suyeon0809 commited on
Commit
f5e29c7
·
verified ·
1 Parent(s): dfb613f

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. logs/events.out.tfevents.1715596609.e6ce83ce3790.2044.0 +3 -0
  2. model/model0513/README.md +202 -0
  3. model/model0513/adapter_config.json +28 -0
  4. model/model0513/adapter_model.safetensors +3 -0
  5. outputs/checkpoint-1000/README.md +202 -0
  6. outputs/checkpoint-1000/adapter_config.json +28 -0
  7. outputs/checkpoint-1000/adapter_model.safetensors +3 -0
  8. outputs/checkpoint-1000/optimizer.pt +3 -0
  9. outputs/checkpoint-1000/rng_state.pth +3 -0
  10. outputs/checkpoint-1000/scheduler.pt +3 -0
  11. outputs/checkpoint-1000/trainer_state.json +383 -0
  12. outputs/checkpoint-1000/training_args.bin +3 -0
  13. outputs/checkpoint-1500/README.md +202 -0
  14. outputs/checkpoint-1500/adapter_config.json +28 -0
  15. outputs/checkpoint-1500/adapter_model.safetensors +3 -0
  16. outputs/checkpoint-1500/optimizer.pt +3 -0
  17. outputs/checkpoint-1500/rng_state.pth +3 -0
  18. outputs/checkpoint-1500/scheduler.pt +3 -0
  19. outputs/checkpoint-1500/trainer_state.json +558 -0
  20. outputs/checkpoint-1500/training_args.bin +3 -0
  21. outputs/checkpoint-2000/README.md +202 -0
  22. outputs/checkpoint-2000/adapter_config.json +28 -0
  23. outputs/checkpoint-2000/adapter_model.safetensors +3 -0
  24. outputs/checkpoint-2000/optimizer.pt +3 -0
  25. outputs/checkpoint-2000/rng_state.pth +3 -0
  26. outputs/checkpoint-2000/scheduler.pt +3 -0
  27. outputs/checkpoint-2000/trainer_state.json +733 -0
  28. outputs/checkpoint-2000/training_args.bin +3 -0
  29. outputs/checkpoint-2500/README.md +202 -0
  30. outputs/checkpoint-2500/adapter_config.json +28 -0
  31. outputs/checkpoint-2500/adapter_model.safetensors +3 -0
  32. outputs/checkpoint-2500/optimizer.pt +3 -0
  33. outputs/checkpoint-2500/rng_state.pth +3 -0
  34. outputs/checkpoint-2500/scheduler.pt +3 -0
  35. outputs/checkpoint-2500/trainer_state.json +908 -0
  36. outputs/checkpoint-2500/training_args.bin +3 -0
  37. outputs/checkpoint-3000/README.md +202 -0
  38. outputs/checkpoint-3000/adapter_config.json +28 -0
  39. outputs/checkpoint-3000/adapter_model.safetensors +3 -0
  40. outputs/checkpoint-3000/optimizer.pt +3 -0
  41. outputs/checkpoint-3000/rng_state.pth +3 -0
  42. outputs/checkpoint-3000/scheduler.pt +3 -0
  43. outputs/checkpoint-3000/trainer_state.json +1083 -0
  44. outputs/checkpoint-3000/training_args.bin +3 -0
  45. outputs/checkpoint-500/README.md +202 -0
  46. outputs/checkpoint-500/adapter_config.json +28 -0
  47. outputs/checkpoint-500/adapter_model.safetensors +3 -0
  48. outputs/checkpoint-500/optimizer.pt +3 -0
  49. outputs/checkpoint-500/rng_state.pth +3 -0
  50. outputs/checkpoint-500/scheduler.pt +3 -0
logs/events.out.tfevents.1715596609.e6ce83ce3790.2044.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fdc6c821af33f67499443497331aecd3db4fda29618e5a5b8a350a647a21b9e
3
+ size 37357
model/model0513/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: beomi/KoAlpaca-Polyglot-5.8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
model/model0513/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "beomi/KoAlpaca-Polyglot-5.8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
model/model0513/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db593c2140cd43e4033c707b6e9a19433a0a2d1df3c914c8746516b23ad7af7f
3
+ size 14688200
outputs/checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: beomi/KoAlpaca-Polyglot-5.8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
outputs/checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "beomi/KoAlpaca-Polyglot-5.8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
outputs/checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9969dc80228b8b5d1af7cfc2012dbe5f054553fa7989fc4764c229292aab679e
3
+ size 14688200
outputs/checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:677214d3b7e4355027b9c08cb6c24858698ae25aaf45cbf2571136fdc931c523
3
+ size 29407610
outputs/checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24e6982876cf3143ba3011c62f4df908d8828997018ef89961b16ed23a2c106f
3
+ size 14244
outputs/checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6059e9c2fda3a593b36dbce4b103939bd72cee3db503aff41bf764fa9eaaa4cc
3
+ size 1064
outputs/checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8598452278589854,
5
+ "eval_steps": 500,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.017196904557179708,
13
+ "grad_norm": 1.7918040752410889,
14
+ "learning_rate": 9.933333333333334e-05,
15
+ "loss": 4.1644,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.034393809114359415,
20
+ "grad_norm": 1.8427823781967163,
21
+ "learning_rate": 9.866666666666668e-05,
22
+ "loss": 2.7767,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.051590713671539126,
27
+ "grad_norm": 1.2594960927963257,
28
+ "learning_rate": 9.8e-05,
29
+ "loss": 2.3015,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.06878761822871883,
34
+ "grad_norm": 1.5001391172409058,
35
+ "learning_rate": 9.733333333333335e-05,
36
+ "loss": 1.9096,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.08598452278589853,
41
+ "grad_norm": 1.4705618619918823,
42
+ "learning_rate": 9.666666666666667e-05,
43
+ "loss": 1.8592,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.10318142734307825,
48
+ "grad_norm": 1.678035020828247,
49
+ "learning_rate": 9.6e-05,
50
+ "loss": 1.7618,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.12037833190025796,
55
+ "grad_norm": 1.9186018705368042,
56
+ "learning_rate": 9.533333333333334e-05,
57
+ "loss": 1.612,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.13757523645743766,
62
+ "grad_norm": 2.0859336853027344,
63
+ "learning_rate": 9.466666666666667e-05,
64
+ "loss": 1.5829,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.15477214101461736,
69
+ "grad_norm": 2.2418243885040283,
70
+ "learning_rate": 9.4e-05,
71
+ "loss": 1.6236,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.17196904557179707,
76
+ "grad_norm": 2.3599705696105957,
77
+ "learning_rate": 9.333333333333334e-05,
78
+ "loss": 1.5204,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.18916595012897677,
83
+ "grad_norm": 2.346595525741577,
84
+ "learning_rate": 9.266666666666666e-05,
85
+ "loss": 1.4757,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.2063628546861565,
90
+ "grad_norm": 2.483389139175415,
91
+ "learning_rate": 9.200000000000001e-05,
92
+ "loss": 1.4369,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.2235597592433362,
97
+ "grad_norm": 2.320002555847168,
98
+ "learning_rate": 9.133333333333334e-05,
99
+ "loss": 1.391,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.2407566638005159,
104
+ "grad_norm": 3.222677230834961,
105
+ "learning_rate": 9.066666666666667e-05,
106
+ "loss": 1.5182,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.2579535683576956,
111
+ "grad_norm": 2.7384626865386963,
112
+ "learning_rate": 9e-05,
113
+ "loss": 1.1515,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.2751504729148753,
118
+ "grad_norm": 3.28292179107666,
119
+ "learning_rate": 8.933333333333334e-05,
120
+ "loss": 1.3981,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.292347377472055,
125
+ "grad_norm": 2.6418075561523438,
126
+ "learning_rate": 8.866666666666668e-05,
127
+ "loss": 1.448,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.30954428202923473,
132
+ "grad_norm": 2.810594081878662,
133
+ "learning_rate": 8.800000000000001e-05,
134
+ "loss": 1.1637,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.32674118658641443,
139
+ "grad_norm": 2.897336006164551,
140
+ "learning_rate": 8.733333333333333e-05,
141
+ "loss": 1.3715,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.34393809114359414,
146
+ "grad_norm": 3.5841643810272217,
147
+ "learning_rate": 8.666666666666667e-05,
148
+ "loss": 1.3044,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.36113499570077384,
153
+ "grad_norm": 3.0653135776519775,
154
+ "learning_rate": 8.6e-05,
155
+ "loss": 1.1584,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.37833190025795355,
160
+ "grad_norm": 3.761073112487793,
161
+ "learning_rate": 8.533333333333334e-05,
162
+ "loss": 1.2224,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.39552880481513325,
167
+ "grad_norm": 3.481926441192627,
168
+ "learning_rate": 8.466666666666667e-05,
169
+ "loss": 1.1676,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.412725709372313,
174
+ "grad_norm": 4.327862739562988,
175
+ "learning_rate": 8.4e-05,
176
+ "loss": 1.0294,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.4299226139294927,
181
+ "grad_norm": 4.155755996704102,
182
+ "learning_rate": 8.333333333333334e-05,
183
+ "loss": 1.2208,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.4471195184866724,
188
+ "grad_norm": 3.50590443611145,
189
+ "learning_rate": 8.266666666666667e-05,
190
+ "loss": 1.0706,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.4643164230438521,
195
+ "grad_norm": 4.00937557220459,
196
+ "learning_rate": 8.2e-05,
197
+ "loss": 1.0627,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.4815133276010318,
202
+ "grad_norm": 4.476954460144043,
203
+ "learning_rate": 8.133333333333334e-05,
204
+ "loss": 1.0246,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.49871023215821153,
209
+ "grad_norm": 4.1531476974487305,
210
+ "learning_rate": 8.066666666666667e-05,
211
+ "loss": 1.2647,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.5159071367153912,
216
+ "grad_norm": 3.9548251628875732,
217
+ "learning_rate": 8e-05,
218
+ "loss": 0.9846,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.5331040412725709,
223
+ "grad_norm": 4.803060531616211,
224
+ "learning_rate": 7.933333333333334e-05,
225
+ "loss": 0.9058,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.5503009458297506,
230
+ "grad_norm": 4.116948127746582,
231
+ "learning_rate": 7.866666666666666e-05,
232
+ "loss": 1.0455,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.5674978503869303,
237
+ "grad_norm": 3.5376293659210205,
238
+ "learning_rate": 7.800000000000001e-05,
239
+ "loss": 1.0034,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.58469475494411,
244
+ "grad_norm": 5.122928619384766,
245
+ "learning_rate": 7.733333333333333e-05,
246
+ "loss": 0.9539,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.6018916595012898,
251
+ "grad_norm": 4.396443843841553,
252
+ "learning_rate": 7.666666666666667e-05,
253
+ "loss": 1.0106,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.6190885640584695,
258
+ "grad_norm": 5.2031989097595215,
259
+ "learning_rate": 7.6e-05,
260
+ "loss": 1.1025,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.6362854686156492,
265
+ "grad_norm": 4.93772554397583,
266
+ "learning_rate": 7.533333333333334e-05,
267
+ "loss": 1.0214,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.6534823731728289,
272
+ "grad_norm": 3.970015048980713,
273
+ "learning_rate": 7.466666666666667e-05,
274
+ "loss": 0.8724,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.6706792777300086,
279
+ "grad_norm": 4.316510200500488,
280
+ "learning_rate": 7.4e-05,
281
+ "loss": 0.9296,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.6878761822871883,
286
+ "grad_norm": 5.551044464111328,
287
+ "learning_rate": 7.333333333333333e-05,
288
+ "loss": 0.9748,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.705073086844368,
293
+ "grad_norm": 5.091616630554199,
294
+ "learning_rate": 7.266666666666667e-05,
295
+ "loss": 0.9048,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.7222699914015477,
300
+ "grad_norm": 5.082363128662109,
301
+ "learning_rate": 7.2e-05,
302
+ "loss": 0.9605,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.7394668959587274,
307
+ "grad_norm": 4.591577053070068,
308
+ "learning_rate": 7.133333333333334e-05,
309
+ "loss": 0.803,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.7566638005159071,
314
+ "grad_norm": 3.200929880142212,
315
+ "learning_rate": 7.066666666666667e-05,
316
+ "loss": 0.8525,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.7738607050730868,
321
+ "grad_norm": 5.56381368637085,
322
+ "learning_rate": 7e-05,
323
+ "loss": 0.8088,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.7910576096302665,
328
+ "grad_norm": 4.371031761169434,
329
+ "learning_rate": 6.933333333333334e-05,
330
+ "loss": 0.811,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.8082545141874462,
335
+ "grad_norm": 5.641899585723877,
336
+ "learning_rate": 6.866666666666666e-05,
337
+ "loss": 0.8693,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.825451418744626,
342
+ "grad_norm": 5.0090436935424805,
343
+ "learning_rate": 6.800000000000001e-05,
344
+ "loss": 0.7813,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.8426483233018057,
349
+ "grad_norm": 7.000046730041504,
350
+ "learning_rate": 6.733333333333333e-05,
351
+ "loss": 0.8189,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.8598452278589854,
356
+ "grad_norm": 5.533496856689453,
357
+ "learning_rate": 6.666666666666667e-05,
358
+ "loss": 0.8019,
359
+ "step": 1000
360
+ }
361
+ ],
362
+ "logging_steps": 20,
363
+ "max_steps": 3000,
364
+ "num_input_tokens_seen": 0,
365
+ "num_train_epochs": 3,
366
+ "save_steps": 500,
367
+ "stateful_callbacks": {
368
+ "TrainerControl": {
369
+ "args": {
370
+ "should_epoch_stop": false,
371
+ "should_evaluate": false,
372
+ "should_log": false,
373
+ "should_save": true,
374
+ "should_training_stop": false
375
+ },
376
+ "attributes": {}
377
+ }
378
+ },
379
+ "total_flos": 5.032995769653658e+16,
380
+ "train_batch_size": 8,
381
+ "trial_name": null,
382
+ "trial_params": null
383
+ }
outputs/checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:171c89f8ecd1388fc79e0fbedd3775495c90abd0688b87c0090ac48cd2e89673
3
+ size 5048
outputs/checkpoint-1500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: beomi/KoAlpaca-Polyglot-5.8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
outputs/checkpoint-1500/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "beomi/KoAlpaca-Polyglot-5.8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
outputs/checkpoint-1500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29a4bf47701b02beb64e9f1bcda2a54f5a3f30d98aa4f06fc8e00eef754c1bf9
3
+ size 14688200
outputs/checkpoint-1500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49cca35c49ed496d40d84b0e3f29b557533d44b1a4bcae7758fc5161bf44f583
3
+ size 29407610
outputs/checkpoint-1500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9099a7d64aa04dab7dab41ebf3b6f2489e087b40d1e1d8a7e04f435a8063c0de
3
+ size 14244
outputs/checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a8d29792e469b6f760fa9178cf78d333450ccf71dfe26bcfa2231bc7242c219
3
+ size 1064
outputs/checkpoint-1500/trainer_state.json ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.2897678417884781,
5
+ "eval_steps": 500,
6
+ "global_step": 1500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.017196904557179708,
13
+ "grad_norm": 1.7918040752410889,
14
+ "learning_rate": 9.933333333333334e-05,
15
+ "loss": 4.1644,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.034393809114359415,
20
+ "grad_norm": 1.8427823781967163,
21
+ "learning_rate": 9.866666666666668e-05,
22
+ "loss": 2.7767,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.051590713671539126,
27
+ "grad_norm": 1.2594960927963257,
28
+ "learning_rate": 9.8e-05,
29
+ "loss": 2.3015,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.06878761822871883,
34
+ "grad_norm": 1.5001391172409058,
35
+ "learning_rate": 9.733333333333335e-05,
36
+ "loss": 1.9096,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.08598452278589853,
41
+ "grad_norm": 1.4705618619918823,
42
+ "learning_rate": 9.666666666666667e-05,
43
+ "loss": 1.8592,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.10318142734307825,
48
+ "grad_norm": 1.678035020828247,
49
+ "learning_rate": 9.6e-05,
50
+ "loss": 1.7618,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.12037833190025796,
55
+ "grad_norm": 1.9186018705368042,
56
+ "learning_rate": 9.533333333333334e-05,
57
+ "loss": 1.612,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.13757523645743766,
62
+ "grad_norm": 2.0859336853027344,
63
+ "learning_rate": 9.466666666666667e-05,
64
+ "loss": 1.5829,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.15477214101461736,
69
+ "grad_norm": 2.2418243885040283,
70
+ "learning_rate": 9.4e-05,
71
+ "loss": 1.6236,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.17196904557179707,
76
+ "grad_norm": 2.3599705696105957,
77
+ "learning_rate": 9.333333333333334e-05,
78
+ "loss": 1.5204,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.18916595012897677,
83
+ "grad_norm": 2.346595525741577,
84
+ "learning_rate": 9.266666666666666e-05,
85
+ "loss": 1.4757,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.2063628546861565,
90
+ "grad_norm": 2.483389139175415,
91
+ "learning_rate": 9.200000000000001e-05,
92
+ "loss": 1.4369,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.2235597592433362,
97
+ "grad_norm": 2.320002555847168,
98
+ "learning_rate": 9.133333333333334e-05,
99
+ "loss": 1.391,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.2407566638005159,
104
+ "grad_norm": 3.222677230834961,
105
+ "learning_rate": 9.066666666666667e-05,
106
+ "loss": 1.5182,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.2579535683576956,
111
+ "grad_norm": 2.7384626865386963,
112
+ "learning_rate": 9e-05,
113
+ "loss": 1.1515,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.2751504729148753,
118
+ "grad_norm": 3.28292179107666,
119
+ "learning_rate": 8.933333333333334e-05,
120
+ "loss": 1.3981,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.292347377472055,
125
+ "grad_norm": 2.6418075561523438,
126
+ "learning_rate": 8.866666666666668e-05,
127
+ "loss": 1.448,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.30954428202923473,
132
+ "grad_norm": 2.810594081878662,
133
+ "learning_rate": 8.800000000000001e-05,
134
+ "loss": 1.1637,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.32674118658641443,
139
+ "grad_norm": 2.897336006164551,
140
+ "learning_rate": 8.733333333333333e-05,
141
+ "loss": 1.3715,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.34393809114359414,
146
+ "grad_norm": 3.5841643810272217,
147
+ "learning_rate": 8.666666666666667e-05,
148
+ "loss": 1.3044,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.36113499570077384,
153
+ "grad_norm": 3.0653135776519775,
154
+ "learning_rate": 8.6e-05,
155
+ "loss": 1.1584,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.37833190025795355,
160
+ "grad_norm": 3.761073112487793,
161
+ "learning_rate": 8.533333333333334e-05,
162
+ "loss": 1.2224,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.39552880481513325,
167
+ "grad_norm": 3.481926441192627,
168
+ "learning_rate": 8.466666666666667e-05,
169
+ "loss": 1.1676,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.412725709372313,
174
+ "grad_norm": 4.327862739562988,
175
+ "learning_rate": 8.4e-05,
176
+ "loss": 1.0294,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.4299226139294927,
181
+ "grad_norm": 4.155755996704102,
182
+ "learning_rate": 8.333333333333334e-05,
183
+ "loss": 1.2208,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.4471195184866724,
188
+ "grad_norm": 3.50590443611145,
189
+ "learning_rate": 8.266666666666667e-05,
190
+ "loss": 1.0706,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.4643164230438521,
195
+ "grad_norm": 4.00937557220459,
196
+ "learning_rate": 8.2e-05,
197
+ "loss": 1.0627,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.4815133276010318,
202
+ "grad_norm": 4.476954460144043,
203
+ "learning_rate": 8.133333333333334e-05,
204
+ "loss": 1.0246,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.49871023215821153,
209
+ "grad_norm": 4.1531476974487305,
210
+ "learning_rate": 8.066666666666667e-05,
211
+ "loss": 1.2647,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.5159071367153912,
216
+ "grad_norm": 3.9548251628875732,
217
+ "learning_rate": 8e-05,
218
+ "loss": 0.9846,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.5331040412725709,
223
+ "grad_norm": 4.803060531616211,
224
+ "learning_rate": 7.933333333333334e-05,
225
+ "loss": 0.9058,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.5503009458297506,
230
+ "grad_norm": 4.116948127746582,
231
+ "learning_rate": 7.866666666666666e-05,
232
+ "loss": 1.0455,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.5674978503869303,
237
+ "grad_norm": 3.5376293659210205,
238
+ "learning_rate": 7.800000000000001e-05,
239
+ "loss": 1.0034,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.58469475494411,
244
+ "grad_norm": 5.122928619384766,
245
+ "learning_rate": 7.733333333333333e-05,
246
+ "loss": 0.9539,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.6018916595012898,
251
+ "grad_norm": 4.396443843841553,
252
+ "learning_rate": 7.666666666666667e-05,
253
+ "loss": 1.0106,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.6190885640584695,
258
+ "grad_norm": 5.2031989097595215,
259
+ "learning_rate": 7.6e-05,
260
+ "loss": 1.1025,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.6362854686156492,
265
+ "grad_norm": 4.93772554397583,
266
+ "learning_rate": 7.533333333333334e-05,
267
+ "loss": 1.0214,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.6534823731728289,
272
+ "grad_norm": 3.970015048980713,
273
+ "learning_rate": 7.466666666666667e-05,
274
+ "loss": 0.8724,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.6706792777300086,
279
+ "grad_norm": 4.316510200500488,
280
+ "learning_rate": 7.4e-05,
281
+ "loss": 0.9296,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.6878761822871883,
286
+ "grad_norm": 5.551044464111328,
287
+ "learning_rate": 7.333333333333333e-05,
288
+ "loss": 0.9748,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.705073086844368,
293
+ "grad_norm": 5.091616630554199,
294
+ "learning_rate": 7.266666666666667e-05,
295
+ "loss": 0.9048,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.7222699914015477,
300
+ "grad_norm": 5.082363128662109,
301
+ "learning_rate": 7.2e-05,
302
+ "loss": 0.9605,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.7394668959587274,
307
+ "grad_norm": 4.591577053070068,
308
+ "learning_rate": 7.133333333333334e-05,
309
+ "loss": 0.803,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.7566638005159071,
314
+ "grad_norm": 3.200929880142212,
315
+ "learning_rate": 7.066666666666667e-05,
316
+ "loss": 0.8525,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.7738607050730868,
321
+ "grad_norm": 5.56381368637085,
322
+ "learning_rate": 7e-05,
323
+ "loss": 0.8088,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.7910576096302665,
328
+ "grad_norm": 4.371031761169434,
329
+ "learning_rate": 6.933333333333334e-05,
330
+ "loss": 0.811,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.8082545141874462,
335
+ "grad_norm": 5.641899585723877,
336
+ "learning_rate": 6.866666666666666e-05,
337
+ "loss": 0.8693,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.825451418744626,
342
+ "grad_norm": 5.0090436935424805,
343
+ "learning_rate": 6.800000000000001e-05,
344
+ "loss": 0.7813,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.8426483233018057,
349
+ "grad_norm": 7.000046730041504,
350
+ "learning_rate": 6.733333333333333e-05,
351
+ "loss": 0.8189,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.8598452278589854,
356
+ "grad_norm": 5.533496856689453,
357
+ "learning_rate": 6.666666666666667e-05,
358
+ "loss": 0.8019,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 0.8770421324161651,
363
+ "grad_norm": 5.878244400024414,
364
+ "learning_rate": 6.6e-05,
365
+ "loss": 0.7308,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 0.8942390369733448,
370
+ "grad_norm": 6.347448825836182,
371
+ "learning_rate": 6.533333333333334e-05,
372
+ "loss": 0.7523,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 0.9114359415305245,
377
+ "grad_norm": 5.9593634605407715,
378
+ "learning_rate": 6.466666666666666e-05,
379
+ "loss": 0.7736,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 0.9286328460877042,
384
+ "grad_norm": 5.173058986663818,
385
+ "learning_rate": 6.400000000000001e-05,
386
+ "loss": 0.803,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 0.945829750644884,
391
+ "grad_norm": 6.1787109375,
392
+ "learning_rate": 6.333333333333333e-05,
393
+ "loss": 0.7256,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 0.9630266552020637,
398
+ "grad_norm": 5.627285957336426,
399
+ "learning_rate": 6.266666666666667e-05,
400
+ "loss": 0.7492,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 0.9802235597592434,
405
+ "grad_norm": 5.914905071258545,
406
+ "learning_rate": 6.2e-05,
407
+ "loss": 0.6695,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 0.9974204643164231,
412
+ "grad_norm": 4.068761825561523,
413
+ "learning_rate": 6.133333333333334e-05,
414
+ "loss": 0.6607,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 1.0146173688736027,
419
+ "grad_norm": 5.116635322570801,
420
+ "learning_rate": 6.066666666666667e-05,
421
+ "loss": 0.5824,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 1.0318142734307825,
426
+ "grad_norm": 6.764676570892334,
427
+ "learning_rate": 6e-05,
428
+ "loss": 0.6238,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 1.049011177987962,
433
+ "grad_norm": 3.931511640548706,
434
+ "learning_rate": 5.9333333333333343e-05,
435
+ "loss": 0.5651,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 1.0662080825451419,
440
+ "grad_norm": 9.559135437011719,
441
+ "learning_rate": 5.866666666666667e-05,
442
+ "loss": 0.5615,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 1.0834049871023215,
447
+ "grad_norm": 8.055045127868652,
448
+ "learning_rate": 5.8e-05,
449
+ "loss": 0.5606,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 1.1006018916595013,
454
+ "grad_norm": 6.782190322875977,
455
+ "learning_rate": 5.7333333333333336e-05,
456
+ "loss": 0.5776,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 1.117798796216681,
461
+ "grad_norm": 5.142735004425049,
462
+ "learning_rate": 5.666666666666667e-05,
463
+ "loss": 0.5509,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 1.1349957007738607,
468
+ "grad_norm": 6.010578155517578,
469
+ "learning_rate": 5.6000000000000006e-05,
470
+ "loss": 0.5701,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 1.1521926053310405,
475
+ "grad_norm": 5.171779155731201,
476
+ "learning_rate": 5.5333333333333334e-05,
477
+ "loss": 0.5485,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 1.16938950988822,
482
+ "grad_norm": 5.51332426071167,
483
+ "learning_rate": 5.466666666666666e-05,
484
+ "loss": 0.5515,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 1.1865864144454,
489
+ "grad_norm": 6.2720947265625,
490
+ "learning_rate": 5.4000000000000005e-05,
491
+ "loss": 0.5503,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 1.2037833190025795,
496
+ "grad_norm": 6.498877048492432,
497
+ "learning_rate": 5.333333333333333e-05,
498
+ "loss": 0.525,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 1.2209802235597593,
503
+ "grad_norm": 5.129275321960449,
504
+ "learning_rate": 5.266666666666666e-05,
505
+ "loss": 0.4942,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 1.238177128116939,
510
+ "grad_norm": 4.145976543426514,
511
+ "learning_rate": 5.2000000000000004e-05,
512
+ "loss": 0.4961,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 1.2553740326741187,
517
+ "grad_norm": 6.678504467010498,
518
+ "learning_rate": 5.133333333333333e-05,
519
+ "loss": 0.5032,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 1.2725709372312983,
524
+ "grad_norm": 6.846457481384277,
525
+ "learning_rate": 5.0666666666666674e-05,
526
+ "loss": 0.5322,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 1.2897678417884781,
531
+ "grad_norm": 7.58906888961792,
532
+ "learning_rate": 5e-05,
533
+ "loss": 0.477,
534
+ "step": 1500
535
+ }
536
+ ],
537
+ "logging_steps": 20,
538
+ "max_steps": 3000,
539
+ "num_input_tokens_seen": 0,
540
+ "num_train_epochs": 3,
541
+ "save_steps": 500,
542
+ "stateful_callbacks": {
543
+ "TrainerControl": {
544
+ "args": {
545
+ "should_epoch_stop": false,
546
+ "should_evaluate": false,
547
+ "should_log": false,
548
+ "should_save": true,
549
+ "should_training_stop": false
550
+ },
551
+ "attributes": {}
552
+ }
553
+ },
554
+ "total_flos": 7.5643202693333e+16,
555
+ "train_batch_size": 8,
556
+ "trial_name": null,
557
+ "trial_params": null
558
+ }
outputs/checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:171c89f8ecd1388fc79e0fbedd3775495c90abd0688b87c0090ac48cd2e89673
3
+ size 5048
outputs/checkpoint-2000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: beomi/KoAlpaca-Polyglot-5.8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
outputs/checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "beomi/KoAlpaca-Polyglot-5.8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
outputs/checkpoint-2000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:588b9a14baa0400d0166cc28b9ba031da6d5b0669e4d55e3a929389a64015bf3
3
+ size 14688200
outputs/checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5394c189196c89df39eb2f8ef432b002b6cbc1d7918fdd45f567f0c40e947692
3
+ size 29407610
outputs/checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d373a5db5ca364e513a20a5d21da42df8c71a4e15e43b0df6d76ef03a7baf1e0
3
+ size 14244
outputs/checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:340b1ce02209268feb9f9a5d9c012d838d8156c8e947b363b4610ed8e2619af9
3
+ size 1064
outputs/checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.7196904557179709,
5
+ "eval_steps": 500,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.017196904557179708,
13
+ "grad_norm": 1.7918040752410889,
14
+ "learning_rate": 9.933333333333334e-05,
15
+ "loss": 4.1644,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.034393809114359415,
20
+ "grad_norm": 1.8427823781967163,
21
+ "learning_rate": 9.866666666666668e-05,
22
+ "loss": 2.7767,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.051590713671539126,
27
+ "grad_norm": 1.2594960927963257,
28
+ "learning_rate": 9.8e-05,
29
+ "loss": 2.3015,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.06878761822871883,
34
+ "grad_norm": 1.5001391172409058,
35
+ "learning_rate": 9.733333333333335e-05,
36
+ "loss": 1.9096,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.08598452278589853,
41
+ "grad_norm": 1.4705618619918823,
42
+ "learning_rate": 9.666666666666667e-05,
43
+ "loss": 1.8592,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.10318142734307825,
48
+ "grad_norm": 1.678035020828247,
49
+ "learning_rate": 9.6e-05,
50
+ "loss": 1.7618,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.12037833190025796,
55
+ "grad_norm": 1.9186018705368042,
56
+ "learning_rate": 9.533333333333334e-05,
57
+ "loss": 1.612,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.13757523645743766,
62
+ "grad_norm": 2.0859336853027344,
63
+ "learning_rate": 9.466666666666667e-05,
64
+ "loss": 1.5829,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.15477214101461736,
69
+ "grad_norm": 2.2418243885040283,
70
+ "learning_rate": 9.4e-05,
71
+ "loss": 1.6236,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.17196904557179707,
76
+ "grad_norm": 2.3599705696105957,
77
+ "learning_rate": 9.333333333333334e-05,
78
+ "loss": 1.5204,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.18916595012897677,
83
+ "grad_norm": 2.346595525741577,
84
+ "learning_rate": 9.266666666666666e-05,
85
+ "loss": 1.4757,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.2063628546861565,
90
+ "grad_norm": 2.483389139175415,
91
+ "learning_rate": 9.200000000000001e-05,
92
+ "loss": 1.4369,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.2235597592433362,
97
+ "grad_norm": 2.320002555847168,
98
+ "learning_rate": 9.133333333333334e-05,
99
+ "loss": 1.391,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.2407566638005159,
104
+ "grad_norm": 3.222677230834961,
105
+ "learning_rate": 9.066666666666667e-05,
106
+ "loss": 1.5182,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.2579535683576956,
111
+ "grad_norm": 2.7384626865386963,
112
+ "learning_rate": 9e-05,
113
+ "loss": 1.1515,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.2751504729148753,
118
+ "grad_norm": 3.28292179107666,
119
+ "learning_rate": 8.933333333333334e-05,
120
+ "loss": 1.3981,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.292347377472055,
125
+ "grad_norm": 2.6418075561523438,
126
+ "learning_rate": 8.866666666666668e-05,
127
+ "loss": 1.448,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.30954428202923473,
132
+ "grad_norm": 2.810594081878662,
133
+ "learning_rate": 8.800000000000001e-05,
134
+ "loss": 1.1637,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.32674118658641443,
139
+ "grad_norm": 2.897336006164551,
140
+ "learning_rate": 8.733333333333333e-05,
141
+ "loss": 1.3715,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.34393809114359414,
146
+ "grad_norm": 3.5841643810272217,
147
+ "learning_rate": 8.666666666666667e-05,
148
+ "loss": 1.3044,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.36113499570077384,
153
+ "grad_norm": 3.0653135776519775,
154
+ "learning_rate": 8.6e-05,
155
+ "loss": 1.1584,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.37833190025795355,
160
+ "grad_norm": 3.761073112487793,
161
+ "learning_rate": 8.533333333333334e-05,
162
+ "loss": 1.2224,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.39552880481513325,
167
+ "grad_norm": 3.481926441192627,
168
+ "learning_rate": 8.466666666666667e-05,
169
+ "loss": 1.1676,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.412725709372313,
174
+ "grad_norm": 4.327862739562988,
175
+ "learning_rate": 8.4e-05,
176
+ "loss": 1.0294,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.4299226139294927,
181
+ "grad_norm": 4.155755996704102,
182
+ "learning_rate": 8.333333333333334e-05,
183
+ "loss": 1.2208,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.4471195184866724,
188
+ "grad_norm": 3.50590443611145,
189
+ "learning_rate": 8.266666666666667e-05,
190
+ "loss": 1.0706,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.4643164230438521,
195
+ "grad_norm": 4.00937557220459,
196
+ "learning_rate": 8.2e-05,
197
+ "loss": 1.0627,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.4815133276010318,
202
+ "grad_norm": 4.476954460144043,
203
+ "learning_rate": 8.133333333333334e-05,
204
+ "loss": 1.0246,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.49871023215821153,
209
+ "grad_norm": 4.1531476974487305,
210
+ "learning_rate": 8.066666666666667e-05,
211
+ "loss": 1.2647,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.5159071367153912,
216
+ "grad_norm": 3.9548251628875732,
217
+ "learning_rate": 8e-05,
218
+ "loss": 0.9846,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.5331040412725709,
223
+ "grad_norm": 4.803060531616211,
224
+ "learning_rate": 7.933333333333334e-05,
225
+ "loss": 0.9058,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.5503009458297506,
230
+ "grad_norm": 4.116948127746582,
231
+ "learning_rate": 7.866666666666666e-05,
232
+ "loss": 1.0455,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.5674978503869303,
237
+ "grad_norm": 3.5376293659210205,
238
+ "learning_rate": 7.800000000000001e-05,
239
+ "loss": 1.0034,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.58469475494411,
244
+ "grad_norm": 5.122928619384766,
245
+ "learning_rate": 7.733333333333333e-05,
246
+ "loss": 0.9539,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.6018916595012898,
251
+ "grad_norm": 4.396443843841553,
252
+ "learning_rate": 7.666666666666667e-05,
253
+ "loss": 1.0106,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.6190885640584695,
258
+ "grad_norm": 5.2031989097595215,
259
+ "learning_rate": 7.6e-05,
260
+ "loss": 1.1025,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.6362854686156492,
265
+ "grad_norm": 4.93772554397583,
266
+ "learning_rate": 7.533333333333334e-05,
267
+ "loss": 1.0214,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.6534823731728289,
272
+ "grad_norm": 3.970015048980713,
273
+ "learning_rate": 7.466666666666667e-05,
274
+ "loss": 0.8724,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.6706792777300086,
279
+ "grad_norm": 4.316510200500488,
280
+ "learning_rate": 7.4e-05,
281
+ "loss": 0.9296,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.6878761822871883,
286
+ "grad_norm": 5.551044464111328,
287
+ "learning_rate": 7.333333333333333e-05,
288
+ "loss": 0.9748,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.705073086844368,
293
+ "grad_norm": 5.091616630554199,
294
+ "learning_rate": 7.266666666666667e-05,
295
+ "loss": 0.9048,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.7222699914015477,
300
+ "grad_norm": 5.082363128662109,
301
+ "learning_rate": 7.2e-05,
302
+ "loss": 0.9605,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.7394668959587274,
307
+ "grad_norm": 4.591577053070068,
308
+ "learning_rate": 7.133333333333334e-05,
309
+ "loss": 0.803,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.7566638005159071,
314
+ "grad_norm": 3.200929880142212,
315
+ "learning_rate": 7.066666666666667e-05,
316
+ "loss": 0.8525,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.7738607050730868,
321
+ "grad_norm": 5.56381368637085,
322
+ "learning_rate": 7e-05,
323
+ "loss": 0.8088,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.7910576096302665,
328
+ "grad_norm": 4.371031761169434,
329
+ "learning_rate": 6.933333333333334e-05,
330
+ "loss": 0.811,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.8082545141874462,
335
+ "grad_norm": 5.641899585723877,
336
+ "learning_rate": 6.866666666666666e-05,
337
+ "loss": 0.8693,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.825451418744626,
342
+ "grad_norm": 5.0090436935424805,
343
+ "learning_rate": 6.800000000000001e-05,
344
+ "loss": 0.7813,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.8426483233018057,
349
+ "grad_norm": 7.000046730041504,
350
+ "learning_rate": 6.733333333333333e-05,
351
+ "loss": 0.8189,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.8598452278589854,
356
+ "grad_norm": 5.533496856689453,
357
+ "learning_rate": 6.666666666666667e-05,
358
+ "loss": 0.8019,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 0.8770421324161651,
363
+ "grad_norm": 5.878244400024414,
364
+ "learning_rate": 6.6e-05,
365
+ "loss": 0.7308,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 0.8942390369733448,
370
+ "grad_norm": 6.347448825836182,
371
+ "learning_rate": 6.533333333333334e-05,
372
+ "loss": 0.7523,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 0.9114359415305245,
377
+ "grad_norm": 5.9593634605407715,
378
+ "learning_rate": 6.466666666666666e-05,
379
+ "loss": 0.7736,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 0.9286328460877042,
384
+ "grad_norm": 5.173058986663818,
385
+ "learning_rate": 6.400000000000001e-05,
386
+ "loss": 0.803,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 0.945829750644884,
391
+ "grad_norm": 6.1787109375,
392
+ "learning_rate": 6.333333333333333e-05,
393
+ "loss": 0.7256,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 0.9630266552020637,
398
+ "grad_norm": 5.627285957336426,
399
+ "learning_rate": 6.266666666666667e-05,
400
+ "loss": 0.7492,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 0.9802235597592434,
405
+ "grad_norm": 5.914905071258545,
406
+ "learning_rate": 6.2e-05,
407
+ "loss": 0.6695,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 0.9974204643164231,
412
+ "grad_norm": 4.068761825561523,
413
+ "learning_rate": 6.133333333333334e-05,
414
+ "loss": 0.6607,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 1.0146173688736027,
419
+ "grad_norm": 5.116635322570801,
420
+ "learning_rate": 6.066666666666667e-05,
421
+ "loss": 0.5824,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 1.0318142734307825,
426
+ "grad_norm": 6.764676570892334,
427
+ "learning_rate": 6e-05,
428
+ "loss": 0.6238,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 1.049011177987962,
433
+ "grad_norm": 3.931511640548706,
434
+ "learning_rate": 5.9333333333333343e-05,
435
+ "loss": 0.5651,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 1.0662080825451419,
440
+ "grad_norm": 9.559135437011719,
441
+ "learning_rate": 5.866666666666667e-05,
442
+ "loss": 0.5615,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 1.0834049871023215,
447
+ "grad_norm": 8.055045127868652,
448
+ "learning_rate": 5.8e-05,
449
+ "loss": 0.5606,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 1.1006018916595013,
454
+ "grad_norm": 6.782190322875977,
455
+ "learning_rate": 5.7333333333333336e-05,
456
+ "loss": 0.5776,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 1.117798796216681,
461
+ "grad_norm": 5.142735004425049,
462
+ "learning_rate": 5.666666666666667e-05,
463
+ "loss": 0.5509,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 1.1349957007738607,
468
+ "grad_norm": 6.010578155517578,
469
+ "learning_rate": 5.6000000000000006e-05,
470
+ "loss": 0.5701,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 1.1521926053310405,
475
+ "grad_norm": 5.171779155731201,
476
+ "learning_rate": 5.5333333333333334e-05,
477
+ "loss": 0.5485,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 1.16938950988822,
482
+ "grad_norm": 5.51332426071167,
483
+ "learning_rate": 5.466666666666666e-05,
484
+ "loss": 0.5515,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 1.1865864144454,
489
+ "grad_norm": 6.2720947265625,
490
+ "learning_rate": 5.4000000000000005e-05,
491
+ "loss": 0.5503,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 1.2037833190025795,
496
+ "grad_norm": 6.498877048492432,
497
+ "learning_rate": 5.333333333333333e-05,
498
+ "loss": 0.525,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 1.2209802235597593,
503
+ "grad_norm": 5.129275321960449,
504
+ "learning_rate": 5.266666666666666e-05,
505
+ "loss": 0.4942,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 1.238177128116939,
510
+ "grad_norm": 4.145976543426514,
511
+ "learning_rate": 5.2000000000000004e-05,
512
+ "loss": 0.4961,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 1.2553740326741187,
517
+ "grad_norm": 6.678504467010498,
518
+ "learning_rate": 5.133333333333333e-05,
519
+ "loss": 0.5032,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 1.2725709372312983,
524
+ "grad_norm": 6.846457481384277,
525
+ "learning_rate": 5.0666666666666674e-05,
526
+ "loss": 0.5322,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 1.2897678417884781,
531
+ "grad_norm": 7.58906888961792,
532
+ "learning_rate": 5e-05,
533
+ "loss": 0.477,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 1.3069647463456577,
538
+ "grad_norm": 5.045712947845459,
539
+ "learning_rate": 4.933333333333334e-05,
540
+ "loss": 0.5139,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 1.3241616509028376,
545
+ "grad_norm": 4.599825859069824,
546
+ "learning_rate": 4.866666666666667e-05,
547
+ "loss": 0.4997,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 1.3413585554600171,
552
+ "grad_norm": 5.756386756896973,
553
+ "learning_rate": 4.8e-05,
554
+ "loss": 0.4841,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 1.358555460017197,
559
+ "grad_norm": 4.89516544342041,
560
+ "learning_rate": 4.7333333333333336e-05,
561
+ "loss": 0.4183,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 1.3757523645743766,
566
+ "grad_norm": 4.484691143035889,
567
+ "learning_rate": 4.666666666666667e-05,
568
+ "loss": 0.4185,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 1.3929492691315564,
573
+ "grad_norm": 5.203677654266357,
574
+ "learning_rate": 4.600000000000001e-05,
575
+ "loss": 0.4097,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 1.410146173688736,
580
+ "grad_norm": 6.922574996948242,
581
+ "learning_rate": 4.5333333333333335e-05,
582
+ "loss": 0.4367,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 1.4273430782459158,
587
+ "grad_norm": 5.618770122528076,
588
+ "learning_rate": 4.466666666666667e-05,
589
+ "loss": 0.4453,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 1.4445399828030954,
594
+ "grad_norm": 4.377410888671875,
595
+ "learning_rate": 4.4000000000000006e-05,
596
+ "loss": 0.4416,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 1.4617368873602752,
601
+ "grad_norm": 7.413736343383789,
602
+ "learning_rate": 4.3333333333333334e-05,
603
+ "loss": 0.4488,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 1.4789337919174548,
608
+ "grad_norm": 4.4008049964904785,
609
+ "learning_rate": 4.266666666666667e-05,
610
+ "loss": 0.4167,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 1.4961306964746346,
615
+ "grad_norm": 5.33242130279541,
616
+ "learning_rate": 4.2e-05,
617
+ "loss": 0.486,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 1.5133276010318144,
622
+ "grad_norm": 7.043882369995117,
623
+ "learning_rate": 4.133333333333333e-05,
624
+ "loss": 0.407,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 1.530524505588994,
629
+ "grad_norm": 6.068751335144043,
630
+ "learning_rate": 4.066666666666667e-05,
631
+ "loss": 0.3846,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 1.5477214101461736,
636
+ "grad_norm": 5.452756404876709,
637
+ "learning_rate": 4e-05,
638
+ "loss": 0.4327,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 1.5649183147033534,
643
+ "grad_norm": 3.541025161743164,
644
+ "learning_rate": 3.933333333333333e-05,
645
+ "loss": 0.3734,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 1.5821152192605332,
650
+ "grad_norm": 6.634982585906982,
651
+ "learning_rate": 3.866666666666667e-05,
652
+ "loss": 0.3679,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 1.5993121238177128,
657
+ "grad_norm": 3.89568829536438,
658
+ "learning_rate": 3.8e-05,
659
+ "loss": 0.372,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 1.6165090283748924,
664
+ "grad_norm": 6.27597188949585,
665
+ "learning_rate": 3.733333333333334e-05,
666
+ "loss": 0.3971,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 1.6337059329320722,
671
+ "grad_norm": 3.7944319248199463,
672
+ "learning_rate": 3.6666666666666666e-05,
673
+ "loss": 0.3854,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 1.650902837489252,
678
+ "grad_norm": 4.370260238647461,
679
+ "learning_rate": 3.6e-05,
680
+ "loss": 0.3609,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 1.6680997420464316,
685
+ "grad_norm": 5.236139297485352,
686
+ "learning_rate": 3.5333333333333336e-05,
687
+ "loss": 0.3932,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 1.6852966466036112,
692
+ "grad_norm": 4.053391456604004,
693
+ "learning_rate": 3.466666666666667e-05,
694
+ "loss": 0.4073,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 1.702493551160791,
699
+ "grad_norm": 4.105246543884277,
700
+ "learning_rate": 3.4000000000000007e-05,
701
+ "loss": 0.3533,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 1.7196904557179709,
706
+ "grad_norm": 4.842738151550293,
707
+ "learning_rate": 3.3333333333333335e-05,
708
+ "loss": 0.3529,
709
+ "step": 2000
710
+ }
711
+ ],
712
+ "logging_steps": 20,
713
+ "max_steps": 3000,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 3,
716
+ "save_steps": 500,
717
+ "stateful_callbacks": {
718
+ "TrainerControl": {
719
+ "args": {
720
+ "should_epoch_stop": false,
721
+ "should_evaluate": false,
722
+ "should_log": false,
723
+ "should_save": true,
724
+ "should_training_stop": false
725
+ },
726
+ "attributes": {}
727
+ }
728
+ },
729
+ "total_flos": 1.0128778067440435e+17,
730
+ "train_batch_size": 8,
731
+ "trial_name": null,
732
+ "trial_params": null
733
+ }
outputs/checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:171c89f8ecd1388fc79e0fbedd3775495c90abd0688b87c0090ac48cd2e89673
3
+ size 5048
outputs/checkpoint-2500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: beomi/KoAlpaca-Polyglot-5.8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
outputs/checkpoint-2500/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "beomi/KoAlpaca-Polyglot-5.8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
outputs/checkpoint-2500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8fa144cac0d9b728947dd6cb86ebea59e4c2810672dbb654ff6fb65b72084c0
3
+ size 14688200
outputs/checkpoint-2500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a9cd5929e76765cc535b162fe03157bd6e42ec76a3cdc4098d8e49d72c40713
3
+ size 29407610
outputs/checkpoint-2500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3187411aedbf5a177d63fe5663707e8a773b1c11f0a233ea2b88b4f8443ad9
3
+ size 14244
outputs/checkpoint-2500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5d399912a537bb9db3ba6d796659509ef14a4c254a8f55b8d2f624198afb71a
3
+ size 1064
outputs/checkpoint-2500/trainer_state.json ADDED
@@ -0,0 +1,908 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.1496130696474633,
5
+ "eval_steps": 500,
6
+ "global_step": 2500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.017196904557179708,
13
+ "grad_norm": 1.7918040752410889,
14
+ "learning_rate": 9.933333333333334e-05,
15
+ "loss": 4.1644,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.034393809114359415,
20
+ "grad_norm": 1.8427823781967163,
21
+ "learning_rate": 9.866666666666668e-05,
22
+ "loss": 2.7767,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.051590713671539126,
27
+ "grad_norm": 1.2594960927963257,
28
+ "learning_rate": 9.8e-05,
29
+ "loss": 2.3015,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.06878761822871883,
34
+ "grad_norm": 1.5001391172409058,
35
+ "learning_rate": 9.733333333333335e-05,
36
+ "loss": 1.9096,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.08598452278589853,
41
+ "grad_norm": 1.4705618619918823,
42
+ "learning_rate": 9.666666666666667e-05,
43
+ "loss": 1.8592,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.10318142734307825,
48
+ "grad_norm": 1.678035020828247,
49
+ "learning_rate": 9.6e-05,
50
+ "loss": 1.7618,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.12037833190025796,
55
+ "grad_norm": 1.9186018705368042,
56
+ "learning_rate": 9.533333333333334e-05,
57
+ "loss": 1.612,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.13757523645743766,
62
+ "grad_norm": 2.0859336853027344,
63
+ "learning_rate": 9.466666666666667e-05,
64
+ "loss": 1.5829,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.15477214101461736,
69
+ "grad_norm": 2.2418243885040283,
70
+ "learning_rate": 9.4e-05,
71
+ "loss": 1.6236,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.17196904557179707,
76
+ "grad_norm": 2.3599705696105957,
77
+ "learning_rate": 9.333333333333334e-05,
78
+ "loss": 1.5204,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.18916595012897677,
83
+ "grad_norm": 2.346595525741577,
84
+ "learning_rate": 9.266666666666666e-05,
85
+ "loss": 1.4757,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.2063628546861565,
90
+ "grad_norm": 2.483389139175415,
91
+ "learning_rate": 9.200000000000001e-05,
92
+ "loss": 1.4369,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.2235597592433362,
97
+ "grad_norm": 2.320002555847168,
98
+ "learning_rate": 9.133333333333334e-05,
99
+ "loss": 1.391,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.2407566638005159,
104
+ "grad_norm": 3.222677230834961,
105
+ "learning_rate": 9.066666666666667e-05,
106
+ "loss": 1.5182,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.2579535683576956,
111
+ "grad_norm": 2.7384626865386963,
112
+ "learning_rate": 9e-05,
113
+ "loss": 1.1515,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.2751504729148753,
118
+ "grad_norm": 3.28292179107666,
119
+ "learning_rate": 8.933333333333334e-05,
120
+ "loss": 1.3981,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.292347377472055,
125
+ "grad_norm": 2.6418075561523438,
126
+ "learning_rate": 8.866666666666668e-05,
127
+ "loss": 1.448,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.30954428202923473,
132
+ "grad_norm": 2.810594081878662,
133
+ "learning_rate": 8.800000000000001e-05,
134
+ "loss": 1.1637,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.32674118658641443,
139
+ "grad_norm": 2.897336006164551,
140
+ "learning_rate": 8.733333333333333e-05,
141
+ "loss": 1.3715,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.34393809114359414,
146
+ "grad_norm": 3.5841643810272217,
147
+ "learning_rate": 8.666666666666667e-05,
148
+ "loss": 1.3044,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.36113499570077384,
153
+ "grad_norm": 3.0653135776519775,
154
+ "learning_rate": 8.6e-05,
155
+ "loss": 1.1584,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.37833190025795355,
160
+ "grad_norm": 3.761073112487793,
161
+ "learning_rate": 8.533333333333334e-05,
162
+ "loss": 1.2224,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.39552880481513325,
167
+ "grad_norm": 3.481926441192627,
168
+ "learning_rate": 8.466666666666667e-05,
169
+ "loss": 1.1676,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.412725709372313,
174
+ "grad_norm": 4.327862739562988,
175
+ "learning_rate": 8.4e-05,
176
+ "loss": 1.0294,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.4299226139294927,
181
+ "grad_norm": 4.155755996704102,
182
+ "learning_rate": 8.333333333333334e-05,
183
+ "loss": 1.2208,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.4471195184866724,
188
+ "grad_norm": 3.50590443611145,
189
+ "learning_rate": 8.266666666666667e-05,
190
+ "loss": 1.0706,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.4643164230438521,
195
+ "grad_norm": 4.00937557220459,
196
+ "learning_rate": 8.2e-05,
197
+ "loss": 1.0627,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.4815133276010318,
202
+ "grad_norm": 4.476954460144043,
203
+ "learning_rate": 8.133333333333334e-05,
204
+ "loss": 1.0246,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.49871023215821153,
209
+ "grad_norm": 4.1531476974487305,
210
+ "learning_rate": 8.066666666666667e-05,
211
+ "loss": 1.2647,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.5159071367153912,
216
+ "grad_norm": 3.9548251628875732,
217
+ "learning_rate": 8e-05,
218
+ "loss": 0.9846,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.5331040412725709,
223
+ "grad_norm": 4.803060531616211,
224
+ "learning_rate": 7.933333333333334e-05,
225
+ "loss": 0.9058,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.5503009458297506,
230
+ "grad_norm": 4.116948127746582,
231
+ "learning_rate": 7.866666666666666e-05,
232
+ "loss": 1.0455,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.5674978503869303,
237
+ "grad_norm": 3.5376293659210205,
238
+ "learning_rate": 7.800000000000001e-05,
239
+ "loss": 1.0034,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.58469475494411,
244
+ "grad_norm": 5.122928619384766,
245
+ "learning_rate": 7.733333333333333e-05,
246
+ "loss": 0.9539,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.6018916595012898,
251
+ "grad_norm": 4.396443843841553,
252
+ "learning_rate": 7.666666666666667e-05,
253
+ "loss": 1.0106,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.6190885640584695,
258
+ "grad_norm": 5.2031989097595215,
259
+ "learning_rate": 7.6e-05,
260
+ "loss": 1.1025,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.6362854686156492,
265
+ "grad_norm": 4.93772554397583,
266
+ "learning_rate": 7.533333333333334e-05,
267
+ "loss": 1.0214,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.6534823731728289,
272
+ "grad_norm": 3.970015048980713,
273
+ "learning_rate": 7.466666666666667e-05,
274
+ "loss": 0.8724,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.6706792777300086,
279
+ "grad_norm": 4.316510200500488,
280
+ "learning_rate": 7.4e-05,
281
+ "loss": 0.9296,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.6878761822871883,
286
+ "grad_norm": 5.551044464111328,
287
+ "learning_rate": 7.333333333333333e-05,
288
+ "loss": 0.9748,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.705073086844368,
293
+ "grad_norm": 5.091616630554199,
294
+ "learning_rate": 7.266666666666667e-05,
295
+ "loss": 0.9048,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.7222699914015477,
300
+ "grad_norm": 5.082363128662109,
301
+ "learning_rate": 7.2e-05,
302
+ "loss": 0.9605,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.7394668959587274,
307
+ "grad_norm": 4.591577053070068,
308
+ "learning_rate": 7.133333333333334e-05,
309
+ "loss": 0.803,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.7566638005159071,
314
+ "grad_norm": 3.200929880142212,
315
+ "learning_rate": 7.066666666666667e-05,
316
+ "loss": 0.8525,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.7738607050730868,
321
+ "grad_norm": 5.56381368637085,
322
+ "learning_rate": 7e-05,
323
+ "loss": 0.8088,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.7910576096302665,
328
+ "grad_norm": 4.371031761169434,
329
+ "learning_rate": 6.933333333333334e-05,
330
+ "loss": 0.811,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.8082545141874462,
335
+ "grad_norm": 5.641899585723877,
336
+ "learning_rate": 6.866666666666666e-05,
337
+ "loss": 0.8693,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.825451418744626,
342
+ "grad_norm": 5.0090436935424805,
343
+ "learning_rate": 6.800000000000001e-05,
344
+ "loss": 0.7813,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.8426483233018057,
349
+ "grad_norm": 7.000046730041504,
350
+ "learning_rate": 6.733333333333333e-05,
351
+ "loss": 0.8189,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.8598452278589854,
356
+ "grad_norm": 5.533496856689453,
357
+ "learning_rate": 6.666666666666667e-05,
358
+ "loss": 0.8019,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 0.8770421324161651,
363
+ "grad_norm": 5.878244400024414,
364
+ "learning_rate": 6.6e-05,
365
+ "loss": 0.7308,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 0.8942390369733448,
370
+ "grad_norm": 6.347448825836182,
371
+ "learning_rate": 6.533333333333334e-05,
372
+ "loss": 0.7523,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 0.9114359415305245,
377
+ "grad_norm": 5.9593634605407715,
378
+ "learning_rate": 6.466666666666666e-05,
379
+ "loss": 0.7736,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 0.9286328460877042,
384
+ "grad_norm": 5.173058986663818,
385
+ "learning_rate": 6.400000000000001e-05,
386
+ "loss": 0.803,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 0.945829750644884,
391
+ "grad_norm": 6.1787109375,
392
+ "learning_rate": 6.333333333333333e-05,
393
+ "loss": 0.7256,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 0.9630266552020637,
398
+ "grad_norm": 5.627285957336426,
399
+ "learning_rate": 6.266666666666667e-05,
400
+ "loss": 0.7492,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 0.9802235597592434,
405
+ "grad_norm": 5.914905071258545,
406
+ "learning_rate": 6.2e-05,
407
+ "loss": 0.6695,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 0.9974204643164231,
412
+ "grad_norm": 4.068761825561523,
413
+ "learning_rate": 6.133333333333334e-05,
414
+ "loss": 0.6607,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 1.0146173688736027,
419
+ "grad_norm": 5.116635322570801,
420
+ "learning_rate": 6.066666666666667e-05,
421
+ "loss": 0.5824,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 1.0318142734307825,
426
+ "grad_norm": 6.764676570892334,
427
+ "learning_rate": 6e-05,
428
+ "loss": 0.6238,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 1.049011177987962,
433
+ "grad_norm": 3.931511640548706,
434
+ "learning_rate": 5.9333333333333343e-05,
435
+ "loss": 0.5651,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 1.0662080825451419,
440
+ "grad_norm": 9.559135437011719,
441
+ "learning_rate": 5.866666666666667e-05,
442
+ "loss": 0.5615,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 1.0834049871023215,
447
+ "grad_norm": 8.055045127868652,
448
+ "learning_rate": 5.8e-05,
449
+ "loss": 0.5606,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 1.1006018916595013,
454
+ "grad_norm": 6.782190322875977,
455
+ "learning_rate": 5.7333333333333336e-05,
456
+ "loss": 0.5776,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 1.117798796216681,
461
+ "grad_norm": 5.142735004425049,
462
+ "learning_rate": 5.666666666666667e-05,
463
+ "loss": 0.5509,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 1.1349957007738607,
468
+ "grad_norm": 6.010578155517578,
469
+ "learning_rate": 5.6000000000000006e-05,
470
+ "loss": 0.5701,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 1.1521926053310405,
475
+ "grad_norm": 5.171779155731201,
476
+ "learning_rate": 5.5333333333333334e-05,
477
+ "loss": 0.5485,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 1.16938950988822,
482
+ "grad_norm": 5.51332426071167,
483
+ "learning_rate": 5.466666666666666e-05,
484
+ "loss": 0.5515,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 1.1865864144454,
489
+ "grad_norm": 6.2720947265625,
490
+ "learning_rate": 5.4000000000000005e-05,
491
+ "loss": 0.5503,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 1.2037833190025795,
496
+ "grad_norm": 6.498877048492432,
497
+ "learning_rate": 5.333333333333333e-05,
498
+ "loss": 0.525,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 1.2209802235597593,
503
+ "grad_norm": 5.129275321960449,
504
+ "learning_rate": 5.266666666666666e-05,
505
+ "loss": 0.4942,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 1.238177128116939,
510
+ "grad_norm": 4.145976543426514,
511
+ "learning_rate": 5.2000000000000004e-05,
512
+ "loss": 0.4961,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 1.2553740326741187,
517
+ "grad_norm": 6.678504467010498,
518
+ "learning_rate": 5.133333333333333e-05,
519
+ "loss": 0.5032,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 1.2725709372312983,
524
+ "grad_norm": 6.846457481384277,
525
+ "learning_rate": 5.0666666666666674e-05,
526
+ "loss": 0.5322,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 1.2897678417884781,
531
+ "grad_norm": 7.58906888961792,
532
+ "learning_rate": 5e-05,
533
+ "loss": 0.477,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 1.3069647463456577,
538
+ "grad_norm": 5.045712947845459,
539
+ "learning_rate": 4.933333333333334e-05,
540
+ "loss": 0.5139,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 1.3241616509028376,
545
+ "grad_norm": 4.599825859069824,
546
+ "learning_rate": 4.866666666666667e-05,
547
+ "loss": 0.4997,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 1.3413585554600171,
552
+ "grad_norm": 5.756386756896973,
553
+ "learning_rate": 4.8e-05,
554
+ "loss": 0.4841,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 1.358555460017197,
559
+ "grad_norm": 4.89516544342041,
560
+ "learning_rate": 4.7333333333333336e-05,
561
+ "loss": 0.4183,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 1.3757523645743766,
566
+ "grad_norm": 4.484691143035889,
567
+ "learning_rate": 4.666666666666667e-05,
568
+ "loss": 0.4185,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 1.3929492691315564,
573
+ "grad_norm": 5.203677654266357,
574
+ "learning_rate": 4.600000000000001e-05,
575
+ "loss": 0.4097,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 1.410146173688736,
580
+ "grad_norm": 6.922574996948242,
581
+ "learning_rate": 4.5333333333333335e-05,
582
+ "loss": 0.4367,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 1.4273430782459158,
587
+ "grad_norm": 5.618770122528076,
588
+ "learning_rate": 4.466666666666667e-05,
589
+ "loss": 0.4453,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 1.4445399828030954,
594
+ "grad_norm": 4.377410888671875,
595
+ "learning_rate": 4.4000000000000006e-05,
596
+ "loss": 0.4416,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 1.4617368873602752,
601
+ "grad_norm": 7.413736343383789,
602
+ "learning_rate": 4.3333333333333334e-05,
603
+ "loss": 0.4488,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 1.4789337919174548,
608
+ "grad_norm": 4.4008049964904785,
609
+ "learning_rate": 4.266666666666667e-05,
610
+ "loss": 0.4167,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 1.4961306964746346,
615
+ "grad_norm": 5.33242130279541,
616
+ "learning_rate": 4.2e-05,
617
+ "loss": 0.486,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 1.5133276010318144,
622
+ "grad_norm": 7.043882369995117,
623
+ "learning_rate": 4.133333333333333e-05,
624
+ "loss": 0.407,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 1.530524505588994,
629
+ "grad_norm": 6.068751335144043,
630
+ "learning_rate": 4.066666666666667e-05,
631
+ "loss": 0.3846,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 1.5477214101461736,
636
+ "grad_norm": 5.452756404876709,
637
+ "learning_rate": 4e-05,
638
+ "loss": 0.4327,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 1.5649183147033534,
643
+ "grad_norm": 3.541025161743164,
644
+ "learning_rate": 3.933333333333333e-05,
645
+ "loss": 0.3734,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 1.5821152192605332,
650
+ "grad_norm": 6.634982585906982,
651
+ "learning_rate": 3.866666666666667e-05,
652
+ "loss": 0.3679,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 1.5993121238177128,
657
+ "grad_norm": 3.89568829536438,
658
+ "learning_rate": 3.8e-05,
659
+ "loss": 0.372,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 1.6165090283748924,
664
+ "grad_norm": 6.27597188949585,
665
+ "learning_rate": 3.733333333333334e-05,
666
+ "loss": 0.3971,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 1.6337059329320722,
671
+ "grad_norm": 3.7944319248199463,
672
+ "learning_rate": 3.6666666666666666e-05,
673
+ "loss": 0.3854,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 1.650902837489252,
678
+ "grad_norm": 4.370260238647461,
679
+ "learning_rate": 3.6e-05,
680
+ "loss": 0.3609,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 1.6680997420464316,
685
+ "grad_norm": 5.236139297485352,
686
+ "learning_rate": 3.5333333333333336e-05,
687
+ "loss": 0.3932,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 1.6852966466036112,
692
+ "grad_norm": 4.053391456604004,
693
+ "learning_rate": 3.466666666666667e-05,
694
+ "loss": 0.4073,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 1.702493551160791,
699
+ "grad_norm": 4.105246543884277,
700
+ "learning_rate": 3.4000000000000007e-05,
701
+ "loss": 0.3533,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 1.7196904557179709,
706
+ "grad_norm": 4.842738151550293,
707
+ "learning_rate": 3.3333333333333335e-05,
708
+ "loss": 0.3529,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 1.7368873602751504,
713
+ "grad_norm": 6.755301475524902,
714
+ "learning_rate": 3.266666666666667e-05,
715
+ "loss": 0.4043,
716
+ "step": 2020
717
+ },
718
+ {
719
+ "epoch": 1.75408426483233,
720
+ "grad_norm": 5.9597578048706055,
721
+ "learning_rate": 3.2000000000000005e-05,
722
+ "loss": 0.3603,
723
+ "step": 2040
724
+ },
725
+ {
726
+ "epoch": 1.7712811693895099,
727
+ "grad_norm": 3.4720447063446045,
728
+ "learning_rate": 3.1333333333333334e-05,
729
+ "loss": 0.3367,
730
+ "step": 2060
731
+ },
732
+ {
733
+ "epoch": 1.7884780739466897,
734
+ "grad_norm": 3.3950035572052,
735
+ "learning_rate": 3.066666666666667e-05,
736
+ "loss": 0.3333,
737
+ "step": 2080
738
+ },
739
+ {
740
+ "epoch": 1.8056749785038693,
741
+ "grad_norm": 3.364729642868042,
742
+ "learning_rate": 3e-05,
743
+ "loss": 0.3416,
744
+ "step": 2100
745
+ },
746
+ {
747
+ "epoch": 1.8228718830610489,
748
+ "grad_norm": 5.35959005355835,
749
+ "learning_rate": 2.9333333333333336e-05,
750
+ "loss": 0.3487,
751
+ "step": 2120
752
+ },
753
+ {
754
+ "epoch": 1.8400687876182287,
755
+ "grad_norm": 4.672595500946045,
756
+ "learning_rate": 2.8666666666666668e-05,
757
+ "loss": 0.3225,
758
+ "step": 2140
759
+ },
760
+ {
761
+ "epoch": 1.8572656921754085,
762
+ "grad_norm": 4.4767327308654785,
763
+ "learning_rate": 2.8000000000000003e-05,
764
+ "loss": 0.3306,
765
+ "step": 2160
766
+ },
767
+ {
768
+ "epoch": 1.874462596732588,
769
+ "grad_norm": 5.055034637451172,
770
+ "learning_rate": 2.733333333333333e-05,
771
+ "loss": 0.392,
772
+ "step": 2180
773
+ },
774
+ {
775
+ "epoch": 1.8916595012897677,
776
+ "grad_norm": 4.375268936157227,
777
+ "learning_rate": 2.6666666666666667e-05,
778
+ "loss": 0.3205,
779
+ "step": 2200
780
+ },
781
+ {
782
+ "epoch": 1.9088564058469477,
783
+ "grad_norm": 5.488368988037109,
784
+ "learning_rate": 2.6000000000000002e-05,
785
+ "loss": 0.3111,
786
+ "step": 2220
787
+ },
788
+ {
789
+ "epoch": 1.9260533104041273,
790
+ "grad_norm": 4.405417442321777,
791
+ "learning_rate": 2.5333333333333337e-05,
792
+ "loss": 0.3014,
793
+ "step": 2240
794
+ },
795
+ {
796
+ "epoch": 1.943250214961307,
797
+ "grad_norm": 3.466012716293335,
798
+ "learning_rate": 2.466666666666667e-05,
799
+ "loss": 0.2952,
800
+ "step": 2260
801
+ },
802
+ {
803
+ "epoch": 1.9604471195184867,
804
+ "grad_norm": 3.681208848953247,
805
+ "learning_rate": 2.4e-05,
806
+ "loss": 0.3012,
807
+ "step": 2280
808
+ },
809
+ {
810
+ "epoch": 1.9776440240756665,
811
+ "grad_norm": 6.128725528717041,
812
+ "learning_rate": 2.3333333333333336e-05,
813
+ "loss": 0.3056,
814
+ "step": 2300
815
+ },
816
+ {
817
+ "epoch": 1.9948409286328461,
818
+ "grad_norm": 4.9947333335876465,
819
+ "learning_rate": 2.2666666666666668e-05,
820
+ "loss": 0.3026,
821
+ "step": 2320
822
+ },
823
+ {
824
+ "epoch": 2.0120378331900257,
825
+ "grad_norm": 4.199079990386963,
826
+ "learning_rate": 2.2033333333333335e-05,
827
+ "loss": 0.3554,
828
+ "step": 2340
829
+ },
830
+ {
831
+ "epoch": 2.0292347377472053,
832
+ "grad_norm": 3.375105381011963,
833
+ "learning_rate": 2.1366666666666667e-05,
834
+ "loss": 0.2795,
835
+ "step": 2360
836
+ },
837
+ {
838
+ "epoch": 2.0464316423043853,
839
+ "grad_norm": 4.369241237640381,
840
+ "learning_rate": 2.07e-05,
841
+ "loss": 0.2719,
842
+ "step": 2380
843
+ },
844
+ {
845
+ "epoch": 2.063628546861565,
846
+ "grad_norm": 3.1906027793884277,
847
+ "learning_rate": 2.0033333333333334e-05,
848
+ "loss": 0.2681,
849
+ "step": 2400
850
+ },
851
+ {
852
+ "epoch": 2.0808254514187445,
853
+ "grad_norm": 3.7493109703063965,
854
+ "learning_rate": 1.9366666666666665e-05,
855
+ "loss": 0.2765,
856
+ "step": 2420
857
+ },
858
+ {
859
+ "epoch": 2.098022355975924,
860
+ "grad_norm": 4.610039234161377,
861
+ "learning_rate": 1.87e-05,
862
+ "loss": 0.2734,
863
+ "step": 2440
864
+ },
865
+ {
866
+ "epoch": 2.115219260533104,
867
+ "grad_norm": 3.996819019317627,
868
+ "learning_rate": 1.8033333333333336e-05,
869
+ "loss": 0.2732,
870
+ "step": 2460
871
+ },
872
+ {
873
+ "epoch": 2.1324161650902838,
874
+ "grad_norm": 3.3538951873779297,
875
+ "learning_rate": 1.7366666666666668e-05,
876
+ "loss": 0.2796,
877
+ "step": 2480
878
+ },
879
+ {
880
+ "epoch": 2.1496130696474633,
881
+ "grad_norm": 2.914961814880371,
882
+ "learning_rate": 1.6700000000000003e-05,
883
+ "loss": 0.2572,
884
+ "step": 2500
885
+ }
886
+ ],
887
+ "logging_steps": 20,
888
+ "max_steps": 3000,
889
+ "num_input_tokens_seen": 0,
890
+ "num_train_epochs": 3,
891
+ "save_steps": 500,
892
+ "stateful_callbacks": {
893
+ "TrainerControl": {
894
+ "args": {
895
+ "should_epoch_stop": false,
896
+ "should_evaluate": false,
897
+ "should_log": false,
898
+ "should_save": true,
899
+ "should_training_stop": false
900
+ },
901
+ "attributes": {}
902
+ }
903
+ },
904
+ "total_flos": 1.2667360205468467e+17,
905
+ "train_batch_size": 8,
906
+ "trial_name": null,
907
+ "trial_params": null
908
+ }
outputs/checkpoint-2500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:171c89f8ecd1388fc79e0fbedd3775495c90abd0688b87c0090ac48cd2e89673
3
+ size 5048
outputs/checkpoint-3000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: beomi/KoAlpaca-Polyglot-5.8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
outputs/checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "beomi/KoAlpaca-Polyglot-5.8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
outputs/checkpoint-3000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db593c2140cd43e4033c707b6e9a19433a0a2d1df3c914c8746516b23ad7af7f
3
+ size 14688200
outputs/checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a536873239f5db0e1c24bd10c7eeb633c31ec0158b0ee4d8e9fd3772f31ad74
3
+ size 29407610
outputs/checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a96ab8c233d52233c7ea63b8dc1a53f95430afa3fd6199266b3c73a5e02ed94
3
+ size 14244
outputs/checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb947258805e739261138072bcb7d19e2f267d669994c54218eeb948afbf13ad
3
+ size 1064
outputs/checkpoint-3000/trainer_state.json ADDED
@@ -0,0 +1,1083 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.5795356835769563,
5
+ "eval_steps": 500,
6
+ "global_step": 3000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.017196904557179708,
13
+ "grad_norm": 1.7918040752410889,
14
+ "learning_rate": 9.933333333333334e-05,
15
+ "loss": 4.1644,
16
+ "step": 20
17
+ },
18
+ {
19
+ "epoch": 0.034393809114359415,
20
+ "grad_norm": 1.8427823781967163,
21
+ "learning_rate": 9.866666666666668e-05,
22
+ "loss": 2.7767,
23
+ "step": 40
24
+ },
25
+ {
26
+ "epoch": 0.051590713671539126,
27
+ "grad_norm": 1.2594960927963257,
28
+ "learning_rate": 9.8e-05,
29
+ "loss": 2.3015,
30
+ "step": 60
31
+ },
32
+ {
33
+ "epoch": 0.06878761822871883,
34
+ "grad_norm": 1.5001391172409058,
35
+ "learning_rate": 9.733333333333335e-05,
36
+ "loss": 1.9096,
37
+ "step": 80
38
+ },
39
+ {
40
+ "epoch": 0.08598452278589853,
41
+ "grad_norm": 1.4705618619918823,
42
+ "learning_rate": 9.666666666666667e-05,
43
+ "loss": 1.8592,
44
+ "step": 100
45
+ },
46
+ {
47
+ "epoch": 0.10318142734307825,
48
+ "grad_norm": 1.678035020828247,
49
+ "learning_rate": 9.6e-05,
50
+ "loss": 1.7618,
51
+ "step": 120
52
+ },
53
+ {
54
+ "epoch": 0.12037833190025796,
55
+ "grad_norm": 1.9186018705368042,
56
+ "learning_rate": 9.533333333333334e-05,
57
+ "loss": 1.612,
58
+ "step": 140
59
+ },
60
+ {
61
+ "epoch": 0.13757523645743766,
62
+ "grad_norm": 2.0859336853027344,
63
+ "learning_rate": 9.466666666666667e-05,
64
+ "loss": 1.5829,
65
+ "step": 160
66
+ },
67
+ {
68
+ "epoch": 0.15477214101461736,
69
+ "grad_norm": 2.2418243885040283,
70
+ "learning_rate": 9.4e-05,
71
+ "loss": 1.6236,
72
+ "step": 180
73
+ },
74
+ {
75
+ "epoch": 0.17196904557179707,
76
+ "grad_norm": 2.3599705696105957,
77
+ "learning_rate": 9.333333333333334e-05,
78
+ "loss": 1.5204,
79
+ "step": 200
80
+ },
81
+ {
82
+ "epoch": 0.18916595012897677,
83
+ "grad_norm": 2.346595525741577,
84
+ "learning_rate": 9.266666666666666e-05,
85
+ "loss": 1.4757,
86
+ "step": 220
87
+ },
88
+ {
89
+ "epoch": 0.2063628546861565,
90
+ "grad_norm": 2.483389139175415,
91
+ "learning_rate": 9.200000000000001e-05,
92
+ "loss": 1.4369,
93
+ "step": 240
94
+ },
95
+ {
96
+ "epoch": 0.2235597592433362,
97
+ "grad_norm": 2.320002555847168,
98
+ "learning_rate": 9.133333333333334e-05,
99
+ "loss": 1.391,
100
+ "step": 260
101
+ },
102
+ {
103
+ "epoch": 0.2407566638005159,
104
+ "grad_norm": 3.222677230834961,
105
+ "learning_rate": 9.066666666666667e-05,
106
+ "loss": 1.5182,
107
+ "step": 280
108
+ },
109
+ {
110
+ "epoch": 0.2579535683576956,
111
+ "grad_norm": 2.7384626865386963,
112
+ "learning_rate": 9e-05,
113
+ "loss": 1.1515,
114
+ "step": 300
115
+ },
116
+ {
117
+ "epoch": 0.2751504729148753,
118
+ "grad_norm": 3.28292179107666,
119
+ "learning_rate": 8.933333333333334e-05,
120
+ "loss": 1.3981,
121
+ "step": 320
122
+ },
123
+ {
124
+ "epoch": 0.292347377472055,
125
+ "grad_norm": 2.6418075561523438,
126
+ "learning_rate": 8.866666666666668e-05,
127
+ "loss": 1.448,
128
+ "step": 340
129
+ },
130
+ {
131
+ "epoch": 0.30954428202923473,
132
+ "grad_norm": 2.810594081878662,
133
+ "learning_rate": 8.800000000000001e-05,
134
+ "loss": 1.1637,
135
+ "step": 360
136
+ },
137
+ {
138
+ "epoch": 0.32674118658641443,
139
+ "grad_norm": 2.897336006164551,
140
+ "learning_rate": 8.733333333333333e-05,
141
+ "loss": 1.3715,
142
+ "step": 380
143
+ },
144
+ {
145
+ "epoch": 0.34393809114359414,
146
+ "grad_norm": 3.5841643810272217,
147
+ "learning_rate": 8.666666666666667e-05,
148
+ "loss": 1.3044,
149
+ "step": 400
150
+ },
151
+ {
152
+ "epoch": 0.36113499570077384,
153
+ "grad_norm": 3.0653135776519775,
154
+ "learning_rate": 8.6e-05,
155
+ "loss": 1.1584,
156
+ "step": 420
157
+ },
158
+ {
159
+ "epoch": 0.37833190025795355,
160
+ "grad_norm": 3.761073112487793,
161
+ "learning_rate": 8.533333333333334e-05,
162
+ "loss": 1.2224,
163
+ "step": 440
164
+ },
165
+ {
166
+ "epoch": 0.39552880481513325,
167
+ "grad_norm": 3.481926441192627,
168
+ "learning_rate": 8.466666666666667e-05,
169
+ "loss": 1.1676,
170
+ "step": 460
171
+ },
172
+ {
173
+ "epoch": 0.412725709372313,
174
+ "grad_norm": 4.327862739562988,
175
+ "learning_rate": 8.4e-05,
176
+ "loss": 1.0294,
177
+ "step": 480
178
+ },
179
+ {
180
+ "epoch": 0.4299226139294927,
181
+ "grad_norm": 4.155755996704102,
182
+ "learning_rate": 8.333333333333334e-05,
183
+ "loss": 1.2208,
184
+ "step": 500
185
+ },
186
+ {
187
+ "epoch": 0.4471195184866724,
188
+ "grad_norm": 3.50590443611145,
189
+ "learning_rate": 8.266666666666667e-05,
190
+ "loss": 1.0706,
191
+ "step": 520
192
+ },
193
+ {
194
+ "epoch": 0.4643164230438521,
195
+ "grad_norm": 4.00937557220459,
196
+ "learning_rate": 8.2e-05,
197
+ "loss": 1.0627,
198
+ "step": 540
199
+ },
200
+ {
201
+ "epoch": 0.4815133276010318,
202
+ "grad_norm": 4.476954460144043,
203
+ "learning_rate": 8.133333333333334e-05,
204
+ "loss": 1.0246,
205
+ "step": 560
206
+ },
207
+ {
208
+ "epoch": 0.49871023215821153,
209
+ "grad_norm": 4.1531476974487305,
210
+ "learning_rate": 8.066666666666667e-05,
211
+ "loss": 1.2647,
212
+ "step": 580
213
+ },
214
+ {
215
+ "epoch": 0.5159071367153912,
216
+ "grad_norm": 3.9548251628875732,
217
+ "learning_rate": 8e-05,
218
+ "loss": 0.9846,
219
+ "step": 600
220
+ },
221
+ {
222
+ "epoch": 0.5331040412725709,
223
+ "grad_norm": 4.803060531616211,
224
+ "learning_rate": 7.933333333333334e-05,
225
+ "loss": 0.9058,
226
+ "step": 620
227
+ },
228
+ {
229
+ "epoch": 0.5503009458297506,
230
+ "grad_norm": 4.116948127746582,
231
+ "learning_rate": 7.866666666666666e-05,
232
+ "loss": 1.0455,
233
+ "step": 640
234
+ },
235
+ {
236
+ "epoch": 0.5674978503869303,
237
+ "grad_norm": 3.5376293659210205,
238
+ "learning_rate": 7.800000000000001e-05,
239
+ "loss": 1.0034,
240
+ "step": 660
241
+ },
242
+ {
243
+ "epoch": 0.58469475494411,
244
+ "grad_norm": 5.122928619384766,
245
+ "learning_rate": 7.733333333333333e-05,
246
+ "loss": 0.9539,
247
+ "step": 680
248
+ },
249
+ {
250
+ "epoch": 0.6018916595012898,
251
+ "grad_norm": 4.396443843841553,
252
+ "learning_rate": 7.666666666666667e-05,
253
+ "loss": 1.0106,
254
+ "step": 700
255
+ },
256
+ {
257
+ "epoch": 0.6190885640584695,
258
+ "grad_norm": 5.2031989097595215,
259
+ "learning_rate": 7.6e-05,
260
+ "loss": 1.1025,
261
+ "step": 720
262
+ },
263
+ {
264
+ "epoch": 0.6362854686156492,
265
+ "grad_norm": 4.93772554397583,
266
+ "learning_rate": 7.533333333333334e-05,
267
+ "loss": 1.0214,
268
+ "step": 740
269
+ },
270
+ {
271
+ "epoch": 0.6534823731728289,
272
+ "grad_norm": 3.970015048980713,
273
+ "learning_rate": 7.466666666666667e-05,
274
+ "loss": 0.8724,
275
+ "step": 760
276
+ },
277
+ {
278
+ "epoch": 0.6706792777300086,
279
+ "grad_norm": 4.316510200500488,
280
+ "learning_rate": 7.4e-05,
281
+ "loss": 0.9296,
282
+ "step": 780
283
+ },
284
+ {
285
+ "epoch": 0.6878761822871883,
286
+ "grad_norm": 5.551044464111328,
287
+ "learning_rate": 7.333333333333333e-05,
288
+ "loss": 0.9748,
289
+ "step": 800
290
+ },
291
+ {
292
+ "epoch": 0.705073086844368,
293
+ "grad_norm": 5.091616630554199,
294
+ "learning_rate": 7.266666666666667e-05,
295
+ "loss": 0.9048,
296
+ "step": 820
297
+ },
298
+ {
299
+ "epoch": 0.7222699914015477,
300
+ "grad_norm": 5.082363128662109,
301
+ "learning_rate": 7.2e-05,
302
+ "loss": 0.9605,
303
+ "step": 840
304
+ },
305
+ {
306
+ "epoch": 0.7394668959587274,
307
+ "grad_norm": 4.591577053070068,
308
+ "learning_rate": 7.133333333333334e-05,
309
+ "loss": 0.803,
310
+ "step": 860
311
+ },
312
+ {
313
+ "epoch": 0.7566638005159071,
314
+ "grad_norm": 3.200929880142212,
315
+ "learning_rate": 7.066666666666667e-05,
316
+ "loss": 0.8525,
317
+ "step": 880
318
+ },
319
+ {
320
+ "epoch": 0.7738607050730868,
321
+ "grad_norm": 5.56381368637085,
322
+ "learning_rate": 7e-05,
323
+ "loss": 0.8088,
324
+ "step": 900
325
+ },
326
+ {
327
+ "epoch": 0.7910576096302665,
328
+ "grad_norm": 4.371031761169434,
329
+ "learning_rate": 6.933333333333334e-05,
330
+ "loss": 0.811,
331
+ "step": 920
332
+ },
333
+ {
334
+ "epoch": 0.8082545141874462,
335
+ "grad_norm": 5.641899585723877,
336
+ "learning_rate": 6.866666666666666e-05,
337
+ "loss": 0.8693,
338
+ "step": 940
339
+ },
340
+ {
341
+ "epoch": 0.825451418744626,
342
+ "grad_norm": 5.0090436935424805,
343
+ "learning_rate": 6.800000000000001e-05,
344
+ "loss": 0.7813,
345
+ "step": 960
346
+ },
347
+ {
348
+ "epoch": 0.8426483233018057,
349
+ "grad_norm": 7.000046730041504,
350
+ "learning_rate": 6.733333333333333e-05,
351
+ "loss": 0.8189,
352
+ "step": 980
353
+ },
354
+ {
355
+ "epoch": 0.8598452278589854,
356
+ "grad_norm": 5.533496856689453,
357
+ "learning_rate": 6.666666666666667e-05,
358
+ "loss": 0.8019,
359
+ "step": 1000
360
+ },
361
+ {
362
+ "epoch": 0.8770421324161651,
363
+ "grad_norm": 5.878244400024414,
364
+ "learning_rate": 6.6e-05,
365
+ "loss": 0.7308,
366
+ "step": 1020
367
+ },
368
+ {
369
+ "epoch": 0.8942390369733448,
370
+ "grad_norm": 6.347448825836182,
371
+ "learning_rate": 6.533333333333334e-05,
372
+ "loss": 0.7523,
373
+ "step": 1040
374
+ },
375
+ {
376
+ "epoch": 0.9114359415305245,
377
+ "grad_norm": 5.9593634605407715,
378
+ "learning_rate": 6.466666666666666e-05,
379
+ "loss": 0.7736,
380
+ "step": 1060
381
+ },
382
+ {
383
+ "epoch": 0.9286328460877042,
384
+ "grad_norm": 5.173058986663818,
385
+ "learning_rate": 6.400000000000001e-05,
386
+ "loss": 0.803,
387
+ "step": 1080
388
+ },
389
+ {
390
+ "epoch": 0.945829750644884,
391
+ "grad_norm": 6.1787109375,
392
+ "learning_rate": 6.333333333333333e-05,
393
+ "loss": 0.7256,
394
+ "step": 1100
395
+ },
396
+ {
397
+ "epoch": 0.9630266552020637,
398
+ "grad_norm": 5.627285957336426,
399
+ "learning_rate": 6.266666666666667e-05,
400
+ "loss": 0.7492,
401
+ "step": 1120
402
+ },
403
+ {
404
+ "epoch": 0.9802235597592434,
405
+ "grad_norm": 5.914905071258545,
406
+ "learning_rate": 6.2e-05,
407
+ "loss": 0.6695,
408
+ "step": 1140
409
+ },
410
+ {
411
+ "epoch": 0.9974204643164231,
412
+ "grad_norm": 4.068761825561523,
413
+ "learning_rate": 6.133333333333334e-05,
414
+ "loss": 0.6607,
415
+ "step": 1160
416
+ },
417
+ {
418
+ "epoch": 1.0146173688736027,
419
+ "grad_norm": 5.116635322570801,
420
+ "learning_rate": 6.066666666666667e-05,
421
+ "loss": 0.5824,
422
+ "step": 1180
423
+ },
424
+ {
425
+ "epoch": 1.0318142734307825,
426
+ "grad_norm": 6.764676570892334,
427
+ "learning_rate": 6e-05,
428
+ "loss": 0.6238,
429
+ "step": 1200
430
+ },
431
+ {
432
+ "epoch": 1.049011177987962,
433
+ "grad_norm": 3.931511640548706,
434
+ "learning_rate": 5.9333333333333343e-05,
435
+ "loss": 0.5651,
436
+ "step": 1220
437
+ },
438
+ {
439
+ "epoch": 1.0662080825451419,
440
+ "grad_norm": 9.559135437011719,
441
+ "learning_rate": 5.866666666666667e-05,
442
+ "loss": 0.5615,
443
+ "step": 1240
444
+ },
445
+ {
446
+ "epoch": 1.0834049871023215,
447
+ "grad_norm": 8.055045127868652,
448
+ "learning_rate": 5.8e-05,
449
+ "loss": 0.5606,
450
+ "step": 1260
451
+ },
452
+ {
453
+ "epoch": 1.1006018916595013,
454
+ "grad_norm": 6.782190322875977,
455
+ "learning_rate": 5.7333333333333336e-05,
456
+ "loss": 0.5776,
457
+ "step": 1280
458
+ },
459
+ {
460
+ "epoch": 1.117798796216681,
461
+ "grad_norm": 5.142735004425049,
462
+ "learning_rate": 5.666666666666667e-05,
463
+ "loss": 0.5509,
464
+ "step": 1300
465
+ },
466
+ {
467
+ "epoch": 1.1349957007738607,
468
+ "grad_norm": 6.010578155517578,
469
+ "learning_rate": 5.6000000000000006e-05,
470
+ "loss": 0.5701,
471
+ "step": 1320
472
+ },
473
+ {
474
+ "epoch": 1.1521926053310405,
475
+ "grad_norm": 5.171779155731201,
476
+ "learning_rate": 5.5333333333333334e-05,
477
+ "loss": 0.5485,
478
+ "step": 1340
479
+ },
480
+ {
481
+ "epoch": 1.16938950988822,
482
+ "grad_norm": 5.51332426071167,
483
+ "learning_rate": 5.466666666666666e-05,
484
+ "loss": 0.5515,
485
+ "step": 1360
486
+ },
487
+ {
488
+ "epoch": 1.1865864144454,
489
+ "grad_norm": 6.2720947265625,
490
+ "learning_rate": 5.4000000000000005e-05,
491
+ "loss": 0.5503,
492
+ "step": 1380
493
+ },
494
+ {
495
+ "epoch": 1.2037833190025795,
496
+ "grad_norm": 6.498877048492432,
497
+ "learning_rate": 5.333333333333333e-05,
498
+ "loss": 0.525,
499
+ "step": 1400
500
+ },
501
+ {
502
+ "epoch": 1.2209802235597593,
503
+ "grad_norm": 5.129275321960449,
504
+ "learning_rate": 5.266666666666666e-05,
505
+ "loss": 0.4942,
506
+ "step": 1420
507
+ },
508
+ {
509
+ "epoch": 1.238177128116939,
510
+ "grad_norm": 4.145976543426514,
511
+ "learning_rate": 5.2000000000000004e-05,
512
+ "loss": 0.4961,
513
+ "step": 1440
514
+ },
515
+ {
516
+ "epoch": 1.2553740326741187,
517
+ "grad_norm": 6.678504467010498,
518
+ "learning_rate": 5.133333333333333e-05,
519
+ "loss": 0.5032,
520
+ "step": 1460
521
+ },
522
+ {
523
+ "epoch": 1.2725709372312983,
524
+ "grad_norm": 6.846457481384277,
525
+ "learning_rate": 5.0666666666666674e-05,
526
+ "loss": 0.5322,
527
+ "step": 1480
528
+ },
529
+ {
530
+ "epoch": 1.2897678417884781,
531
+ "grad_norm": 7.58906888961792,
532
+ "learning_rate": 5e-05,
533
+ "loss": 0.477,
534
+ "step": 1500
535
+ },
536
+ {
537
+ "epoch": 1.3069647463456577,
538
+ "grad_norm": 5.045712947845459,
539
+ "learning_rate": 4.933333333333334e-05,
540
+ "loss": 0.5139,
541
+ "step": 1520
542
+ },
543
+ {
544
+ "epoch": 1.3241616509028376,
545
+ "grad_norm": 4.599825859069824,
546
+ "learning_rate": 4.866666666666667e-05,
547
+ "loss": 0.4997,
548
+ "step": 1540
549
+ },
550
+ {
551
+ "epoch": 1.3413585554600171,
552
+ "grad_norm": 5.756386756896973,
553
+ "learning_rate": 4.8e-05,
554
+ "loss": 0.4841,
555
+ "step": 1560
556
+ },
557
+ {
558
+ "epoch": 1.358555460017197,
559
+ "grad_norm": 4.89516544342041,
560
+ "learning_rate": 4.7333333333333336e-05,
561
+ "loss": 0.4183,
562
+ "step": 1580
563
+ },
564
+ {
565
+ "epoch": 1.3757523645743766,
566
+ "grad_norm": 4.484691143035889,
567
+ "learning_rate": 4.666666666666667e-05,
568
+ "loss": 0.4185,
569
+ "step": 1600
570
+ },
571
+ {
572
+ "epoch": 1.3929492691315564,
573
+ "grad_norm": 5.203677654266357,
574
+ "learning_rate": 4.600000000000001e-05,
575
+ "loss": 0.4097,
576
+ "step": 1620
577
+ },
578
+ {
579
+ "epoch": 1.410146173688736,
580
+ "grad_norm": 6.922574996948242,
581
+ "learning_rate": 4.5333333333333335e-05,
582
+ "loss": 0.4367,
583
+ "step": 1640
584
+ },
585
+ {
586
+ "epoch": 1.4273430782459158,
587
+ "grad_norm": 5.618770122528076,
588
+ "learning_rate": 4.466666666666667e-05,
589
+ "loss": 0.4453,
590
+ "step": 1660
591
+ },
592
+ {
593
+ "epoch": 1.4445399828030954,
594
+ "grad_norm": 4.377410888671875,
595
+ "learning_rate": 4.4000000000000006e-05,
596
+ "loss": 0.4416,
597
+ "step": 1680
598
+ },
599
+ {
600
+ "epoch": 1.4617368873602752,
601
+ "grad_norm": 7.413736343383789,
602
+ "learning_rate": 4.3333333333333334e-05,
603
+ "loss": 0.4488,
604
+ "step": 1700
605
+ },
606
+ {
607
+ "epoch": 1.4789337919174548,
608
+ "grad_norm": 4.4008049964904785,
609
+ "learning_rate": 4.266666666666667e-05,
610
+ "loss": 0.4167,
611
+ "step": 1720
612
+ },
613
+ {
614
+ "epoch": 1.4961306964746346,
615
+ "grad_norm": 5.33242130279541,
616
+ "learning_rate": 4.2e-05,
617
+ "loss": 0.486,
618
+ "step": 1740
619
+ },
620
+ {
621
+ "epoch": 1.5133276010318144,
622
+ "grad_norm": 7.043882369995117,
623
+ "learning_rate": 4.133333333333333e-05,
624
+ "loss": 0.407,
625
+ "step": 1760
626
+ },
627
+ {
628
+ "epoch": 1.530524505588994,
629
+ "grad_norm": 6.068751335144043,
630
+ "learning_rate": 4.066666666666667e-05,
631
+ "loss": 0.3846,
632
+ "step": 1780
633
+ },
634
+ {
635
+ "epoch": 1.5477214101461736,
636
+ "grad_norm": 5.452756404876709,
637
+ "learning_rate": 4e-05,
638
+ "loss": 0.4327,
639
+ "step": 1800
640
+ },
641
+ {
642
+ "epoch": 1.5649183147033534,
643
+ "grad_norm": 3.541025161743164,
644
+ "learning_rate": 3.933333333333333e-05,
645
+ "loss": 0.3734,
646
+ "step": 1820
647
+ },
648
+ {
649
+ "epoch": 1.5821152192605332,
650
+ "grad_norm": 6.634982585906982,
651
+ "learning_rate": 3.866666666666667e-05,
652
+ "loss": 0.3679,
653
+ "step": 1840
654
+ },
655
+ {
656
+ "epoch": 1.5993121238177128,
657
+ "grad_norm": 3.89568829536438,
658
+ "learning_rate": 3.8e-05,
659
+ "loss": 0.372,
660
+ "step": 1860
661
+ },
662
+ {
663
+ "epoch": 1.6165090283748924,
664
+ "grad_norm": 6.27597188949585,
665
+ "learning_rate": 3.733333333333334e-05,
666
+ "loss": 0.3971,
667
+ "step": 1880
668
+ },
669
+ {
670
+ "epoch": 1.6337059329320722,
671
+ "grad_norm": 3.7944319248199463,
672
+ "learning_rate": 3.6666666666666666e-05,
673
+ "loss": 0.3854,
674
+ "step": 1900
675
+ },
676
+ {
677
+ "epoch": 1.650902837489252,
678
+ "grad_norm": 4.370260238647461,
679
+ "learning_rate": 3.6e-05,
680
+ "loss": 0.3609,
681
+ "step": 1920
682
+ },
683
+ {
684
+ "epoch": 1.6680997420464316,
685
+ "grad_norm": 5.236139297485352,
686
+ "learning_rate": 3.5333333333333336e-05,
687
+ "loss": 0.3932,
688
+ "step": 1940
689
+ },
690
+ {
691
+ "epoch": 1.6852966466036112,
692
+ "grad_norm": 4.053391456604004,
693
+ "learning_rate": 3.466666666666667e-05,
694
+ "loss": 0.4073,
695
+ "step": 1960
696
+ },
697
+ {
698
+ "epoch": 1.702493551160791,
699
+ "grad_norm": 4.105246543884277,
700
+ "learning_rate": 3.4000000000000007e-05,
701
+ "loss": 0.3533,
702
+ "step": 1980
703
+ },
704
+ {
705
+ "epoch": 1.7196904557179709,
706
+ "grad_norm": 4.842738151550293,
707
+ "learning_rate": 3.3333333333333335e-05,
708
+ "loss": 0.3529,
709
+ "step": 2000
710
+ },
711
+ {
712
+ "epoch": 1.7368873602751504,
713
+ "grad_norm": 6.755301475524902,
714
+ "learning_rate": 3.266666666666667e-05,
715
+ "loss": 0.4043,
716
+ "step": 2020
717
+ },
718
+ {
719
+ "epoch": 1.75408426483233,
720
+ "grad_norm": 5.9597578048706055,
721
+ "learning_rate": 3.2000000000000005e-05,
722
+ "loss": 0.3603,
723
+ "step": 2040
724
+ },
725
+ {
726
+ "epoch": 1.7712811693895099,
727
+ "grad_norm": 3.4720447063446045,
728
+ "learning_rate": 3.1333333333333334e-05,
729
+ "loss": 0.3367,
730
+ "step": 2060
731
+ },
732
+ {
733
+ "epoch": 1.7884780739466897,
734
+ "grad_norm": 3.3950035572052,
735
+ "learning_rate": 3.066666666666667e-05,
736
+ "loss": 0.3333,
737
+ "step": 2080
738
+ },
739
+ {
740
+ "epoch": 1.8056749785038693,
741
+ "grad_norm": 3.364729642868042,
742
+ "learning_rate": 3e-05,
743
+ "loss": 0.3416,
744
+ "step": 2100
745
+ },
746
+ {
747
+ "epoch": 1.8228718830610489,
748
+ "grad_norm": 5.35959005355835,
749
+ "learning_rate": 2.9333333333333336e-05,
750
+ "loss": 0.3487,
751
+ "step": 2120
752
+ },
753
+ {
754
+ "epoch": 1.8400687876182287,
755
+ "grad_norm": 4.672595500946045,
756
+ "learning_rate": 2.8666666666666668e-05,
757
+ "loss": 0.3225,
758
+ "step": 2140
759
+ },
760
+ {
761
+ "epoch": 1.8572656921754085,
762
+ "grad_norm": 4.4767327308654785,
763
+ "learning_rate": 2.8000000000000003e-05,
764
+ "loss": 0.3306,
765
+ "step": 2160
766
+ },
767
+ {
768
+ "epoch": 1.874462596732588,
769
+ "grad_norm": 5.055034637451172,
770
+ "learning_rate": 2.733333333333333e-05,
771
+ "loss": 0.392,
772
+ "step": 2180
773
+ },
774
+ {
775
+ "epoch": 1.8916595012897677,
776
+ "grad_norm": 4.375268936157227,
777
+ "learning_rate": 2.6666666666666667e-05,
778
+ "loss": 0.3205,
779
+ "step": 2200
780
+ },
781
+ {
782
+ "epoch": 1.9088564058469477,
783
+ "grad_norm": 5.488368988037109,
784
+ "learning_rate": 2.6000000000000002e-05,
785
+ "loss": 0.3111,
786
+ "step": 2220
787
+ },
788
+ {
789
+ "epoch": 1.9260533104041273,
790
+ "grad_norm": 4.405417442321777,
791
+ "learning_rate": 2.5333333333333337e-05,
792
+ "loss": 0.3014,
793
+ "step": 2240
794
+ },
795
+ {
796
+ "epoch": 1.943250214961307,
797
+ "grad_norm": 3.466012716293335,
798
+ "learning_rate": 2.466666666666667e-05,
799
+ "loss": 0.2952,
800
+ "step": 2260
801
+ },
802
+ {
803
+ "epoch": 1.9604471195184867,
804
+ "grad_norm": 3.681208848953247,
805
+ "learning_rate": 2.4e-05,
806
+ "loss": 0.3012,
807
+ "step": 2280
808
+ },
809
+ {
810
+ "epoch": 1.9776440240756665,
811
+ "grad_norm": 6.128725528717041,
812
+ "learning_rate": 2.3333333333333336e-05,
813
+ "loss": 0.3056,
814
+ "step": 2300
815
+ },
816
+ {
817
+ "epoch": 1.9948409286328461,
818
+ "grad_norm": 4.9947333335876465,
819
+ "learning_rate": 2.2666666666666668e-05,
820
+ "loss": 0.3026,
821
+ "step": 2320
822
+ },
823
+ {
824
+ "epoch": 2.0120378331900257,
825
+ "grad_norm": 4.199079990386963,
826
+ "learning_rate": 2.2033333333333335e-05,
827
+ "loss": 0.3554,
828
+ "step": 2340
829
+ },
830
+ {
831
+ "epoch": 2.0292347377472053,
832
+ "grad_norm": 3.375105381011963,
833
+ "learning_rate": 2.1366666666666667e-05,
834
+ "loss": 0.2795,
835
+ "step": 2360
836
+ },
837
+ {
838
+ "epoch": 2.0464316423043853,
839
+ "grad_norm": 4.369241237640381,
840
+ "learning_rate": 2.07e-05,
841
+ "loss": 0.2719,
842
+ "step": 2380
843
+ },
844
+ {
845
+ "epoch": 2.063628546861565,
846
+ "grad_norm": 3.1906027793884277,
847
+ "learning_rate": 2.0033333333333334e-05,
848
+ "loss": 0.2681,
849
+ "step": 2400
850
+ },
851
+ {
852
+ "epoch": 2.0808254514187445,
853
+ "grad_norm": 3.7493109703063965,
854
+ "learning_rate": 1.9366666666666665e-05,
855
+ "loss": 0.2765,
856
+ "step": 2420
857
+ },
858
+ {
859
+ "epoch": 2.098022355975924,
860
+ "grad_norm": 4.610039234161377,
861
+ "learning_rate": 1.87e-05,
862
+ "loss": 0.2734,
863
+ "step": 2440
864
+ },
865
+ {
866
+ "epoch": 2.115219260533104,
867
+ "grad_norm": 3.996819019317627,
868
+ "learning_rate": 1.8033333333333336e-05,
869
+ "loss": 0.2732,
870
+ "step": 2460
871
+ },
872
+ {
873
+ "epoch": 2.1324161650902838,
874
+ "grad_norm": 3.3538951873779297,
875
+ "learning_rate": 1.7366666666666668e-05,
876
+ "loss": 0.2796,
877
+ "step": 2480
878
+ },
879
+ {
880
+ "epoch": 2.1496130696474633,
881
+ "grad_norm": 2.914961814880371,
882
+ "learning_rate": 1.6700000000000003e-05,
883
+ "loss": 0.2572,
884
+ "step": 2500
885
+ },
886
+ {
887
+ "epoch": 2.166809974204643,
888
+ "grad_norm": 3.70522141456604,
889
+ "learning_rate": 1.6033333333333335e-05,
890
+ "loss": 0.2914,
891
+ "step": 2520
892
+ },
893
+ {
894
+ "epoch": 2.184006878761823,
895
+ "grad_norm": 2.8733532428741455,
896
+ "learning_rate": 1.536666666666667e-05,
897
+ "loss": 0.2577,
898
+ "step": 2540
899
+ },
900
+ {
901
+ "epoch": 2.2012037833190026,
902
+ "grad_norm": 5.222810745239258,
903
+ "learning_rate": 1.47e-05,
904
+ "loss": 0.2805,
905
+ "step": 2560
906
+ },
907
+ {
908
+ "epoch": 2.218400687876182,
909
+ "grad_norm": 3.2695486545562744,
910
+ "learning_rate": 1.4033333333333335e-05,
911
+ "loss": 0.2716,
912
+ "step": 2580
913
+ },
914
+ {
915
+ "epoch": 2.235597592433362,
916
+ "grad_norm": 4.164505958557129,
917
+ "learning_rate": 1.3366666666666667e-05,
918
+ "loss": 0.2618,
919
+ "step": 2600
920
+ },
921
+ {
922
+ "epoch": 2.252794496990542,
923
+ "grad_norm": 3.265292167663574,
924
+ "learning_rate": 1.27e-05,
925
+ "loss": 0.2593,
926
+ "step": 2620
927
+ },
928
+ {
929
+ "epoch": 2.2699914015477214,
930
+ "grad_norm": 3.0533978939056396,
931
+ "learning_rate": 1.2033333333333334e-05,
932
+ "loss": 0.2661,
933
+ "step": 2640
934
+ },
935
+ {
936
+ "epoch": 2.287188306104901,
937
+ "grad_norm": 3.9265048503875732,
938
+ "learning_rate": 1.1366666666666667e-05,
939
+ "loss": 0.2634,
940
+ "step": 2660
941
+ },
942
+ {
943
+ "epoch": 2.304385210662081,
944
+ "grad_norm": 3.1227498054504395,
945
+ "learning_rate": 1.0700000000000001e-05,
946
+ "loss": 0.2477,
947
+ "step": 2680
948
+ },
949
+ {
950
+ "epoch": 2.3215821152192606,
951
+ "grad_norm": 2.6049001216888428,
952
+ "learning_rate": 1.0033333333333333e-05,
953
+ "loss": 0.2579,
954
+ "step": 2700
955
+ },
956
+ {
957
+ "epoch": 2.33877901977644,
958
+ "grad_norm": 3.21602201461792,
959
+ "learning_rate": 9.366666666666666e-06,
960
+ "loss": 0.2588,
961
+ "step": 2720
962
+ },
963
+ {
964
+ "epoch": 2.35597592433362,
965
+ "grad_norm": 2.96010160446167,
966
+ "learning_rate": 8.7e-06,
967
+ "loss": 0.2463,
968
+ "step": 2740
969
+ },
970
+ {
971
+ "epoch": 2.3731728288908,
972
+ "grad_norm": 2.7661256790161133,
973
+ "learning_rate": 8.033333333333335e-06,
974
+ "loss": 0.2422,
975
+ "step": 2760
976
+ },
977
+ {
978
+ "epoch": 2.3903697334479794,
979
+ "grad_norm": 3.1497080326080322,
980
+ "learning_rate": 7.3666666666666676e-06,
981
+ "loss": 0.2459,
982
+ "step": 2780
983
+ },
984
+ {
985
+ "epoch": 2.407566638005159,
986
+ "grad_norm": 3.7932960987091064,
987
+ "learning_rate": 6.700000000000001e-06,
988
+ "loss": 0.2375,
989
+ "step": 2800
990
+ },
991
+ {
992
+ "epoch": 2.4247635425623386,
993
+ "grad_norm": 2.217522382736206,
994
+ "learning_rate": 6.033333333333334e-06,
995
+ "loss": 0.2356,
996
+ "step": 2820
997
+ },
998
+ {
999
+ "epoch": 2.4419604471195187,
1000
+ "grad_norm": 2.5312998294830322,
1001
+ "learning_rate": 5.366666666666667e-06,
1002
+ "loss": 0.2359,
1003
+ "step": 2840
1004
+ },
1005
+ {
1006
+ "epoch": 2.4591573516766982,
1007
+ "grad_norm": 3.2574574947357178,
1008
+ "learning_rate": 4.7e-06,
1009
+ "loss": 0.2439,
1010
+ "step": 2860
1011
+ },
1012
+ {
1013
+ "epoch": 2.476354256233878,
1014
+ "grad_norm": 3.601336717605591,
1015
+ "learning_rate": 4.033333333333333e-06,
1016
+ "loss": 0.2566,
1017
+ "step": 2880
1018
+ },
1019
+ {
1020
+ "epoch": 2.4935511607910574,
1021
+ "grad_norm": 3.639084577560425,
1022
+ "learning_rate": 3.3666666666666665e-06,
1023
+ "loss": 0.2612,
1024
+ "step": 2900
1025
+ },
1026
+ {
1027
+ "epoch": 2.5107480653482375,
1028
+ "grad_norm": 3.7567994594573975,
1029
+ "learning_rate": 2.7e-06,
1030
+ "loss": 0.2439,
1031
+ "step": 2920
1032
+ },
1033
+ {
1034
+ "epoch": 2.527944969905417,
1035
+ "grad_norm": 3.882097005844116,
1036
+ "learning_rate": 2.033333333333333e-06,
1037
+ "loss": 0.2567,
1038
+ "step": 2940
1039
+ },
1040
+ {
1041
+ "epoch": 2.5451418744625967,
1042
+ "grad_norm": 3.611342430114746,
1043
+ "learning_rate": 1.3666666666666668e-06,
1044
+ "loss": 0.2582,
1045
+ "step": 2960
1046
+ },
1047
+ {
1048
+ "epoch": 2.5623387790197762,
1049
+ "grad_norm": 3.290154457092285,
1050
+ "learning_rate": 7.000000000000001e-07,
1051
+ "loss": 0.2398,
1052
+ "step": 2980
1053
+ },
1054
+ {
1055
+ "epoch": 2.5795356835769563,
1056
+ "grad_norm": 3.562819719314575,
1057
+ "learning_rate": 3.3333333333333334e-08,
1058
+ "loss": 0.2522,
1059
+ "step": 3000
1060
+ }
1061
+ ],
1062
+ "logging_steps": 20,
1063
+ "max_steps": 3000,
1064
+ "num_input_tokens_seen": 0,
1065
+ "num_train_epochs": 3,
1066
+ "save_steps": 500,
1067
+ "stateful_callbacks": {
1068
+ "TrainerControl": {
1069
+ "args": {
1070
+ "should_epoch_stop": false,
1071
+ "should_evaluate": false,
1072
+ "should_log": false,
1073
+ "should_save": true,
1074
+ "should_training_stop": true
1075
+ },
1076
+ "attributes": {}
1077
+ }
1078
+ },
1079
+ "total_flos": 1.5195758126481408e+17,
1080
+ "train_batch_size": 8,
1081
+ "trial_name": null,
1082
+ "trial_params": null
1083
+ }
outputs/checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:171c89f8ecd1388fc79e0fbedd3775495c90abd0688b87c0090ac48cd2e89673
3
+ size 5048
outputs/checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: beomi/KoAlpaca-Polyglot-5.8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.1.dev0
outputs/checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "beomi/KoAlpaca-Polyglot-5.8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
outputs/checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c7b031c7609e5755dcc7056d5c6b2dca7b550f94685d2045804e085e3e5acf7
3
+ size 14688200
outputs/checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c73a33b28554fb907899fb435d2eab64fc29a016c05aabef992fe56358e53e9f
3
+ size 29407610
outputs/checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1055de0c37662d81d1630d00c96187b856dd6b76fc95be222c5d5873a148015c
3
+ size 14244
outputs/checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:550a2f153663d8a0c54449bb5360e027e7367cf76d44cbcf1b726829b9919970
3
+ size 1064