True by default.
|
288 |
+
hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer.
|
289 |
+
If None, self.output_key will be used. Defaults to None.
|
290 |
+
return_texts (bool): Whether to return the decoded texts. Defaults to False.
|
291 |
+
"""
|
292 |
+
device = self.model.device if device is None else device
|
293 |
+
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
|
294 |
+
hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer)
|
295 |
+
do_sample = use_default(do_sample, not self.reproduce)
|
296 |
+
attention_mask = batch_encoding["attention_mask"].to(device) if use_attention_mask else None
|
297 |
+
outputs = self.model(
|
298 |
+
input_ids=batch_encoding["input_ids"].to(device),
|
299 |
+
attention_mask=attention_mask,
|
300 |
+
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,
|
301 |
+
)
|
302 |
+
if hidden_state_skip_layer is not None:
|
303 |
+
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
|
304 |
+
# Real last hidden state already has layer norm applied. So here we only apply it
|
305 |
+
# for intermediate layers.
|
306 |
+
if hidden_state_skip_layer > 0 and self.apply_final_norm:
|
307 |
+
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
|
308 |
+
else:
|
309 |
+
last_hidden_state = outputs[self.output_key]
|
310 |
+
|
311 |
+
# Remove hidden states of instruction tokens, only keep prompt tokens.
|
312 |
+
if self.use_template:
|
313 |
+
if data_type == "image":
|
314 |
+
crop_start = self.prompt_template.get("crop_start", -1)
|
315 |
+
elif data_type == "video":
|
316 |
+
crop_start = self.prompt_template_video.get("crop_start", -1)
|
317 |
+
else:
|
318 |
+
raise ValueError(f"Unsupported data type: {data_type}")
|
319 |
+
if crop_start > 0:
|
320 |
+
last_hidden_state = last_hidden_state[:, crop_start:]
|
321 |
+
attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None
|
322 |
+
|
323 |
+
if output_hidden_states:
|
324 |
+
return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states)
|
325 |
+
return TextEncoderModelOutput(last_hidden_state, attention_mask)
|
326 |
+
|
327 |
+
def forward(
|
328 |
+
self,
|
329 |
+
text,
|
330 |
+
use_attention_mask=None,
|
331 |
+
output_hidden_states=False,
|
332 |
+
do_sample=False,
|
333 |
+
hidden_state_skip_layer=None,
|
334 |
+
return_texts=False,
|
335 |
+
):
|
336 |
+
batch_encoding = self.text2tokens(text)
|
337 |
+
return self.encode(
|
338 |
+
batch_encoding,
|
339 |
+
use_attention_mask=use_attention_mask,
|
340 |
+
output_hidden_states=output_hidden_states,
|
341 |
+
do_sample=do_sample,
|
342 |
+
hidden_state_skip_layer=hidden_state_skip_layer,
|
343 |
+
return_texts=return_texts,
|
344 |
+
)
|
345 |
+
|
346 |
+
|
347 |
+
# region HunyanVideo architecture
|
348 |
+
|
349 |
+
|
350 |
+
def load_text_encoder_1(
|
351 |
+
text_encoder_dir: str, device: torch.device, fp8_llm: bool, dtype: Optional[Union[str, torch.dtype]] = None
|
352 |
+
) -> TextEncoder:
|
353 |
+
text_encoder_dtype = dtype or torch.float16
|
354 |
+
text_encoder_type = "llm"
|
355 |
+
text_len = 256
|
356 |
+
hidden_state_skip_layer = 2
|
357 |
+
apply_final_norm = False
|
358 |
+
reproduce = False
|
359 |
+
|
360 |
+
prompt_template = "dit-llm-encode"
|
361 |
+
prompt_template = PROMPT_TEMPLATE[prompt_template]
|
362 |
+
prompt_template_video = "dit-llm-encode-video"
|
363 |
+
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video]
|
364 |
+
|
365 |
+
crop_start = prompt_template_video["crop_start"] # .get("crop_start", 0)
|
366 |
+
max_length = text_len + crop_start
|
367 |
+
|
368 |
+
text_encoder_1 = TextEncoder(
|
369 |
+
text_encoder_type=text_encoder_type,
|
370 |
+
max_length=max_length,
|
371 |
+
text_encoder_dtype=text_encoder_dtype,
|
372 |
+
text_encoder_path=text_encoder_dir,
|
373 |
+
tokenizer_type=text_encoder_type,
|
374 |
+
prompt_template=prompt_template,
|
375 |
+
prompt_template_video=prompt_template_video,
|
376 |
+
hidden_state_skip_layer=hidden_state_skip_layer,
|
377 |
+
apply_final_norm=apply_final_norm,
|
378 |
+
reproduce=reproduce,
|
379 |
+
)
|
380 |
+
text_encoder_1.eval()
|
381 |
+
|
382 |
+
if fp8_llm:
|
383 |
+
org_dtype = text_encoder_1.dtype
|
384 |
+
logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn")
|
385 |
+
text_encoder_1.to(device=device, dtype=torch.float8_e4m3fn)
|
386 |
+
|
387 |
+
# prepare LLM for fp8
|
388 |
+
def prepare_fp8(llama_model: LlamaModel, target_dtype):
|
389 |
+
def forward_hook(module):
|
390 |
+
def forward(hidden_states):
|
391 |
+
input_dtype = hidden_states.dtype
|
392 |
+
hidden_states = hidden_states.to(torch.float32)
|
393 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
394 |
+
hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon)
|
395 |
+
return module.weight.to(input_dtype) * hidden_states.to(input_dtype)
|
396 |
+
|
397 |
+
return forward
|
398 |
+
|
399 |
+
for module in llama_model.modules():
|
400 |
+
if module.__class__.__name__ in ["Embedding"]:
|
401 |
+
# print("set", module.__class__.__name__, "to", target_dtype)
|
402 |
+
module.to(target_dtype)
|
403 |
+
if module.__class__.__name__ in ["LlamaRMSNorm"]:
|
404 |
+
# print("set", module.__class__.__name__, "hooks")
|
405 |
+
module.forward = forward_hook(module)
|
406 |
+
|
407 |
+
prepare_fp8(text_encoder_1.model, org_dtype)
|
408 |
+
else:
|
409 |
+
text_encoder_1.to(device=device)
|
410 |
+
|
411 |
+
return text_encoder_1
|
412 |
+
|
413 |
+
|
414 |
+
def load_text_encoder_2(
|
415 |
+
text_encoder_dir: str, device: torch.device, dtype: Optional[Union[str, torch.dtype]] = None
|
416 |
+
) -> TextEncoder:
|
417 |
+
text_encoder_dtype = dtype or torch.float16
|
418 |
+
reproduce = False
|
419 |
+
|
420 |
+
text_encoder_2_type = "clipL"
|
421 |
+
text_len_2 = 77
|
422 |
+
|
423 |
+
text_encoder_2 = TextEncoder(
|
424 |
+
text_encoder_type=text_encoder_2_type,
|
425 |
+
max_length=text_len_2,
|
426 |
+
text_encoder_dtype=text_encoder_dtype,
|
427 |
+
text_encoder_path=text_encoder_dir,
|
428 |
+
tokenizer_type=text_encoder_2_type,
|
429 |
+
reproduce=reproduce,
|
430 |
+
)
|
431 |
+
text_encoder_2.eval()
|
432 |
+
|
433 |
+
text_encoder_2.to(device=device)
|
434 |
+
|
435 |
+
return text_encoder_2
|
436 |
+
|
437 |
+
|
438 |
+
# endregion
|
hunyuan_model/token_refiner.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from einops import rearrange
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.utils.checkpoint import checkpoint
|
7 |
+
|
8 |
+
from .activation_layers import get_activation_layer
|
9 |
+
from .attention import attention
|
10 |
+
from .norm_layers import get_norm_layer
|
11 |
+
from .embed_layers import TimestepEmbedder, TextProjection
|
12 |
+
from .mlp_layers import MLP
|
13 |
+
from .modulate_layers import modulate, apply_gate
|
14 |
+
|
15 |
+
|
16 |
+
class IndividualTokenRefinerBlock(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
hidden_size,
|
20 |
+
heads_num,
|
21 |
+
mlp_width_ratio: str = 4.0,
|
22 |
+
mlp_drop_rate: float = 0.0,
|
23 |
+
act_type: str = "silu",
|
24 |
+
qk_norm: bool = False,
|
25 |
+
qk_norm_type: str = "layer",
|
26 |
+
qkv_bias: bool = True,
|
27 |
+
dtype: Optional[torch.dtype] = None,
|
28 |
+
device: Optional[torch.device] = None,
|
29 |
+
):
|
30 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
31 |
+
super().__init__()
|
32 |
+
self.heads_num = heads_num
|
33 |
+
head_dim = hidden_size // heads_num
|
34 |
+
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
|
35 |
+
|
36 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
37 |
+
self.self_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
|
38 |
+
qk_norm_layer = get_norm_layer(qk_norm_type)
|
39 |
+
self.self_attn_q_norm = (
|
40 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
41 |
+
)
|
42 |
+
self.self_attn_k_norm = (
|
43 |
+
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
|
44 |
+
)
|
45 |
+
self.self_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
|
46 |
+
|
47 |
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
|
48 |
+
act_layer = get_activation_layer(act_type)
|
49 |
+
self.mlp = MLP(
|
50 |
+
in_channels=hidden_size,
|
51 |
+
hidden_channels=mlp_hidden_dim,
|
52 |
+
act_layer=act_layer,
|
53 |
+
drop=mlp_drop_rate,
|
54 |
+
**factory_kwargs,
|
55 |
+
)
|
56 |
+
|
57 |
+
self.adaLN_modulation = nn.Sequential(
|
58 |
+
act_layer(),
|
59 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
|
60 |
+
)
|
61 |
+
# Zero-initialize the modulation
|
62 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
63 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
64 |
+
|
65 |
+
self.gradient_checkpointing = False
|
66 |
+
|
67 |
+
def enable_gradient_checkpointing(self):
|
68 |
+
self.gradient_checkpointing = True
|
69 |
+
|
70 |
+
def _forward(
|
71 |
+
self,
|
72 |
+
x: torch.Tensor,
|
73 |
+
c: torch.Tensor, # timestep_aware_representations + context_aware_representations
|
74 |
+
attn_mask: torch.Tensor = None,
|
75 |
+
):
|
76 |
+
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
|
77 |
+
|
78 |
+
norm_x = self.norm1(x)
|
79 |
+
qkv = self.self_attn_qkv(norm_x)
|
80 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
|
81 |
+
# Apply QK-Norm if needed
|
82 |
+
q = self.self_attn_q_norm(q).to(v)
|
83 |
+
k = self.self_attn_k_norm(k).to(v)
|
84 |
+
|
85 |
+
# Self-Attention
|
86 |
+
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)
|
87 |
+
|
88 |
+
x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
|
89 |
+
|
90 |
+
# FFN Layer
|
91 |
+
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
|
92 |
+
|
93 |
+
return x
|
94 |
+
|
95 |
+
def forward(self, *args, **kwargs):
|
96 |
+
if self.training and self.gradient_checkpointing:
|
97 |
+
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
|
98 |
+
else:
|
99 |
+
return self._forward(*args, **kwargs)
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
class IndividualTokenRefiner(nn.Module):
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
hidden_size,
|
107 |
+
heads_num,
|
108 |
+
depth,
|
109 |
+
mlp_width_ratio: float = 4.0,
|
110 |
+
mlp_drop_rate: float = 0.0,
|
111 |
+
act_type: str = "silu",
|
112 |
+
qk_norm: bool = False,
|
113 |
+
qk_norm_type: str = "layer",
|
114 |
+
qkv_bias: bool = True,
|
115 |
+
dtype: Optional[torch.dtype] = None,
|
116 |
+
device: Optional[torch.device] = None,
|
117 |
+
):
|
118 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
119 |
+
super().__init__()
|
120 |
+
self.blocks = nn.ModuleList(
|
121 |
+
[
|
122 |
+
IndividualTokenRefinerBlock(
|
123 |
+
hidden_size=hidden_size,
|
124 |
+
heads_num=heads_num,
|
125 |
+
mlp_width_ratio=mlp_width_ratio,
|
126 |
+
mlp_drop_rate=mlp_drop_rate,
|
127 |
+
act_type=act_type,
|
128 |
+
qk_norm=qk_norm,
|
129 |
+
qk_norm_type=qk_norm_type,
|
130 |
+
qkv_bias=qkv_bias,
|
131 |
+
**factory_kwargs,
|
132 |
+
)
|
133 |
+
for _ in range(depth)
|
134 |
+
]
|
135 |
+
)
|
136 |
+
|
137 |
+
def enable_gradient_checkpointing(self):
|
138 |
+
for block in self.blocks:
|
139 |
+
block.enable_gradient_checkpointing()
|
140 |
+
|
141 |
+
def forward(
|
142 |
+
self,
|
143 |
+
x: torch.Tensor,
|
144 |
+
c: torch.LongTensor,
|
145 |
+
mask: Optional[torch.Tensor] = None,
|
146 |
+
):
|
147 |
+
self_attn_mask = None
|
148 |
+
if mask is not None:
|
149 |
+
batch_size = mask.shape[0]
|
150 |
+
seq_len = mask.shape[1]
|
151 |
+
mask = mask.to(x.device)
|
152 |
+
# batch_size x 1 x seq_len x seq_len
|
153 |
+
self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
|
154 |
+
# batch_size x 1 x seq_len x seq_len
|
155 |
+
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
156 |
+
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num
|
157 |
+
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
158 |
+
# avoids self-attention weight being NaN for padding tokens
|
159 |
+
self_attn_mask[:, :, :, 0] = True
|
160 |
+
|
161 |
+
for block in self.blocks:
|
162 |
+
x = block(x, c, self_attn_mask)
|
163 |
+
return x
|
164 |
+
|
165 |
+
|
166 |
+
class SingleTokenRefiner(nn.Module):
|
167 |
+
"""
|
168 |
+
A single token refiner block for llm text embedding refine.
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(
|
172 |
+
self,
|
173 |
+
in_channels,
|
174 |
+
hidden_size,
|
175 |
+
heads_num,
|
176 |
+
depth,
|
177 |
+
mlp_width_ratio: float = 4.0,
|
178 |
+
mlp_drop_rate: float = 0.0,
|
179 |
+
act_type: str = "silu",
|
180 |
+
qk_norm: bool = False,
|
181 |
+
qk_norm_type: str = "layer",
|
182 |
+
qkv_bias: bool = True,
|
183 |
+
attn_mode: str = "torch",
|
184 |
+
dtype: Optional[torch.dtype] = None,
|
185 |
+
device: Optional[torch.device] = None,
|
186 |
+
):
|
187 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
188 |
+
super().__init__()
|
189 |
+
self.attn_mode = attn_mode
|
190 |
+
assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner."
|
191 |
+
|
192 |
+
self.input_embedder = nn.Linear(in_channels, hidden_size, bias=True, **factory_kwargs)
|
193 |
+
|
194 |
+
act_layer = get_activation_layer(act_type)
|
195 |
+
# Build timestep embedding layer
|
196 |
+
self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
|
197 |
+
# Build context embedding layer
|
198 |
+
self.c_embedder = TextProjection(in_channels, hidden_size, act_layer, **factory_kwargs)
|
199 |
+
|
200 |
+
self.individual_token_refiner = IndividualTokenRefiner(
|
201 |
+
hidden_size=hidden_size,
|
202 |
+
heads_num=heads_num,
|
203 |
+
depth=depth,
|
204 |
+
mlp_width_ratio=mlp_width_ratio,
|
205 |
+
mlp_drop_rate=mlp_drop_rate,
|
206 |
+
act_type=act_type,
|
207 |
+
qk_norm=qk_norm,
|
208 |
+
qk_norm_type=qk_norm_type,
|
209 |
+
qkv_bias=qkv_bias,
|
210 |
+
**factory_kwargs,
|
211 |
+
)
|
212 |
+
|
213 |
+
def enable_gradient_checkpointing(self):
|
214 |
+
self.individual_token_refiner.enable_gradient_checkpointing()
|
215 |
+
|
216 |
+
def forward(
|
217 |
+
self,
|
218 |
+
x: torch.Tensor,
|
219 |
+
t: torch.LongTensor,
|
220 |
+
mask: Optional[torch.LongTensor] = None,
|
221 |
+
):
|
222 |
+
timestep_aware_representations = self.t_embedder(t)
|
223 |
+
|
224 |
+
if mask is None:
|
225 |
+
context_aware_representations = x.mean(dim=1)
|
226 |
+
else:
|
227 |
+
mask_float = mask.float().unsqueeze(-1) # [b, s1, 1]
|
228 |
+
context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
229 |
+
context_aware_representations = self.c_embedder(context_aware_representations)
|
230 |
+
c = timestep_aware_representations + context_aware_representations
|
231 |
+
|
232 |
+
x = self.input_embedder(x)
|
233 |
+
|
234 |
+
x = self.individual_token_refiner(x, c, mask)
|
235 |
+
|
236 |
+
return x
|
hunyuan_model/vae.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import json
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
11 |
+
from diffusers.utils.torch_utils import randn_tensor
|
12 |
+
from diffusers.models.attention_processor import SpatialNorm
|
13 |
+
from modules.unet_causal_3d_blocks import CausalConv3d, UNetMidBlockCausal3D, get_down_block3d, get_up_block3d
|
14 |
+
|
15 |
+
import logging
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
|
20 |
+
|
21 |
+
SCALING_FACTOR = 0.476986
|
22 |
+
VAE_VER = "884-16c-hy"
|
23 |
+
|
24 |
+
|
25 |
+
def load_vae(
|
26 |
+
vae_type: str = "884-16c-hy",
|
27 |
+
vae_dtype: Optional[Union[str, torch.dtype]] = None,
|
28 |
+
sample_size: tuple = None,
|
29 |
+
vae_path: str = None,
|
30 |
+
device=None,
|
31 |
+
):
|
32 |
+
"""the fucntion to load the 3D VAE model
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vae_type (str): the type of the 3D VAE model. Defaults to "884-16c-hy".
|
36 |
+
vae_precision (str, optional): the precision to load vae. Defaults to None.
|
37 |
+
sample_size (tuple, optional): the tiling size. Defaults to None.
|
38 |
+
vae_path (str, optional): the path to vae. Defaults to None.
|
39 |
+
logger (_type_, optional): logger. Defaults to None.
|
40 |
+
device (_type_, optional): device to load vae. Defaults to None.
|
41 |
+
"""
|
42 |
+
if vae_path is None:
|
43 |
+
vae_path = VAE_PATH[vae_type]
|
44 |
+
|
45 |
+
logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}")
|
46 |
+
|
47 |
+
# use fixed config for Hunyuan's VAE
|
48 |
+
CONFIG_JSON = """{
|
49 |
+
"_class_name": "AutoencoderKLCausal3D",
|
50 |
+
"_diffusers_version": "0.4.2",
|
51 |
+
"act_fn": "silu",
|
52 |
+
"block_out_channels": [
|
53 |
+
128,
|
54 |
+
256,
|
55 |
+
512,
|
56 |
+
512
|
57 |
+
],
|
58 |
+
"down_block_types": [
|
59 |
+
"DownEncoderBlockCausal3D",
|
60 |
+
"DownEncoderBlockCausal3D",
|
61 |
+
"DownEncoderBlockCausal3D",
|
62 |
+
"DownEncoderBlockCausal3D"
|
63 |
+
],
|
64 |
+
"in_channels": 3,
|
65 |
+
"latent_channels": 16,
|
66 |
+
"layers_per_block": 2,
|
67 |
+
"norm_num_groups": 32,
|
68 |
+
"out_channels": 3,
|
69 |
+
"sample_size": 256,
|
70 |
+
"sample_tsize": 64,
|
71 |
+
"up_block_types": [
|
72 |
+
"UpDecoderBlockCausal3D",
|
73 |
+
"UpDecoderBlockCausal3D",
|
74 |
+
"UpDecoderBlockCausal3D",
|
75 |
+
"UpDecoderBlockCausal3D"
|
76 |
+
],
|
77 |
+
"scaling_factor": 0.476986,
|
78 |
+
"time_compression_ratio": 4,
|
79 |
+
"mid_block_add_attention": true
|
80 |
+
}"""
|
81 |
+
|
82 |
+
# config = AutoencoderKLCausal3D.load_config(vae_path)
|
83 |
+
config = json.loads(CONFIG_JSON)
|
84 |
+
|
85 |
+
# import here to avoid circular import
|
86 |
+
from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D
|
87 |
+
|
88 |
+
if sample_size:
|
89 |
+
vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size)
|
90 |
+
else:
|
91 |
+
vae = AutoencoderKLCausal3D.from_config(config)
|
92 |
+
|
93 |
+
# vae_ckpt = Path(vae_path) / "pytorch_model.pt"
|
94 |
+
# assert vae_ckpt.exists(), f"VAE checkpoint not found: {vae_ckpt}"
|
95 |
+
|
96 |
+
ckpt = torch.load(vae_path, map_location=vae.device, weights_only=True)
|
97 |
+
if "state_dict" in ckpt:
|
98 |
+
ckpt = ckpt["state_dict"]
|
99 |
+
if any(k.startswith("vae.") for k in ckpt.keys()):
|
100 |
+
ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")}
|
101 |
+
vae.load_state_dict(ckpt)
|
102 |
+
|
103 |
+
spatial_compression_ratio = vae.config.spatial_compression_ratio
|
104 |
+
time_compression_ratio = vae.config.time_compression_ratio
|
105 |
+
|
106 |
+
if vae_dtype is not None:
|
107 |
+
vae = vae.to(vae_dtype)
|
108 |
+
|
109 |
+
vae.requires_grad_(False)
|
110 |
+
|
111 |
+
logger.info(f"VAE to dtype: {vae.dtype}")
|
112 |
+
|
113 |
+
if device is not None:
|
114 |
+
vae = vae.to(device)
|
115 |
+
|
116 |
+
vae.eval()
|
117 |
+
|
118 |
+
return vae, vae_path, spatial_compression_ratio, time_compression_ratio
|
119 |
+
|
120 |
+
|
121 |
+
@dataclass
|
122 |
+
class DecoderOutput(BaseOutput):
|
123 |
+
r"""
|
124 |
+
Output of decoding method.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
128 |
+
The decoded output sample from the last layer of the model.
|
129 |
+
"""
|
130 |
+
|
131 |
+
sample: torch.FloatTensor
|
132 |
+
|
133 |
+
|
134 |
+
class EncoderCausal3D(nn.Module):
|
135 |
+
r"""
|
136 |
+
The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
in_channels: int = 3,
|
142 |
+
out_channels: int = 3,
|
143 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),
|
144 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
145 |
+
layers_per_block: int = 2,
|
146 |
+
norm_num_groups: int = 32,
|
147 |
+
act_fn: str = "silu",
|
148 |
+
double_z: bool = True,
|
149 |
+
mid_block_add_attention=True,
|
150 |
+
time_compression_ratio: int = 4,
|
151 |
+
spatial_compression_ratio: int = 8,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
self.layers_per_block = layers_per_block
|
155 |
+
|
156 |
+
self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
|
157 |
+
self.mid_block = None
|
158 |
+
self.down_blocks = nn.ModuleList([])
|
159 |
+
|
160 |
+
# down
|
161 |
+
output_channel = block_out_channels[0]
|
162 |
+
for i, down_block_type in enumerate(down_block_types):
|
163 |
+
input_channel = output_channel
|
164 |
+
output_channel = block_out_channels[i]
|
165 |
+
is_final_block = i == len(block_out_channels) - 1
|
166 |
+
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
|
167 |
+
num_time_downsample_layers = int(np.log2(time_compression_ratio))
|
168 |
+
|
169 |
+
if time_compression_ratio == 4:
|
170 |
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
171 |
+
add_time_downsample = bool(i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block)
|
172 |
+
else:
|
173 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
|
174 |
+
|
175 |
+
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
|
176 |
+
downsample_stride_T = (2,) if add_time_downsample else (1,)
|
177 |
+
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
|
178 |
+
down_block = get_down_block3d(
|
179 |
+
down_block_type,
|
180 |
+
num_layers=self.layers_per_block,
|
181 |
+
in_channels=input_channel,
|
182 |
+
out_channels=output_channel,
|
183 |
+
add_downsample=bool(add_spatial_downsample or add_time_downsample),
|
184 |
+
downsample_stride=downsample_stride,
|
185 |
+
resnet_eps=1e-6,
|
186 |
+
downsample_padding=0,
|
187 |
+
resnet_act_fn=act_fn,
|
188 |
+
resnet_groups=norm_num_groups,
|
189 |
+
attention_head_dim=output_channel,
|
190 |
+
temb_channels=None,
|
191 |
+
)
|
192 |
+
self.down_blocks.append(down_block)
|
193 |
+
|
194 |
+
# mid
|
195 |
+
self.mid_block = UNetMidBlockCausal3D(
|
196 |
+
in_channels=block_out_channels[-1],
|
197 |
+
resnet_eps=1e-6,
|
198 |
+
resnet_act_fn=act_fn,
|
199 |
+
output_scale_factor=1,
|
200 |
+
resnet_time_scale_shift="default",
|
201 |
+
attention_head_dim=block_out_channels[-1],
|
202 |
+
resnet_groups=norm_num_groups,
|
203 |
+
temb_channels=None,
|
204 |
+
add_attention=mid_block_add_attention,
|
205 |
+
)
|
206 |
+
|
207 |
+
# out
|
208 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
209 |
+
self.conv_act = nn.SiLU()
|
210 |
+
|
211 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
212 |
+
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
|
213 |
+
|
214 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
215 |
+
r"""The forward method of the `EncoderCausal3D` class."""
|
216 |
+
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"
|
217 |
+
|
218 |
+
sample = self.conv_in(sample)
|
219 |
+
|
220 |
+
# down
|
221 |
+
for down_block in self.down_blocks:
|
222 |
+
sample = down_block(sample)
|
223 |
+
|
224 |
+
# middle
|
225 |
+
sample = self.mid_block(sample)
|
226 |
+
|
227 |
+
# post-process
|
228 |
+
sample = self.conv_norm_out(sample)
|
229 |
+
sample = self.conv_act(sample)
|
230 |
+
sample = self.conv_out(sample)
|
231 |
+
|
232 |
+
return sample
|
233 |
+
|
234 |
+
|
235 |
+
class DecoderCausal3D(nn.Module):
|
236 |
+
r"""
|
237 |
+
The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
238 |
+
"""
|
239 |
+
|
240 |
+
def __init__(
|
241 |
+
self,
|
242 |
+
in_channels: int = 3,
|
243 |
+
out_channels: int = 3,
|
244 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),
|
245 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
246 |
+
layers_per_block: int = 2,
|
247 |
+
norm_num_groups: int = 32,
|
248 |
+
act_fn: str = "silu",
|
249 |
+
norm_type: str = "group", # group, spatial
|
250 |
+
mid_block_add_attention=True,
|
251 |
+
time_compression_ratio: int = 4,
|
252 |
+
spatial_compression_ratio: int = 8,
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
self.layers_per_block = layers_per_block
|
256 |
+
|
257 |
+
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
|
258 |
+
self.mid_block = None
|
259 |
+
self.up_blocks = nn.ModuleList([])
|
260 |
+
|
261 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
262 |
+
|
263 |
+
# mid
|
264 |
+
self.mid_block = UNetMidBlockCausal3D(
|
265 |
+
in_channels=block_out_channels[-1],
|
266 |
+
resnet_eps=1e-6,
|
267 |
+
resnet_act_fn=act_fn,
|
268 |
+
output_scale_factor=1,
|
269 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
270 |
+
attention_head_dim=block_out_channels[-1],
|
271 |
+
resnet_groups=norm_num_groups,
|
272 |
+
temb_channels=temb_channels,
|
273 |
+
add_attention=mid_block_add_attention,
|
274 |
+
)
|
275 |
+
|
276 |
+
# up
|
277 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
278 |
+
output_channel = reversed_block_out_channels[0]
|
279 |
+
for i, up_block_type in enumerate(up_block_types):
|
280 |
+
prev_output_channel = output_channel
|
281 |
+
output_channel = reversed_block_out_channels[i]
|
282 |
+
is_final_block = i == len(block_out_channels) - 1
|
283 |
+
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
|
284 |
+
num_time_upsample_layers = int(np.log2(time_compression_ratio))
|
285 |
+
|
286 |
+
if time_compression_ratio == 4:
|
287 |
+
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
|
288 |
+
add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block)
|
289 |
+
else:
|
290 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
|
291 |
+
|
292 |
+
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
|
293 |
+
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
|
294 |
+
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
|
295 |
+
up_block = get_up_block3d(
|
296 |
+
up_block_type,
|
297 |
+
num_layers=self.layers_per_block + 1,
|
298 |
+
in_channels=prev_output_channel,
|
299 |
+
out_channels=output_channel,
|
300 |
+
prev_output_channel=None,
|
301 |
+
add_upsample=bool(add_spatial_upsample or add_time_upsample),
|
302 |
+
upsample_scale_factor=upsample_scale_factor,
|
303 |
+
resnet_eps=1e-6,
|
304 |
+
resnet_act_fn=act_fn,
|
305 |
+
resnet_groups=norm_num_groups,
|
306 |
+
attention_head_dim=output_channel,
|
307 |
+
temb_channels=temb_channels,
|
308 |
+
resnet_time_scale_shift=norm_type,
|
309 |
+
)
|
310 |
+
self.up_blocks.append(up_block)
|
311 |
+
prev_output_channel = output_channel
|
312 |
+
|
313 |
+
# out
|
314 |
+
if norm_type == "spatial":
|
315 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
316 |
+
else:
|
317 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
318 |
+
self.conv_act = nn.SiLU()
|
319 |
+
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
|
320 |
+
|
321 |
+
self.gradient_checkpointing = False
|
322 |
+
|
323 |
+
def forward(
|
324 |
+
self,
|
325 |
+
sample: torch.FloatTensor,
|
326 |
+
latent_embeds: Optional[torch.FloatTensor] = None,
|
327 |
+
) -> torch.FloatTensor:
|
328 |
+
r"""The forward method of the `DecoderCausal3D` class."""
|
329 |
+
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions."
|
330 |
+
|
331 |
+
sample = self.conv_in(sample)
|
332 |
+
|
333 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
334 |
+
if self.training and self.gradient_checkpointing:
|
335 |
+
|
336 |
+
def create_custom_forward(module):
|
337 |
+
def custom_forward(*inputs):
|
338 |
+
return module(*inputs)
|
339 |
+
|
340 |
+
return custom_forward
|
341 |
+
|
342 |
+
if is_torch_version(">=", "1.11.0"):
|
343 |
+
# middle
|
344 |
+
sample = torch.utils.checkpoint.checkpoint(
|
345 |
+
create_custom_forward(self.mid_block),
|
346 |
+
sample,
|
347 |
+
latent_embeds,
|
348 |
+
use_reentrant=False,
|
349 |
+
)
|
350 |
+
sample = sample.to(upscale_dtype)
|
351 |
+
|
352 |
+
# up
|
353 |
+
for up_block in self.up_blocks:
|
354 |
+
sample = torch.utils.checkpoint.checkpoint(
|
355 |
+
create_custom_forward(up_block),
|
356 |
+
sample,
|
357 |
+
latent_embeds,
|
358 |
+
use_reentrant=False,
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
# middle
|
362 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, latent_embeds)
|
363 |
+
sample = sample.to(upscale_dtype)
|
364 |
+
|
365 |
+
# up
|
366 |
+
for up_block in self.up_blocks:
|
367 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
368 |
+
else:
|
369 |
+
# middle
|
370 |
+
sample = self.mid_block(sample, latent_embeds)
|
371 |
+
sample = sample.to(upscale_dtype)
|
372 |
+
|
373 |
+
# up
|
374 |
+
for up_block in self.up_blocks:
|
375 |
+
sample = up_block(sample, latent_embeds)
|
376 |
+
|
377 |
+
# post-process
|
378 |
+
if latent_embeds is None:
|
379 |
+
sample = self.conv_norm_out(sample)
|
380 |
+
else:
|
381 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
382 |
+
sample = self.conv_act(sample)
|
383 |
+
sample = self.conv_out(sample)
|
384 |
+
|
385 |
+
return sample
|
386 |
+
|
387 |
+
|
388 |
+
class DiagonalGaussianDistribution(object):
|
389 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
390 |
+
if parameters.ndim == 3:
|
391 |
+
dim = 2 # (B, L, C)
|
392 |
+
elif parameters.ndim == 5 or parameters.ndim == 4:
|
393 |
+
dim = 1 # (B, C, T, H ,W) / (B, C, H, W)
|
394 |
+
else:
|
395 |
+
raise NotImplementedError
|
396 |
+
self.parameters = parameters
|
397 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
|
398 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
399 |
+
self.deterministic = deterministic
|
400 |
+
self.std = torch.exp(0.5 * self.logvar)
|
401 |
+
self.var = torch.exp(self.logvar)
|
402 |
+
if self.deterministic:
|
403 |
+
self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device, dtype=self.parameters.dtype)
|
404 |
+
|
405 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
|
406 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
407 |
+
sample = randn_tensor(
|
408 |
+
self.mean.shape,
|
409 |
+
generator=generator,
|
410 |
+
device=self.parameters.device,
|
411 |
+
dtype=self.parameters.dtype,
|
412 |
+
)
|
413 |
+
x = self.mean + self.std * sample
|
414 |
+
return x
|
415 |
+
|
416 |
+
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
417 |
+
if self.deterministic:
|
418 |
+
return torch.Tensor([0.0])
|
419 |
+
else:
|
420 |
+
reduce_dim = list(range(1, self.mean.ndim))
|
421 |
+
if other is None:
|
422 |
+
return 0.5 * torch.sum(
|
423 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
424 |
+
dim=reduce_dim,
|
425 |
+
)
|
426 |
+
else:
|
427 |
+
return 0.5 * torch.sum(
|
428 |
+
torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
|
429 |
+
dim=reduce_dim,
|
430 |
+
)
|
431 |
+
|
432 |
+
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
433 |
+
if self.deterministic:
|
434 |
+
return torch.Tensor([0.0])
|
435 |
+
logtwopi = np.log(2.0 * np.pi)
|
436 |
+
return 0.5 * torch.sum(
|
437 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
438 |
+
dim=dims,
|
439 |
+
)
|
440 |
+
|
441 |
+
def mode(self) -> torch.Tensor:
|
442 |
+
return self.mean
|