sureshnam9 commited on
Commit
0e80b6a
·
verified ·
1 Parent(s): c9ee5b8

Add files using upload-large-folder tool

Browse files
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. LICENSE +49 -0
  3. README.md +312 -0
  4. USE_POLICY.md +73 -0
  5. config.json +39 -0
  6. generation_config.json +12 -0
  7. model-00002-of-00030.safetensors +3 -0
  8. model-00005-of-00030.safetensors +3 -0
  9. model-00006-of-00030.safetensors +3 -0
  10. model-00007-of-00030.safetensors +3 -0
  11. model-00011-of-00030.safetensors +3 -0
  12. model-00012-of-00030.safetensors +3 -0
  13. model-00015-of-00030.safetensors +3 -0
  14. model-00016-of-00030.safetensors +3 -0
  15. model-00017-of-00030.safetensors +3 -0
  16. model-00021-of-00030.safetensors +3 -0
  17. model-00022-of-00030.safetensors +3 -0
  18. model-00027-of-00030.safetensors +3 -0
  19. model-00030-of-00030.safetensors +3 -0
  20. model.safetensors.index.json +730 -0
  21. original/.gitattributes +35 -0
  22. original/README.md +11 -0
  23. original/checklist.chk +10 -0
  24. original/params.json +12 -0
  25. original/tokenizer.model +3 -0
  26. quant/g3/inc_output_hooks_maxabs_0_4.json +1 -0
  27. quant/g3/inc_output_hooks_maxabs_0_4.npz +3 -0
  28. quant/g3/inc_output_hooks_maxabs_0_4_mod_list.json +963 -0
  29. quant/g3/inc_output_hooks_maxabs_1_4.json +1 -0
  30. quant/g3/inc_output_hooks_maxabs_1_4.npz +3 -0
  31. quant/g3/inc_output_hooks_maxabs_1_4_mod_list.json +963 -0
  32. quant/g3/inc_output_hooks_maxabs_2_4.json +1 -0
  33. quant/g3/inc_output_hooks_maxabs_2_4.npz +3 -0
  34. quant/g3/inc_output_hooks_maxabs_2_4_mod_list.json +963 -0
  35. quant/g3/inc_output_hooks_maxabs_3_4.json +1 -0
  36. quant/g3/inc_output_hooks_maxabs_3_4.npz +3 -0
  37. quant/g3/inc_output_hooks_maxabs_3_4_mod_list.json +963 -0
  38. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.json +0 -0
  39. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.npz +3 -0
  40. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.json +0 -0
  41. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.npz +3 -0
  42. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.json +0 -0
  43. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.npz +3 -0
  44. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.json +0 -0
  45. quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.npz +3 -0
  46. quant/maxabs_measure_g3.json +1 -0
  47. quant/maxabs_quant_g3.json +1 -0
  48. special_tokens_map.json +4 -0
  49. tokenizer.json +3 -0
  50. tokenizer_config.json +2064 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **LLAMA 3.3 COMMUNITY LICENSE AGREEMENT**
2
+
3
+ Llama 3.3 Version Release Date: December 6, 2024
4
+
5
+ “**Agreement**” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
6
+
7
+ “**Documentation**” means the specifications, manuals and documentation accompanying Llama 3.3 distributed by Meta at [https://www.llama.com/docs/overview](https://llama.com/docs/overview).
8
+
9
+ “**Licensee**” or “**you**” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
10
+
11
+ “**Llama 3.3**” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at [https://www.llama.com/llama-downloads](https://www.llama.com/llama-downloads).
12
+
13
+ “**Llama Materials**” means, collectively, Meta’s proprietary Llama 3.3 and Documentation (and any portion thereof) made available under this Agreement.
14
+
15
+ “**Meta**” or “**we**” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). 
16
+
17
+ By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
18
+
19
+ 1\. **License Rights and Redistribution**.
20
+
21
+ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.  
22
+
23
+ b. Redistribution and Use.  
24
+
25
+ i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name.
26
+
27
+ ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. 
28
+
29
+ iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.3 is licensed under the Llama 3.3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”
30
+
31
+ iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at [https://www.llama.com/llama3\_3/use-policy](https://www.llama.com/llama3_3/use-policy)), which is hereby incorporated by reference into this Agreement.
32
+   
33
+ 2\. **Additional Commercial Terms**. If, on the Llama 3.3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
34
+
35
+ 3**. Disclaimer of Warranty**. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
36
+
37
+ 4\. **Limitation of Liability**. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
38
+
39
+ 5\. **Intellectual Property**.
40
+
41
+ a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at [https://about.meta.com/brand/resources/meta/company-brand/](https://about.meta.com/brand/resources/meta/company-brand/)[)](https://en.facebookbrand.com/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.
42
+
43
+ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
44
+
45
+ c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
46
+
47
+ 6\. **Term and Termination**. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 
48
+
49
+ 7\. **Governing Law and Jurisdiction**. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. 
README.md ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - en
5
+ - fr
6
+ - it
7
+ - pt
8
+ - hi
9
+ - es
10
+ - th
11
+ - de
12
+ base_model:
13
+ - meta-llama/Llama-3.1-70B
14
+ tags:
15
+ - facebook
16
+ - meta
17
+ - pytorch
18
+ - llama
19
+ - llama-3
20
+ extra_gated_prompt: "### LLAMA 3.3 COMMUNITY LICENSE AGREEMENT\nLlama 3.3 Version Release Date: December 6, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.3 distributed by Meta at [https://www.llama.com/docs/overview](https://llama.com/docs/overview).\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.3\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at [https://www.llama.com/llama-downloads](https://www.llama.com/llama-downloads).\n\"Llama Materials\" means, collectively, Meta’s proprietary Llama 3.3 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\nBy clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\_\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.3 is licensed under the Llama 3.3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy)), which is hereby incorporated by reference into this Agreement. \n2. Additional Commercial Terms. If, on the Llama 3.3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at [https://about.meta.com/brand/resources/meta/company-brand/](https://about.meta.com/brand/resources/meta/company-brand/)[)](https://en.facebookbrand.com/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.3 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.3. If you access or use Llama 3.3, you agree to this Acceptable Use Policy (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy).\nProhibited Uses\nWe want everyone to use Llama 3.3 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.3 to:\n1. Violate the law or others’ rights, including to:\n\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: \n 1. Violence or terrorism \n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material \n 3. Human trafficking, exploitation, and sexual violence \n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. \n 5. Sexual solicitation \n 6. Any other criminal activity\n\n 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\n 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n\n 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n\n 5. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n\n 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n\n 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n\n 8. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\n\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.3 related to the following:\n\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n\n 2. Guns and illegal weapons (including weapon development)\n\n 3. Illegal drugs and regulated/controlled substances\n\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n\n3. Intentionally deceive or mislead others, including use of Llama 3.3 related to the following:\n\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n\n 3. Generating, promoting, or further distributing spam\n\n 4. Impersonating another individual without consent, authorization, or legal right\n\n 5. Representing that the use of Llama 3.3 or outputs are human-generated\n\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n\n4. Fail to appropriately disclose to end users any known dangers of your AI system\n5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.3\nWith respect to any multimodal models included in Llama 3.3, the rights granted under Section 1(a) of the Llama 3.3 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\nPlease report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ) * Reporting risky content generated by the model: [developers.facebook.com/llama\\_output\\_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.3: LlamaUseReport@meta.com "
21
+ extra_gated_fields:
22
+ First Name: text
23
+ Last Name: text
24
+ Date of birth: date_picker
25
+ Country: country
26
+ Affiliation: text
27
+ Job title:
28
+ type: select
29
+ options:
30
+ - Student
31
+ - Research Graduate
32
+ - AI researcher
33
+ - AI developer/engineer
34
+ - Reporter
35
+ - Other
36
+ geo: ip_location
37
+ By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
38
+ extra_gated_description: >-
39
+ The information you provide will be collected, stored, processed and shared in
40
+ accordance with the [Meta Privacy
41
+ Policy](https://www.facebook.com/privacy/policy/).
42
+ extra_gated_button_content: Submit
43
+ license: llama3.3
44
+ ---
45
+ ## Model Information
46
+
47
+ The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks.
48
+
49
+ **Model developer**: Meta
50
+
51
+ **Model Architecture:** Llama 3.3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
52
+
53
+ | | Training Data | Params | Input modalities | Output modalities | Context length | GQA | Token count | Knowledge cutoff |
54
+ | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- |
55
+ | Llama 3.3 (text only) | A new mix of publicly available online data. | 70B | Multilingual Text | Multilingual Text and code | 128k | Yes | 15T+ | December 2023 |
56
+
57
+ **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
58
+
59
+ **Llama 3.3 model**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
60
+
61
+ **Model Release Date:**
62
+
63
+ * **70B Instruct: December 6, 2024**
64
+
65
+ **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
66
+
67
+ **License** A custom commercial license, the Llama 3.3 Community License Agreement, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3\_3/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE)
68
+
69
+ Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
70
+
71
+ ## Intended Use
72
+
73
+ **Intended Use Cases** Llama 3.3 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.3 model also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.3 Community License allows for these use cases.
74
+
75
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.3 Community License. Use in languages beyond those explicitly referenced as supported in this model card\*\*.
76
+
77
+ \*\*Note: Llama 3.3 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.3 models for languages beyond the 8 supported languages provided they comply with the Llama 3.3 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.3 in additional languages is done in a safe and responsible manner.
78
+
79
+ ## How to use
80
+
81
+ This repository contains two versions of Llama-3.3-70B-Instruct, for use with transformers and with the original `llama` codebase.
82
+
83
+ ### Use with transformers
84
+
85
+ Starting with `transformers >= 4.45.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
86
+
87
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
88
+
89
+ See the snippet below for usage with Transformers:
90
+
91
+ ```python
92
+ import transformers
93
+ import torch
94
+
95
+ model_id = "meta-llama/Llama-3.3-70B-Instruct"
96
+
97
+ pipeline = transformers.pipeline(
98
+ "text-generation",
99
+ model=model_id,
100
+ model_kwargs={"torch_dtype": torch.bfloat16},
101
+ device_map="auto",
102
+ )
103
+
104
+ messages = [
105
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
106
+ {"role": "user", "content": "Who are you?"},
107
+ ]
108
+
109
+ outputs = pipeline(
110
+ messages,
111
+ max_new_tokens=256,
112
+ )
113
+ print(outputs[0]["generated_text"][-1])
114
+ ```
115
+
116
+ ### Tool use with transformers
117
+
118
+ LLaMA-3.3 supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
119
+
120
+ Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
121
+ Here is a quick example showing a single simple tool:
122
+
123
+ ```python
124
+ # First, define a tool
125
+ def get_current_temperature(location: str) -> float:
126
+ """
127
+ Get the current temperature at a location.
128
+
129
+ Args:
130
+ location: The location to get the temperature for, in the format "City, Country"
131
+ Returns:
132
+ The current temperature at the specified location in the specified units, as a float.
133
+ """
134
+ return 22. # A real function should probably actually get the temperature!
135
+
136
+ # Next, create a chat and apply the chat template
137
+ messages = [
138
+ {"role": "system", "content": "You are a bot that responds to weather queries."},
139
+ {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
140
+ ]
141
+
142
+ inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
143
+ ```
144
+
145
+ You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
146
+
147
+ ```python
148
+ tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
149
+ messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
150
+ ```
151
+
152
+ and then call the tool and append the result, with the `tool` role, like so:
153
+
154
+ ```python
155
+ messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
156
+ ```
157
+
158
+ After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
159
+ see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
160
+
161
+
162
+ ### Use with `bitsandbytes`
163
+
164
+ The model checkpoints can be used in `8-bit` and `4-bit` for further memory optimisations using `bitsandbytes` and `transformers`
165
+
166
+ See the snippet below for usage:
167
+
168
+ ```python
169
+ import torch
170
+ from transformers import AutoModelForCausalLM, AutoTokenizer
171
+
172
+ model_id = "meta-llama/Llama-3.3-70B-Instruct"
173
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
174
+
175
+ quantized_model = AutoModelForCausalLM.from_pretrained(
176
+ model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
177
+
178
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
179
+ input_text = "What are we having for dinner?"
180
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
181
+
182
+ output = quantized_model.generate(**input_ids, max_new_tokens=10)
183
+
184
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
185
+ ```
186
+
187
+ To load in 4-bit simply pass `load_in_4bit=True`
188
+
189
+ ### Use with `llama`
190
+
191
+ Please, follow the instructions in the [repository](https://github.com/meta-llama/llama).
192
+
193
+ To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
194
+
195
+ ```
196
+ huggingface-cli download meta-llama/Llama-3.3-70B-Instruct --include "original/*" --local-dir Llama-3.3-70B-Instruct
197
+ ```
198
+
199
+ ## Hardware and Software
200
+
201
+ **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
202
+
203
+ **Training Energy Use** Training utilized a cumulative of **39.3**M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
204
+
205
+ ##
206
+
207
+ ## **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
208
+
209
+ | | Training Time (GPU hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) |
210
+ | :---- | :---: | :---: | :---: | :---: |
211
+ | Llama 3.3 70B | 7.0M | 700 | 2,040 | 0 |
212
+
213
+ ## The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
214
+
215
+ ## Training Data
216
+
217
+ **Overview:** Llama 3.3 was pretrained on \~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
218
+
219
+ **Data Freshness:** The pretraining data has a cutoff of December 2023\.
220
+
221
+ ## Benchmarks \- English Text
222
+
223
+ In this section, we report the results for Llama 3.3 relative to our previous models.
224
+
225
+ ### Instruction tuned models
226
+
227
+ ##
228
+
229
+ | Category | Benchmark | \# Shots | Metric | Llama 3.1 8B Instruct | Llama 3.1 70B Instruct | Llama-3.3 70B Instruct | Llama 3.1 405B Instruct |
230
+ | :---- | :---- | ----- | :---- | ----- | ----- | ----- | ----- |
231
+ | | MMLU (CoT) | 0 | macro\_avg/acc | 73.0 | 86.0 | 86.0 | 88.6 |
232
+ | | MMLU Pro (CoT) | 5 | macro\_avg/acc | 48.3 | 66.4 | 68.9 | 73.3 |
233
+ | Steerability | IFEval | | | 80.4 | 87.5 | 92.1 | 88.6 |
234
+ | Reasoning | GPQA Diamond (CoT) | 0 | acc | 31.8 | 48.0 | 50.5 | 49.0 |
235
+ | Code | HumanEval | 0 | pass@1 | 72.6 | 80.5 | 88.4 | 89.0 |
236
+ | | MBPP EvalPlus (base) | 0 | pass@1 | 72.8 | 86.0 | 87.6 | 88.6 |
237
+ | Math | MATH (CoT) | 0 | sympy\_intersection\_score | 51.9 | 68.0 | 77.0 | 73.8 |
238
+ | Tool Use | BFCL v2 | 0 | overall\_ast\_summary/macro\_avg/valid | 65.4 | 77.5 | 77.3 | 81.1 |
239
+ | Multilingual | MGSM | 0 | em | 68.9 | 86.9 | 91.1 | 91.6 |
240
+
241
+ ##
242
+
243
+ ## Responsibility & Safety
244
+
245
+ As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
246
+
247
+ * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
248
+ * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
249
+ * Provide protections for the community to help prevent the misuse of our models.
250
+
251
+ ### Responsible deployment
252
+
253
+ Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.3 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
254
+
255
+ #### Llama 3.3 instruct
256
+
257
+ Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
258
+
259
+ **Fine-tuning data**
260
+ We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
261
+
262
+ **Refusals and Tone**
263
+ Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
264
+
265
+ #### Llama 3.3 systems
266
+
267
+ **Large language models, including Llama 3.3, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
268
+ As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
269
+
270
+ #### Capability specific considerations
271
+
272
+ **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
273
+
274
+ **Multilinguality**: Llama 3.3 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
275
+
276
+ ### Evaluations
277
+
278
+ We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
279
+ Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
280
+
281
+ **Red teaming**
282
+ For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
283
+ We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. .
284
+
285
+ ### Critical and other risks
286
+
287
+ ### We specifically focused our efforts on mitigating the following critical risk areas:
288
+
289
+ **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
290
+ To assess risks related to proliferation of chemical and biological weapons of the Llama 3 family of models, we performed uplift testing designed to assess whether use of the Llama 3 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
291
+
292
+ ### **2\. Child Safety**
293
+
294
+ Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
295
+
296
+ **3\. Cyber attack enablement**
297
+ Our cyber attack uplift study investigated whether the Llama 3 family of LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
298
+ Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
299
+
300
+ ### Community
301
+
302
+ Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
303
+
304
+ We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
305
+
306
+ Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
307
+
308
+ ## Ethical Considerations and Limitations
309
+
310
+ The core values of Llama 3.3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
311
+
312
+ But Llama 3.3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.3 model, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
USE_POLICY.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **Llama 3.3** **Acceptable Use Policy**
2
+
3
+ Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.3. If you access or use Llama 3.3, you agree to this Acceptable Use Policy (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3\_3/use-policy](https://www.llama.com/llama3_3/use-policy).
4
+
5
+ **Prohibited Uses**
6
+
7
+ We want everyone to use Llama 3.3 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.3 to:
8
+
9
+ 1. Violate the law or others’ rights, including to:
10
+
11
+ 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
12
+ 1. Violence or terrorism
13
+ 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
14
+ 3. Human trafficking, exploitation, and sexual violence
15
+ 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
16
+ 5. Sexual solicitation
17
+ 6. Any other criminal activity
18
+
19
+ 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
20
+
21
+ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
22
+
23
+ 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
24
+
25
+ 5. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law
26
+
27
+ 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
28
+
29
+ 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
30
+
31
+ 8. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta 
32
+
33
+ 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.3 related to the following:
34
+
35
+ 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997
36
+
37
+ 2. Guns and illegal weapons (including weapon development)
38
+
39
+ 3. Illegal drugs and regulated/controlled substances
40
+
41
+ 4. Operation of critical infrastructure, transportation technologies, or heavy machinery
42
+
43
+ 5. Self-harm or harm to others, including suicide, cutting, and eating disorders
44
+
45
+ 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
46
+
47
+ 3. Intentionally deceive or mislead others, including use of Llama 3.3 related to the following:
48
+
49
+ 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
50
+
51
+ 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
52
+
53
+ 3. Generating, promoting, or further distributing spam
54
+
55
+ 4. Impersonating another individual without consent, authorization, or legal right
56
+
57
+ 5. Representing that the use of Llama 3.3 or outputs are human-generated
58
+
59
+ 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement 
60
+
61
+ 4. Fail to appropriately disclose to end users any known dangers of your AI system
62
+
63
+ 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.3
64
+
65
+ With respect to any multimodal models included in Llama 3.3, the rights granted under Section 1(a) of the Llama 3.3 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.
66
+
67
+ Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
68
+
69
+ * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)
70
+ * Reporting risky content generated by the model: [developers.facebook.com/llama\_output\_feedback](http://developers.facebook.com/llama_output_feedback)
71
+ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
72
+ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.3: LlamaUseReport@meta.com
73
+
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": [
9
+ 128001,
10
+ 128008,
11
+ 128009
12
+ ],
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 8192,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 28672,
18
+ "max_position_embeddings": 131072,
19
+ "mlp_bias": false,
20
+ "model_type": "llama",
21
+ "num_attention_heads": 64,
22
+ "num_hidden_layers": 80,
23
+ "num_key_value_heads": 8,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": {
27
+ "factor": 8.0,
28
+ "high_freq_factor": 4.0,
29
+ "low_freq_factor": 1.0,
30
+ "original_max_position_embeddings": 8192,
31
+ "rope_type": "llama3"
32
+ },
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "bfloat16",
36
+ "transformers_version": "4.47.0.dev0",
37
+ "use_cache": true,
38
+ "vocab_size": 128256
39
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.47.0.dev0"
12
+ }
model-00002-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcd250bf27cc5c51c2661eeb98f4d2de5525c6d466a0ee690bc80e29a917bcd4
3
+ size 4664167376
model-00005-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56e1ceef3622bef0a91b554a8dba1074b93f4f0eb1d28c38df112672fd31cb3f
3
+ size 4664134408
model-00006-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7662172fb0dd22f764869236f0a42c6f79fb385e5bced923936292cb8d94bb56
3
+ size 4664167408
model-00007-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c90f7ff73f765286f51799f512a8c1cfeb4f0a46c4f2831fc855dd7ee0a8b1
3
+ size 4664167408
model-00011-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:458aeafc39b1c137d7d11df3de45f2d9db3175363230e9290ec08d6531fcdd26
3
+ size 4664167408
model-00012-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:962683d58eb1aa7b7efa35451fbf21d605ab8eb718d854766db0cfb6bfca1f5a
3
+ size 4664167408
model-00015-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6622c84f6c07c1ca73dabbbc63c7e7842d98ba1a92bbe18d9f485718b12bf757
3
+ size 4664134408
model-00016-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87dd8ffa1c6fbefefac8bfd02e7c3001f1c6b31e2afe9859038e912b6712f884
3
+ size 4664167408
model-00017-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:302f92d01ba80999d73b93f4e4d90911b260e7e78c8e61605f43a775a77cadf8
3
+ size 4664167408
model-00021-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21097441bb201b3094daf3601a6fc9d98e3b62b9cd76182ff00d39de5c16bf93
3
+ size 4664167408
model-00022-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f2e5a40d0f563164874ceacb7f785481a908fc8fb46321217f39a6b9d2bad3f
3
+ size 4664167408
model-00027-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddff9ad869a4dd4df1d361cdd0f382937877908ded87da41b8bdf89f17ce64f3
3
+ size 4664167408
model-00030-of-00030.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0436c98c9b4f78e61f6769e588e0853179b970e2a084ae2886e2daebf1ce13d
3
+ size 2101346432
model.safetensors.index.json ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 141107412992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00030-of-00030.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00030.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00030.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00030.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00030.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00030.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00030.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00005-of-00030.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00005-of-00030.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00006-of-00030.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00006-of-00030.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00006-of-00030.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00007-of-00030.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00007-of-00030.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00007-of-00030.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00008-of-00030.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00008-of-00030.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00030.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00030.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00009-of-00030.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00009-of-00030.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00009-of-00030.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00010-of-00030.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00010-of-00030.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00011-of-00030.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00011-of-00030.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00011-of-00030.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00012-of-00030.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00030.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00012-of-00030.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00012-of-00030.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00013-of-00030.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00013-of-00030.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00013-of-00030.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00014-of-00030.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00014-of-00030.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00014-of-00030.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00015-of-00030.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00015-of-00030.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00030.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00016-of-00030.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00016-of-00030.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00016-of-00030.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00017-of-00030.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00017-of-00030.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00017-of-00030.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00018-of-00030.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00018-of-00030.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
395
+ "model.layers.48.input_layernorm.weight": "model-00018-of-00030.safetensors",
396
+ "model.layers.48.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
397
+ "model.layers.48.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
398
+ "model.layers.48.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
399
+ "model.layers.48.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
400
+ "model.layers.48.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
401
+ "model.layers.48.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
402
+ "model.layers.48.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
403
+ "model.layers.48.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
404
+ "model.layers.49.input_layernorm.weight": "model-00019-of-00030.safetensors",
405
+ "model.layers.49.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
406
+ "model.layers.49.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
407
+ "model.layers.49.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
408
+ "model.layers.49.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
409
+ "model.layers.49.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
410
+ "model.layers.49.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
411
+ "model.layers.49.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
412
+ "model.layers.49.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
413
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00030.safetensors",
414
+ "model.layers.5.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
415
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
416
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
417
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
418
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
419
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
420
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
421
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
422
+ "model.layers.50.input_layernorm.weight": "model-00019-of-00030.safetensors",
423
+ "model.layers.50.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
424
+ "model.layers.50.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
425
+ "model.layers.50.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
426
+ "model.layers.50.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
427
+ "model.layers.50.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
428
+ "model.layers.50.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
429
+ "model.layers.50.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
430
+ "model.layers.50.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
431
+ "model.layers.51.input_layernorm.weight": "model-00019-of-00030.safetensors",
432
+ "model.layers.51.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
433
+ "model.layers.51.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
434
+ "model.layers.51.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
435
+ "model.layers.51.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
436
+ "model.layers.51.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
437
+ "model.layers.51.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
438
+ "model.layers.51.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
439
+ "model.layers.51.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
440
+ "model.layers.52.input_layernorm.weight": "model-00020-of-00030.safetensors",
441
+ "model.layers.52.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
442
+ "model.layers.52.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
443
+ "model.layers.52.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
444
+ "model.layers.52.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
445
+ "model.layers.52.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
446
+ "model.layers.52.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
447
+ "model.layers.52.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
448
+ "model.layers.52.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
449
+ "model.layers.53.input_layernorm.weight": "model-00020-of-00030.safetensors",
450
+ "model.layers.53.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
451
+ "model.layers.53.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
452
+ "model.layers.53.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
453
+ "model.layers.53.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
454
+ "model.layers.53.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
455
+ "model.layers.53.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
456
+ "model.layers.53.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
457
+ "model.layers.53.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
458
+ "model.layers.54.input_layernorm.weight": "model-00021-of-00030.safetensors",
459
+ "model.layers.54.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
460
+ "model.layers.54.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
461
+ "model.layers.54.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
462
+ "model.layers.54.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
463
+ "model.layers.54.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
464
+ "model.layers.54.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
465
+ "model.layers.54.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
466
+ "model.layers.54.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
467
+ "model.layers.55.input_layernorm.weight": "model-00021-of-00030.safetensors",
468
+ "model.layers.55.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
469
+ "model.layers.55.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
470
+ "model.layers.55.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
471
+ "model.layers.55.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
472
+ "model.layers.55.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
473
+ "model.layers.55.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
474
+ "model.layers.55.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
475
+ "model.layers.55.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
476
+ "model.layers.56.input_layernorm.weight": "model-00021-of-00030.safetensors",
477
+ "model.layers.56.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
478
+ "model.layers.56.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
479
+ "model.layers.56.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
480
+ "model.layers.56.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
481
+ "model.layers.56.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
482
+ "model.layers.56.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
483
+ "model.layers.56.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
484
+ "model.layers.56.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
485
+ "model.layers.57.input_layernorm.weight": "model-00022-of-00030.safetensors",
486
+ "model.layers.57.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
487
+ "model.layers.57.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
488
+ "model.layers.57.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
489
+ "model.layers.57.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
490
+ "model.layers.57.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
491
+ "model.layers.57.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
492
+ "model.layers.57.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
493
+ "model.layers.57.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
494
+ "model.layers.58.input_layernorm.weight": "model-00022-of-00030.safetensors",
495
+ "model.layers.58.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
496
+ "model.layers.58.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
497
+ "model.layers.58.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
498
+ "model.layers.58.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
499
+ "model.layers.58.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
500
+ "model.layers.58.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
501
+ "model.layers.58.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
502
+ "model.layers.58.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
503
+ "model.layers.59.input_layernorm.weight": "model-00022-of-00030.safetensors",
504
+ "model.layers.59.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
505
+ "model.layers.59.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
506
+ "model.layers.59.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
507
+ "model.layers.59.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
508
+ "model.layers.59.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
509
+ "model.layers.59.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
510
+ "model.layers.59.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
511
+ "model.layers.59.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
512
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00030.safetensors",
513
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
514
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
515
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
516
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
517
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
518
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
519
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
520
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
521
+ "model.layers.60.input_layernorm.weight": "model-00023-of-00030.safetensors",
522
+ "model.layers.60.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
523
+ "model.layers.60.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
524
+ "model.layers.60.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
525
+ "model.layers.60.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
526
+ "model.layers.60.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
527
+ "model.layers.60.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
528
+ "model.layers.60.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
529
+ "model.layers.60.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
530
+ "model.layers.61.input_layernorm.weight": "model-00023-of-00030.safetensors",
531
+ "model.layers.61.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
532
+ "model.layers.61.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
533
+ "model.layers.61.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
534
+ "model.layers.61.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
535
+ "model.layers.61.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
536
+ "model.layers.61.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
537
+ "model.layers.61.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
538
+ "model.layers.61.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
539
+ "model.layers.62.input_layernorm.weight": "model-00023-of-00030.safetensors",
540
+ "model.layers.62.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
541
+ "model.layers.62.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
542
+ "model.layers.62.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
543
+ "model.layers.62.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
544
+ "model.layers.62.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
545
+ "model.layers.62.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
546
+ "model.layers.62.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
547
+ "model.layers.62.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
548
+ "model.layers.63.input_layernorm.weight": "model-00024-of-00030.safetensors",
549
+ "model.layers.63.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
550
+ "model.layers.63.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
551
+ "model.layers.63.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
552
+ "model.layers.63.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
553
+ "model.layers.63.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
554
+ "model.layers.63.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
555
+ "model.layers.63.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
556
+ "model.layers.63.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
557
+ "model.layers.64.input_layernorm.weight": "model-00024-of-00030.safetensors",
558
+ "model.layers.64.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
559
+ "model.layers.64.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
560
+ "model.layers.64.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
561
+ "model.layers.64.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
562
+ "model.layers.64.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
563
+ "model.layers.64.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
564
+ "model.layers.64.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
565
+ "model.layers.64.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
566
+ "model.layers.65.input_layernorm.weight": "model-00024-of-00030.safetensors",
567
+ "model.layers.65.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
568
+ "model.layers.65.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
569
+ "model.layers.65.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
570
+ "model.layers.65.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
571
+ "model.layers.65.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
572
+ "model.layers.65.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
573
+ "model.layers.65.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
574
+ "model.layers.65.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
575
+ "model.layers.66.input_layernorm.weight": "model-00025-of-00030.safetensors",
576
+ "model.layers.66.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
577
+ "model.layers.66.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
578
+ "model.layers.66.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
579
+ "model.layers.66.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
580
+ "model.layers.66.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
581
+ "model.layers.66.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
582
+ "model.layers.66.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
583
+ "model.layers.66.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
584
+ "model.layers.67.input_layernorm.weight": "model-00025-of-00030.safetensors",
585
+ "model.layers.67.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
586
+ "model.layers.67.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
587
+ "model.layers.67.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
588
+ "model.layers.67.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
589
+ "model.layers.67.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
590
+ "model.layers.67.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
591
+ "model.layers.67.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
592
+ "model.layers.67.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
593
+ "model.layers.68.input_layernorm.weight": "model-00026-of-00030.safetensors",
594
+ "model.layers.68.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
595
+ "model.layers.68.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
596
+ "model.layers.68.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
597
+ "model.layers.68.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
598
+ "model.layers.68.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
599
+ "model.layers.68.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
600
+ "model.layers.68.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
601
+ "model.layers.68.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
602
+ "model.layers.69.input_layernorm.weight": "model-00026-of-00030.safetensors",
603
+ "model.layers.69.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
604
+ "model.layers.69.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
605
+ "model.layers.69.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
606
+ "model.layers.69.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
607
+ "model.layers.69.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
608
+ "model.layers.69.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
609
+ "model.layers.69.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
610
+ "model.layers.69.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
611
+ "model.layers.7.input_layernorm.weight": "model-00004-of-00030.safetensors",
612
+ "model.layers.7.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
613
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
614
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
615
+ "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
616
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
617
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
618
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
619
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
620
+ "model.layers.70.input_layernorm.weight": "model-00026-of-00030.safetensors",
621
+ "model.layers.70.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
622
+ "model.layers.70.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
623
+ "model.layers.70.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
624
+ "model.layers.70.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
625
+ "model.layers.70.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
626
+ "model.layers.70.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
627
+ "model.layers.70.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
628
+ "model.layers.70.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
629
+ "model.layers.71.input_layernorm.weight": "model-00027-of-00030.safetensors",
630
+ "model.layers.71.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
631
+ "model.layers.71.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
632
+ "model.layers.71.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
633
+ "model.layers.71.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
634
+ "model.layers.71.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
635
+ "model.layers.71.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
636
+ "model.layers.71.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
637
+ "model.layers.71.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
638
+ "model.layers.72.input_layernorm.weight": "model-00027-of-00030.safetensors",
639
+ "model.layers.72.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
640
+ "model.layers.72.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
641
+ "model.layers.72.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
642
+ "model.layers.72.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
643
+ "model.layers.72.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
644
+ "model.layers.72.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
645
+ "model.layers.72.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
646
+ "model.layers.72.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
647
+ "model.layers.73.input_layernorm.weight": "model-00027-of-00030.safetensors",
648
+ "model.layers.73.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
649
+ "model.layers.73.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
650
+ "model.layers.73.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
651
+ "model.layers.73.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
652
+ "model.layers.73.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
653
+ "model.layers.73.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
654
+ "model.layers.73.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
655
+ "model.layers.73.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
656
+ "model.layers.74.input_layernorm.weight": "model-00028-of-00030.safetensors",
657
+ "model.layers.74.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
658
+ "model.layers.74.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
659
+ "model.layers.74.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
660
+ "model.layers.74.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
661
+ "model.layers.74.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
662
+ "model.layers.74.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
663
+ "model.layers.74.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
664
+ "model.layers.74.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
665
+ "model.layers.75.input_layernorm.weight": "model-00028-of-00030.safetensors",
666
+ "model.layers.75.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
667
+ "model.layers.75.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
668
+ "model.layers.75.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
669
+ "model.layers.75.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
670
+ "model.layers.75.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
671
+ "model.layers.75.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
672
+ "model.layers.75.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
673
+ "model.layers.75.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
674
+ "model.layers.76.input_layernorm.weight": "model-00028-of-00030.safetensors",
675
+ "model.layers.76.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
676
+ "model.layers.76.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
677
+ "model.layers.76.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
678
+ "model.layers.76.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
679
+ "model.layers.76.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
680
+ "model.layers.76.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
681
+ "model.layers.76.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
682
+ "model.layers.76.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
683
+ "model.layers.77.input_layernorm.weight": "model-00029-of-00030.safetensors",
684
+ "model.layers.77.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
685
+ "model.layers.77.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
686
+ "model.layers.77.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
687
+ "model.layers.77.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
688
+ "model.layers.77.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
689
+ "model.layers.77.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
690
+ "model.layers.77.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
691
+ "model.layers.77.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
692
+ "model.layers.78.input_layernorm.weight": "model-00029-of-00030.safetensors",
693
+ "model.layers.78.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
694
+ "model.layers.78.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
695
+ "model.layers.78.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
696
+ "model.layers.78.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
697
+ "model.layers.78.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
698
+ "model.layers.78.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
699
+ "model.layers.78.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
700
+ "model.layers.78.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
701
+ "model.layers.79.input_layernorm.weight": "model-00029-of-00030.safetensors",
702
+ "model.layers.79.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
703
+ "model.layers.79.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
704
+ "model.layers.79.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
705
+ "model.layers.79.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
706
+ "model.layers.79.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
707
+ "model.layers.79.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
708
+ "model.layers.79.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
709
+ "model.layers.79.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
710
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00030.safetensors",
711
+ "model.layers.8.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
712
+ "model.layers.8.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
713
+ "model.layers.8.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
714
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
715
+ "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
716
+ "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
717
+ "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
718
+ "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
719
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00030.safetensors",
720
+ "model.layers.9.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
721
+ "model.layers.9.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
722
+ "model.layers.9.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
723
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
724
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
725
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
726
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
727
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
728
+ "model.norm.weight": "model-00029-of-00030.safetensors"
729
+ }
730
+ }
original/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
original/README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ > [!IMPORTANT]
3
+ > This repository is a early-access checkpoint for Llama 3.1 70B.
4
+ > This repo contains only Meta provided original checkpoints. Hugging Face checkpoints are available here.
5
+
6
+ ```bash
7
+ You can invoke them via torchrun by doing the following:
8
+ CHECKPOINT_DIR=~/.llama/checkpoints/Llama3.1-70B-Instruct-2014-12/
9
+ pip install torch fairscale
10
+ torchrun --nproc_per_node 8 `which example_chat_completion` "$CHECKPOINT_DIR"
11
+ ```
original/checklist.chk ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ 5ca57571675ec096c1918c76326e31ab consolidated.00.pth
2
+ 2cb56d8cbe9aaf26552061e1602d6dc3 consolidated.01.pth
3
+ 90158e90c25112dfe037b94ad4779a8e consolidated.02.pth
4
+ 201b59b7fe63f0d7697fdab3de8b5ab3 consolidated.03.pth
5
+ 716740eb1c34e0a221192c871529c4f6 consolidated.04.pth
6
+ fa0787c90d69670a8d72084f37c264d0 consolidated.05.pth
7
+ 04d0acf24058c22ea13279276fba3a23 consolidated.06.pth
8
+ 1c0326797ca6a3c5d91c135e37257cec consolidated.07.pth
9
+ 0956af3a2c289b9d3005f4bc559d6bb8 params.json
10
+ 08292403f8b173e7524d7fba7bbbd2d3 tokenizer.model
original/params.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dim": 8192,
3
+ "n_layers": 80,
4
+ "n_heads": 64,
5
+ "n_kv_heads": 8,
6
+ "vocab_size": 128256,
7
+ "ffn_dim_multiplier": 1.3,
8
+ "multiple_of": 4096,
9
+ "norm_eps": 1e-05,
10
+ "rope_theta": 500000.0,
11
+ "use_scaled_rope": true
12
+ }
original/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82e9d31979e92ab929cd544440f129d9ecd797b69e327f80f17e1c50d5551b55
3
+ size 2183982
quant/g3/inc_output_hooks_maxabs_0_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GlobalRank": null, "LocalRank": 0, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[73.5]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.1201171875]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.443359375]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.251953125]], [[5.53125]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.1513671875]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[576.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[124.0]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.53125]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.1513671875]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[3.015625]], [[5.53125]], [[0.1513671875]]], "outputs": [[[0.1123046875]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[92.0]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[0.3203125]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[0.83203125]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[10.625]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.376953125]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.52734375]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[12.875]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.431640625]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.0625]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[12.875]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.431640625]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.5625]], [[12.875]], [[0.421875]]], "outputs": [[[0.376953125]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[4.46875]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[3.28125]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.53125]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[1.3828125]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.07470703125]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.189453125]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[11.4375]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.224609375]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.15625]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.328125]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[11.4375]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.224609375]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[11.0625]], [[0.2236328125]]], "outputs": [[[0.059814453125]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[1.21875]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.58984375]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.58984375]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[11.125]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.1015625]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.24609375]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[10.875]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.49609375]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.28125]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.515625]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[10.875]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.49609375]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[10.6875]], [[0.49609375]]], "outputs": [[[0.1015625]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[14.4375]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[50.75]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[1.96875]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.58984375]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.1318359375]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.39453125]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5546875]], [[16.0]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.82421875]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.4375]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[0.82421875]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[15.5]], [[0.82421875]]], "outputs": [[[0.08056640625]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[1.3828125]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.46875]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[0.73046875]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[0.42578125]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.06787109375]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.1748046875]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.671875]], [[10.375]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.609375]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[10.375]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[9.6875]], [[1.2421875]]], "outputs": [[[0.056884765625]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[10.9375]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[0.416015625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[0.412109375]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.58203125]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.16796875]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.138671875]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58203125]], [[16.625]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.7734375]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[16.625]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[0.7734375]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.03125]], [[15.8125]], [[0.70703125]]], "outputs": [[[0.138671875]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[0.435546875]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.322265625]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.5859375]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.1064453125]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.162109375]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58203125]], [[14.0]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3359375]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.125]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[1.3359375]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.1875]], [[1.234375]]], "outputs": [[[0.0703125]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.57421875]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[0.640625]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.341796875]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.33984375]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.1357421875]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.10400390625]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53125]], [[15.875]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.8671875]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.203125]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[15.875]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[0.8671875]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.4375]], [[14.8125]], [[0.734375]]], "outputs": [[[0.0966796875]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[1.8828125]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.8203125]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.275390625]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[0.357421875]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.2158203125]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.20703125]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53515625]], [[13.625]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0546875]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.25]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.0]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[1.0546875]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.25]], [[13.125]], [[0.97265625]]], "outputs": [[[0.11279296875]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[18.25]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[0.58984375]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.361328125]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.259765625]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.2255859375]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.13671875]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[13.125]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.671875]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.8125]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.859375]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[1.671875]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.28125]], [[12.375]], [[1.4921875]]], "outputs": [[[0.2255859375]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.54296875]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[1.2109375]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.373046875]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.52734375]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.171875]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.232421875]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5703125]], [[12.75]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.88671875]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.1875]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.21875]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[0.88671875]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[12.375]], [[0.79296875]]], "outputs": [[[0.150390625]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.859375]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.91796875]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.322265625]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.177734375]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.1865234375]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.57421875]], [[14.25]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.890625]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.21875]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.25]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[0.890625]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.125]], [[13.4375]], [[0.796875]]], "outputs": [[[0.1728515625]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.6875]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[0.61328125]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.2734375]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.220703125]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.291015625]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.169921875]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[17.25]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.109375]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.15625]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.75]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[17.25]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.109375]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[16.875]], [[1.0234375]]], "outputs": [[[0.28125]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.44140625]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[0.55078125]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.2392578125]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.283203125]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.3515625]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.13671875]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[12.25]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0703125]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.75]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.84375]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.0703125]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.15625]], [[11.3125]], [[1.03125]]], "outputs": [[[0.3125]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.60546875]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.26953125]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.2177734375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.302734375]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.162109375]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[10.75]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.921875]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.9375]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.875]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[10.75]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.921875]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.34375]], [[9.5625]], [[1.921875]]], "outputs": [[[0.302734375]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.35546875]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[0.8203125]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.431640625]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.1591796875]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.72265625]], [[15.5625]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.98046875]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.5625]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5625]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[15.5625]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[0.98046875]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.28125]], [[14.125]], [[0.85546875]]], "outputs": [[[0.326171875]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[0.640625]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[1.359375]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.283203125]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.28515625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.734375]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.2265625]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[12.0]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1171875]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.125]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.1171875]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.40625]], [[11.375]], [[1.1171875]]], "outputs": [[[0.478515625]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.388671875]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[1.578125]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.2265625]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.298828125]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.1337890625]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[12.25]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1171875]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.25]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.1171875]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[10.375]], [[0.95703125]]], "outputs": [[[0.447265625]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.3046875]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[2.21875]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[0.81640625]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.2890625]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[1.03125]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.2177734375]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.66796875]], [[15.125]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4609375]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[15.125]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.4609375]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.46875]], [[14.375]], [[1.328125]]], "outputs": [[[0.78515625]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.28125]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[2.421875]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.6015625]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.302734375]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.66796875]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.162109375]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[15.375]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8828125]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.375]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.625]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[15.375]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.8828125]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[15.375]], [[1.8828125]]], "outputs": [[[0.609375]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.7734375]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.453125]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.25390625]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.435546875]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.271484375]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[11.375]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2109375]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.34375]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[11.375]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[1.2109375]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.59375]], [[11.25]], [[1.125]]], "outputs": [[[0.306640625]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.3203125]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[1.8046875]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[0.365234375]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.3515625]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.49609375]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.388671875]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.81640625]], [[15.9375]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.15625]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.5]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[1.15625]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[15.0625]], [[1.0546875]]], "outputs": [[[0.41796875]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.34375]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[1.578125]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.41796875]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.40234375]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[0.439453125]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.93359375]], [[15.1875]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5546875]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.25]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.5]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[1.5546875]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.8125]], [[13.75]], [[1.5546875]]], "outputs": [[[0.439453125]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[2.359375]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.6015625]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.41796875]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.75390625]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.376953125]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.015625]], [[13.75]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.296875]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[26.375]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.375]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[1.296875]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.125]], [[13.75]], [[1.296875]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.69140625]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[2.5625]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.5625]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.314453125]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[1.0859375]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.44921875]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6796875]], [[11.6875]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.59375]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.0]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[11.6875]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[2.59375]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[11.1875]], [[2.59375]]], "outputs": [[[0.365234375]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.62109375]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[3.6875]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[1.125]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.328125]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[0.703125]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.3671875]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[14.25]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.6875]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.3125]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[4.6875]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.34375]], [[14.125]], [[4.6875]]], "outputs": [[[0.455078125]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.390625]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[2.3125]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.58203125]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.265625]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.62109375]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.380859375]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[17.25]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.390625]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[28.625]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.5625]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[17.25]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[1.390625]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.9375]], [[16.5]], [[1.390625]]], "outputs": [[[0.478515625]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.333984375]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[2.453125]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.7890625]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.32421875]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[0.6015625]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.2392578125]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9609375]], [[19.5]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.8125]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.875]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.3125]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[19.5]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[4.8125]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.4375]], [[18.625]], [[4.8125]]], "outputs": [[[0.6015625]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[0.50390625]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.58203125]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.310546875]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[1.1328125]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.9921875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.671875]], [[15.5]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[7.8125]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[48.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[15.5]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[7.8125]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[13.875]], [[7.8125]]], "outputs": [[[1.1328125]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.79296875]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[3.4375]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[1.484375]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.302734375]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.56640625]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.40234375]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[13.8125]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.234375]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.875]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[2.234375]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.4375]], [[13.1875]], [[2.234375]]], "outputs": [[[0.43359375]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.341796875]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[2.484375]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[0.6875]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.25390625]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.74609375]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.4921875]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[14.5]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.890625]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.625]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[14.5]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[1.890625]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.25]], [[14.5]], [[1.890625]]], "outputs": [[[0.63671875]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.349609375]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[2.09375]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.609375]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.2333984375]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[0.88671875]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.23828125]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[13.125]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.3125]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.5]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.1875]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[5.3125]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.59375]], [[12.3125]], [[5.3125]]], "outputs": [[[0.4140625]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[2.40625]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[1.6640625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.3125]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.306640625]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.80078125]], [[20.375]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.03125]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[45.0]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.375]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[20.375]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[2.03125]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[17.875]], [[2.03125]]], "outputs": [[[0.625]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[125.5]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[1.859375]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[0.478515625]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.8359375]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[2.375]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.84375]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[16.75]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.6875]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[50.25]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.375]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[4.6875]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[16.75]], [[4.6875]]], "outputs": [[[2.375]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.349609375]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[3.546875]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[0.515625]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.34375]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.671875]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.484375]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.81640625]], [[17.0]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.0]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[41.5]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.625]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[17.0]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[4.0]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[16.25]], [[4.0]]], "outputs": [[[0.453125]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.37109375]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[2.578125]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[0.59375]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.77734375]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.71484375]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.251953125]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[13.0625]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.375]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.5625]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[1.5]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[13.0]], [[1.1328125]]], "outputs": [[[0.640625]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.498046875]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[3.8125]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[0.84765625]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.62890625]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.9765625]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[0.7265625]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[17.625]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.046875]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.875]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[17.625]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[2.046875]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.9375]], [[16.125]], [[2.046875]]], "outputs": [[[0.57421875]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[2.3125]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[0.423828125]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.416015625]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.439453125]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6328125]], [[13.0625]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.171875]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.25]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.25]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[1.171875]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[12.5]], [[1.171875]]], "outputs": [[[0.3984375]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.4921875]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[3.546875]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.82421875]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.345703125]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[1.0390625]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[16.375]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.40625]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.5]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[1.40625]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.6875]], [[13.5]], [[1.171875]]], "outputs": [[[1.0390625]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.40234375]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[3.46875]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[0.6015625]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.2578125]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.69140625]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.5546875]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[14.4375]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5703125]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.8125]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[1.5703125]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.28125]], [[14.4375]], [[1.46875]]], "outputs": [[[0.48828125]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.380859375]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[7.1875]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[0.890625]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.33984375]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[0.431640625]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.36328125]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[13.6875]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.515625]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0625]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[13.6875]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[3.515625]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.0625]], [[3.515625]]], "outputs": [[[0.431640625]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.388671875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[4.90625]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[0.78515625]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.4140625]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.671875]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.54296875]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[12.4375]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.125]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[12.4375]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[6.125]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[11.75]], [[6.125]]], "outputs": [[[0.27734375]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.490234375]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[2.9375]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[1.5078125]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.56640625]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.91015625]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.3125]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[21.25]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.875]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.125]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[21.25]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[1.875]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[18.75]], [[1.2109375]]], "outputs": [[[0.6640625]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.32421875]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[2.578125]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.6796875]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.3046875]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.73046875]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6796875]], [[11.1875]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.40625]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.0]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[11.1875]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.40625]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0625]], [[10.375]], [[1.40625]]], "outputs": [[[0.431640625]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.421875]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[3.359375]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.5703125]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.408203125]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.9609375]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.34765625]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[15.0]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3671875]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.15625]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[1.3671875]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.71875]], [[14.625]], [[1.1015625]]], "outputs": [[[0.56640625]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.431640625]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[4.0625]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[0.91015625]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.7265625]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.283203125]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.18359375]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[16.5]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.53515625]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.0625]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.25]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[0.53515625]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.4375]], [[16.5]], [[0.53515625]]], "outputs": [[[0.283203125]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.498046875]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[3.4375]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.314453125]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.4765625]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.1767578125]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[12.4375]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.91796875]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[12.4375]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[0.91796875]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.71875]], [[11.0]], [[0.80859375]]], "outputs": [[[0.455078125]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.4296875]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[11.0]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[0.318359375]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.4375]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[1.0390625]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.44921875]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.435546875]], [[14.0625]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.125]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.953125]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[6.34375]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5]], [[14.0625]], [[6.34375]]], "outputs": [[[1.0390625]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.486328125]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[5.96875]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[0.37890625]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.458984375]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.77734375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.36328125]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.671875]], [[16.5]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.75]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[1.5]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.78125]], [[15.875]], [[1.1640625]]], "outputs": [[[0.48046875]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.58203125]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[4.21875]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[1.3046875]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.54296875]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.455078125]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.205078125]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.486328125]], [[13.8125]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.71875]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.3125]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.3125]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[0.71875]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.8125]], [[13.8125]], [[0.65234375]]], "outputs": [[[0.353515625]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.486328125]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[3.359375]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.244140625]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.94140625]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.1689453125]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[15.3125]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.25]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.4375]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.59375]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[1.25]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.375]], [[12.5625]], [[1.3046875]]], "outputs": [[[0.94140625]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.5703125]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[9.75]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[0.404296875]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.392578125]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[1.2265625]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.115234375]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[14.1875]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.125]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.625]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.1875]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[14.1875]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[2.125]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.46875]], [[13.125]], [[1.828125]]], "outputs": [[[0.625]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.484375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[4.625]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[0.59375]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.51953125]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.0986328125]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.97265625]], [[16.125]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.53125]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.3125]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.1875]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[1.53125]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.5]], [[16.125]], [[1.359375]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.94140625]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[4.75]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.53125]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.89453125]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.353515625]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5546875]], [[12.125]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.328125]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.0]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.8125]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[12.125]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[1.328125]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.1875]], [[11.3125]], [[1.1796875]]], "outputs": [[[0.66796875]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.375]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[6.1875]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[0.294921875]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.345703125]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.84765625]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[0.30859375]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[12.0]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.28125]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.1875]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.28125]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.75]], [[10.5]], [[1.21875]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.5703125]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[5.03125]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[0.5625]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.328125]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[1.0625]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.13671875]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0703125]], [[15.3125]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.5]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[2.453125]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.375]], [[13.25]], [[1.8828125]]], "outputs": [[[0.6171875]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.546875]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[8.875]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[0.306640625]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.35546875]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[1.078125]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.376953125]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0546875]], [[14.0]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.03125]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.3125]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[2.03125]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.9375]], [[14.0]], [[1.8515625]]], "outputs": [[[0.58203125]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.359375]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[6.03125]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.421875]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.5546875]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[1.2421875]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.2392578125]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.3828125]], [[13.625]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.84375]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.4375]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.21875]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[1.84375]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[14.625]], [[13.625]], [[1.6796875]]], "outputs": [[[0.921875]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.248046875]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[8.375]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.55078125]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.66796875]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.2578125]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[14.25]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.046875]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.6875]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.625]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[2.046875]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.15625]], [[14.0]], [[2.046875]]], "outputs": [[[0.54296875]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[8.25]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[1.0]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.33984375]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.4140625]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6796875]], [[15.6875]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.71875]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.125]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.6875]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[15.6875]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[1.71875]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[15.6875]], [[1.6328125]]], "outputs": [[[0.484375]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.365234375]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[4.625]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[0.80078125]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.62890625]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[1.2734375]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.3671875]], [[15.5]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.265625]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[28.5]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[15.5]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[3.265625]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.625]], [[14.4375]], [[3.265625]]], "outputs": [[[0.71484375]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.345703125]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[9.25]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.431640625]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.69921875]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.388671875]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.5703125]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.431640625]], [[20.0]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.875]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.3125]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[20.0]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[2.453125]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.53125]], [[20.0]], [[2.453125]]], "outputs": [[[0.388671875]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.40234375]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[8.875]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[0.4296875]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.63671875]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.392578125]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.2578125]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.486328125]], [[13.25]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.7421875]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[13.25]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[1.7421875]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.3125]], [[12.625]], [[1.734375]]], "outputs": [[[0.392578125]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.322265625]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[8.3125]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[0.88671875]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.345703125]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[0.83984375]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.318359375]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[17.75]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5390625]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.40625]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[1.5390625]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[14.0625]], [[1.1171875]]], "outputs": [[[0.59375]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.392578125]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[7.3125]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[1.1484375]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[1.96875]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[0.37109375]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[1.484375]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[10.6875]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.99609375]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.5]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[21.5]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[10.6875]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[0.99609375]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.9375]], [[10.6875]], [[0.7734375]]], "outputs": [[[0.37109375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.47265625]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[6.53125]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.51171875]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.5390625]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.89453125]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.314453125]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[13.5]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.125]], [[12.1875]], [[1.25]]], "outputs": [[[0.71875]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.58203125]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[6.46875]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[0.37890625]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.41796875]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[0.58984375]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.2734375]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53515625]], [[13.875]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2421875]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.46875]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[13.875]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[1.2421875]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[12.125]], [[1.046875]]], "outputs": [[[0.5625]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[8.5625]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.359375]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.384765625]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[0.9921875]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.2138671875]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[16.5]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5234375]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[1.5234375]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[15.25]], [[1.2421875]]], "outputs": [[[0.765625]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.56640625]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[7.625]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[0.302734375]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.412109375]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[0.79296875]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.05908203125]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53125]], [[13.875]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.203125]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.0]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[13.875]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[1.203125]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.40625]], [[12.75]], [[1.203125]]], "outputs": [[[0.58203125]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.419921875]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[8.875]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.412109375]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.32421875]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[2.71875]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.3671875]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[19.375]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.0625]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.0625]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[19.375]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[4.0625]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.375]], [[17.875]], [[4.0625]]], "outputs": [[[2.140625]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.671875]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[6.75]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[0.6484375]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.3515625]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[1.5625]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.3046875]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8359375]], [[18.75]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.484375]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[38.25]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.9375]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[18.75]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[2.484375]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.25]], [[15.8125]], [[2.015625]]], "outputs": [[[1.1171875]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.40625]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[5.90625]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.99609375]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.287109375]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.0859375]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[0.251953125]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[15.4375]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.875]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.625]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[15.4375]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[3.875]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.75]], [[13.625]], [[3.875]]], "outputs": [[[1.015625]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.3828125]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[7.28125]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[0.9375]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.359375]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.6015625]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9453125]], [[16.875]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.234375]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.875]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.3125]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[16.875]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[3.234375]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.25]], [[15.8125]], [[2.46875]]], "outputs": [[[0.9453125]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.5546875]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[11.0625]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[1.09375]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.3359375]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[1.6015625]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.353515625]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[20.875]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.21875]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.75]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[20.875]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[2.21875]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.0625]], [[17.875]], [[2.03125]]], "outputs": [[[1.078125]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.333984375]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[13.875]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[0.37890625]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.310546875]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[3.171875]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.27734375]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9375]], [[21.25]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.1875]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[36.25]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[21.25]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[4.1875]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.875]], [[20.375]], [[3.546875]]], "outputs": [[[1.96875]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.65234375]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[12.9375]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[1.296875]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.404296875]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.7890625]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.5]], [[14.875]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[61.25]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[25.625]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[14.875]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[2.46875]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.0625]], [[15.25]], [[2.0625]]], "outputs": [[[1.34375]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[12.375]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.65234375]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.4375]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[2.4375]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.27734375]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.77734375]], [[14.4375]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.03125]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.4375]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[3.03125]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.625]], [[12.125]], [[2.984375]]], "outputs": [[[1.7578125]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.46875]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[11.0625]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.64453125]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.8125]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[2.125]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.37890625]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[14.75]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.90625]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[63.75]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[27.125]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[14.75]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[2.90625]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.625]], [[13.0]], [[2.75]]], "outputs": [[[1.875]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.80859375]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[11.0]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.484375]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.44140625]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[1.296875]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.546875]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[13.625]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8046875]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[83.5]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[43.5]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[1.8046875]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.28125]], [[12.25]], [[1.2734375]]], "outputs": [[[0.85546875]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.62109375]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[33.0]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.8046875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.2734375]]}}}}
quant/g3/inc_output_hooks_maxabs_0_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d64e1115a72cd44b8a9affdb33aa9b404b98af1aafb8e82a5b98a14f5904f8c
3
+ size 206298
quant/g3/inc_output_hooks_maxabs_0_4_mod_list.json ADDED
@@ -0,0 +1,963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ "model.layers.0.self_attn.qkv_proj",
3
+ "model.layers.0.self_attn.o_proj",
4
+ "model.layers.0.self_attn.attn.impl.matmul_qk",
5
+ "model.layers.0.self_attn.attn.impl.softmax",
6
+ "model.layers.0.self_attn.attn.impl.matmul_av",
7
+ "model.layers.0.self_attn.attn.impl.batch2block_matmul",
8
+ "model.layers.0.self_attn.attn.impl.block2batch_matmul",
9
+ "model.layers.0.self_attn.attn.impl.k_cache",
10
+ "model.layers.0.self_attn.attn.impl.v_cache",
11
+ "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
12
+ "model.layers.0.mlp.gate_up_proj",
13
+ "model.layers.0.mlp.down_proj",
14
+ "model.layers.1.self_attn.qkv_proj",
15
+ "model.layers.1.self_attn.o_proj",
16
+ "model.layers.1.self_attn.attn.impl.matmul_qk",
17
+ "model.layers.1.self_attn.attn.impl.softmax",
18
+ "model.layers.1.self_attn.attn.impl.matmul_av",
19
+ "model.layers.1.self_attn.attn.impl.batch2block_matmul",
20
+ "model.layers.1.self_attn.attn.impl.block2batch_matmul",
21
+ "model.layers.1.self_attn.attn.impl.k_cache",
22
+ "model.layers.1.self_attn.attn.impl.v_cache",
23
+ "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
24
+ "model.layers.1.mlp.gate_up_proj",
25
+ "model.layers.1.mlp.down_proj",
26
+ "model.layers.2.self_attn.qkv_proj",
27
+ "model.layers.2.self_attn.o_proj",
28
+ "model.layers.2.self_attn.attn.impl.matmul_qk",
29
+ "model.layers.2.self_attn.attn.impl.softmax",
30
+ "model.layers.2.self_attn.attn.impl.matmul_av",
31
+ "model.layers.2.self_attn.attn.impl.batch2block_matmul",
32
+ "model.layers.2.self_attn.attn.impl.block2batch_matmul",
33
+ "model.layers.2.self_attn.attn.impl.k_cache",
34
+ "model.layers.2.self_attn.attn.impl.v_cache",
35
+ "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
36
+ "model.layers.2.mlp.gate_up_proj",
37
+ "model.layers.2.mlp.down_proj",
38
+ "model.layers.3.self_attn.qkv_proj",
39
+ "model.layers.3.self_attn.o_proj",
40
+ "model.layers.3.self_attn.attn.impl.matmul_qk",
41
+ "model.layers.3.self_attn.attn.impl.softmax",
42
+ "model.layers.3.self_attn.attn.impl.matmul_av",
43
+ "model.layers.3.self_attn.attn.impl.batch2block_matmul",
44
+ "model.layers.3.self_attn.attn.impl.block2batch_matmul",
45
+ "model.layers.3.self_attn.attn.impl.k_cache",
46
+ "model.layers.3.self_attn.attn.impl.v_cache",
47
+ "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
48
+ "model.layers.3.mlp.gate_up_proj",
49
+ "model.layers.3.mlp.down_proj",
50
+ "model.layers.4.self_attn.qkv_proj",
51
+ "model.layers.4.self_attn.o_proj",
52
+ "model.layers.4.self_attn.attn.impl.matmul_qk",
53
+ "model.layers.4.self_attn.attn.impl.softmax",
54
+ "model.layers.4.self_attn.attn.impl.matmul_av",
55
+ "model.layers.4.self_attn.attn.impl.batch2block_matmul",
56
+ "model.layers.4.self_attn.attn.impl.block2batch_matmul",
57
+ "model.layers.4.self_attn.attn.impl.k_cache",
58
+ "model.layers.4.self_attn.attn.impl.v_cache",
59
+ "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
60
+ "model.layers.4.mlp.gate_up_proj",
61
+ "model.layers.4.mlp.down_proj",
62
+ "model.layers.5.self_attn.qkv_proj",
63
+ "model.layers.5.self_attn.o_proj",
64
+ "model.layers.5.self_attn.attn.impl.matmul_qk",
65
+ "model.layers.5.self_attn.attn.impl.softmax",
66
+ "model.layers.5.self_attn.attn.impl.matmul_av",
67
+ "model.layers.5.self_attn.attn.impl.batch2block_matmul",
68
+ "model.layers.5.self_attn.attn.impl.block2batch_matmul",
69
+ "model.layers.5.self_attn.attn.impl.k_cache",
70
+ "model.layers.5.self_attn.attn.impl.v_cache",
71
+ "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
72
+ "model.layers.5.mlp.gate_up_proj",
73
+ "model.layers.5.mlp.down_proj",
74
+ "model.layers.6.self_attn.qkv_proj",
75
+ "model.layers.6.self_attn.o_proj",
76
+ "model.layers.6.self_attn.attn.impl.matmul_qk",
77
+ "model.layers.6.self_attn.attn.impl.softmax",
78
+ "model.layers.6.self_attn.attn.impl.matmul_av",
79
+ "model.layers.6.self_attn.attn.impl.batch2block_matmul",
80
+ "model.layers.6.self_attn.attn.impl.block2batch_matmul",
81
+ "model.layers.6.self_attn.attn.impl.k_cache",
82
+ "model.layers.6.self_attn.attn.impl.v_cache",
83
+ "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
84
+ "model.layers.6.mlp.gate_up_proj",
85
+ "model.layers.6.mlp.down_proj",
86
+ "model.layers.7.self_attn.qkv_proj",
87
+ "model.layers.7.self_attn.o_proj",
88
+ "model.layers.7.self_attn.attn.impl.matmul_qk",
89
+ "model.layers.7.self_attn.attn.impl.softmax",
90
+ "model.layers.7.self_attn.attn.impl.matmul_av",
91
+ "model.layers.7.self_attn.attn.impl.batch2block_matmul",
92
+ "model.layers.7.self_attn.attn.impl.block2batch_matmul",
93
+ "model.layers.7.self_attn.attn.impl.k_cache",
94
+ "model.layers.7.self_attn.attn.impl.v_cache",
95
+ "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
96
+ "model.layers.7.mlp.gate_up_proj",
97
+ "model.layers.7.mlp.down_proj",
98
+ "model.layers.8.self_attn.qkv_proj",
99
+ "model.layers.8.self_attn.o_proj",
100
+ "model.layers.8.self_attn.attn.impl.matmul_qk",
101
+ "model.layers.8.self_attn.attn.impl.softmax",
102
+ "model.layers.8.self_attn.attn.impl.matmul_av",
103
+ "model.layers.8.self_attn.attn.impl.batch2block_matmul",
104
+ "model.layers.8.self_attn.attn.impl.block2batch_matmul",
105
+ "model.layers.8.self_attn.attn.impl.k_cache",
106
+ "model.layers.8.self_attn.attn.impl.v_cache",
107
+ "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
108
+ "model.layers.8.mlp.gate_up_proj",
109
+ "model.layers.8.mlp.down_proj",
110
+ "model.layers.9.self_attn.qkv_proj",
111
+ "model.layers.9.self_attn.o_proj",
112
+ "model.layers.9.self_attn.attn.impl.matmul_qk",
113
+ "model.layers.9.self_attn.attn.impl.softmax",
114
+ "model.layers.9.self_attn.attn.impl.matmul_av",
115
+ "model.layers.9.self_attn.attn.impl.batch2block_matmul",
116
+ "model.layers.9.self_attn.attn.impl.block2batch_matmul",
117
+ "model.layers.9.self_attn.attn.impl.k_cache",
118
+ "model.layers.9.self_attn.attn.impl.v_cache",
119
+ "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
120
+ "model.layers.9.mlp.gate_up_proj",
121
+ "model.layers.9.mlp.down_proj",
122
+ "model.layers.10.self_attn.qkv_proj",
123
+ "model.layers.10.self_attn.o_proj",
124
+ "model.layers.10.self_attn.attn.impl.matmul_qk",
125
+ "model.layers.10.self_attn.attn.impl.softmax",
126
+ "model.layers.10.self_attn.attn.impl.matmul_av",
127
+ "model.layers.10.self_attn.attn.impl.batch2block_matmul",
128
+ "model.layers.10.self_attn.attn.impl.block2batch_matmul",
129
+ "model.layers.10.self_attn.attn.impl.k_cache",
130
+ "model.layers.10.self_attn.attn.impl.v_cache",
131
+ "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
132
+ "model.layers.10.mlp.gate_up_proj",
133
+ "model.layers.10.mlp.down_proj",
134
+ "model.layers.11.self_attn.qkv_proj",
135
+ "model.layers.11.self_attn.o_proj",
136
+ "model.layers.11.self_attn.attn.impl.matmul_qk",
137
+ "model.layers.11.self_attn.attn.impl.softmax",
138
+ "model.layers.11.self_attn.attn.impl.matmul_av",
139
+ "model.layers.11.self_attn.attn.impl.batch2block_matmul",
140
+ "model.layers.11.self_attn.attn.impl.block2batch_matmul",
141
+ "model.layers.11.self_attn.attn.impl.k_cache",
142
+ "model.layers.11.self_attn.attn.impl.v_cache",
143
+ "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
144
+ "model.layers.11.mlp.gate_up_proj",
145
+ "model.layers.11.mlp.down_proj",
146
+ "model.layers.12.self_attn.qkv_proj",
147
+ "model.layers.12.self_attn.o_proj",
148
+ "model.layers.12.self_attn.attn.impl.matmul_qk",
149
+ "model.layers.12.self_attn.attn.impl.softmax",
150
+ "model.layers.12.self_attn.attn.impl.matmul_av",
151
+ "model.layers.12.self_attn.attn.impl.batch2block_matmul",
152
+ "model.layers.12.self_attn.attn.impl.block2batch_matmul",
153
+ "model.layers.12.self_attn.attn.impl.k_cache",
154
+ "model.layers.12.self_attn.attn.impl.v_cache",
155
+ "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
156
+ "model.layers.12.mlp.gate_up_proj",
157
+ "model.layers.12.mlp.down_proj",
158
+ "model.layers.13.self_attn.qkv_proj",
159
+ "model.layers.13.self_attn.o_proj",
160
+ "model.layers.13.self_attn.attn.impl.matmul_qk",
161
+ "model.layers.13.self_attn.attn.impl.softmax",
162
+ "model.layers.13.self_attn.attn.impl.matmul_av",
163
+ "model.layers.13.self_attn.attn.impl.batch2block_matmul",
164
+ "model.layers.13.self_attn.attn.impl.block2batch_matmul",
165
+ "model.layers.13.self_attn.attn.impl.k_cache",
166
+ "model.layers.13.self_attn.attn.impl.v_cache",
167
+ "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
168
+ "model.layers.13.mlp.gate_up_proj",
169
+ "model.layers.13.mlp.down_proj",
170
+ "model.layers.14.self_attn.qkv_proj",
171
+ "model.layers.14.self_attn.o_proj",
172
+ "model.layers.14.self_attn.attn.impl.matmul_qk",
173
+ "model.layers.14.self_attn.attn.impl.softmax",
174
+ "model.layers.14.self_attn.attn.impl.matmul_av",
175
+ "model.layers.14.self_attn.attn.impl.batch2block_matmul",
176
+ "model.layers.14.self_attn.attn.impl.block2batch_matmul",
177
+ "model.layers.14.self_attn.attn.impl.k_cache",
178
+ "model.layers.14.self_attn.attn.impl.v_cache",
179
+ "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
180
+ "model.layers.14.mlp.gate_up_proj",
181
+ "model.layers.14.mlp.down_proj",
182
+ "model.layers.15.self_attn.qkv_proj",
183
+ "model.layers.15.self_attn.o_proj",
184
+ "model.layers.15.self_attn.attn.impl.matmul_qk",
185
+ "model.layers.15.self_attn.attn.impl.softmax",
186
+ "model.layers.15.self_attn.attn.impl.matmul_av",
187
+ "model.layers.15.self_attn.attn.impl.batch2block_matmul",
188
+ "model.layers.15.self_attn.attn.impl.block2batch_matmul",
189
+ "model.layers.15.self_attn.attn.impl.k_cache",
190
+ "model.layers.15.self_attn.attn.impl.v_cache",
191
+ "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
192
+ "model.layers.15.mlp.gate_up_proj",
193
+ "model.layers.15.mlp.down_proj",
194
+ "model.layers.16.self_attn.qkv_proj",
195
+ "model.layers.16.self_attn.o_proj",
196
+ "model.layers.16.self_attn.attn.impl.matmul_qk",
197
+ "model.layers.16.self_attn.attn.impl.softmax",
198
+ "model.layers.16.self_attn.attn.impl.matmul_av",
199
+ "model.layers.16.self_attn.attn.impl.batch2block_matmul",
200
+ "model.layers.16.self_attn.attn.impl.block2batch_matmul",
201
+ "model.layers.16.self_attn.attn.impl.k_cache",
202
+ "model.layers.16.self_attn.attn.impl.v_cache",
203
+ "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
204
+ "model.layers.16.mlp.gate_up_proj",
205
+ "model.layers.16.mlp.down_proj",
206
+ "model.layers.17.self_attn.qkv_proj",
207
+ "model.layers.17.self_attn.o_proj",
208
+ "model.layers.17.self_attn.attn.impl.matmul_qk",
209
+ "model.layers.17.self_attn.attn.impl.softmax",
210
+ "model.layers.17.self_attn.attn.impl.matmul_av",
211
+ "model.layers.17.self_attn.attn.impl.batch2block_matmul",
212
+ "model.layers.17.self_attn.attn.impl.block2batch_matmul",
213
+ "model.layers.17.self_attn.attn.impl.k_cache",
214
+ "model.layers.17.self_attn.attn.impl.v_cache",
215
+ "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
216
+ "model.layers.17.mlp.gate_up_proj",
217
+ "model.layers.17.mlp.down_proj",
218
+ "model.layers.18.self_attn.qkv_proj",
219
+ "model.layers.18.self_attn.o_proj",
220
+ "model.layers.18.self_attn.attn.impl.matmul_qk",
221
+ "model.layers.18.self_attn.attn.impl.softmax",
222
+ "model.layers.18.self_attn.attn.impl.matmul_av",
223
+ "model.layers.18.self_attn.attn.impl.batch2block_matmul",
224
+ "model.layers.18.self_attn.attn.impl.block2batch_matmul",
225
+ "model.layers.18.self_attn.attn.impl.k_cache",
226
+ "model.layers.18.self_attn.attn.impl.v_cache",
227
+ "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
228
+ "model.layers.18.mlp.gate_up_proj",
229
+ "model.layers.18.mlp.down_proj",
230
+ "model.layers.19.self_attn.qkv_proj",
231
+ "model.layers.19.self_attn.o_proj",
232
+ "model.layers.19.self_attn.attn.impl.matmul_qk",
233
+ "model.layers.19.self_attn.attn.impl.softmax",
234
+ "model.layers.19.self_attn.attn.impl.matmul_av",
235
+ "model.layers.19.self_attn.attn.impl.batch2block_matmul",
236
+ "model.layers.19.self_attn.attn.impl.block2batch_matmul",
237
+ "model.layers.19.self_attn.attn.impl.k_cache",
238
+ "model.layers.19.self_attn.attn.impl.v_cache",
239
+ "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
240
+ "model.layers.19.mlp.gate_up_proj",
241
+ "model.layers.19.mlp.down_proj",
242
+ "model.layers.20.self_attn.qkv_proj",
243
+ "model.layers.20.self_attn.o_proj",
244
+ "model.layers.20.self_attn.attn.impl.matmul_qk",
245
+ "model.layers.20.self_attn.attn.impl.softmax",
246
+ "model.layers.20.self_attn.attn.impl.matmul_av",
247
+ "model.layers.20.self_attn.attn.impl.batch2block_matmul",
248
+ "model.layers.20.self_attn.attn.impl.block2batch_matmul",
249
+ "model.layers.20.self_attn.attn.impl.k_cache",
250
+ "model.layers.20.self_attn.attn.impl.v_cache",
251
+ "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
252
+ "model.layers.20.mlp.gate_up_proj",
253
+ "model.layers.20.mlp.down_proj",
254
+ "model.layers.21.self_attn.qkv_proj",
255
+ "model.layers.21.self_attn.o_proj",
256
+ "model.layers.21.self_attn.attn.impl.matmul_qk",
257
+ "model.layers.21.self_attn.attn.impl.softmax",
258
+ "model.layers.21.self_attn.attn.impl.matmul_av",
259
+ "model.layers.21.self_attn.attn.impl.batch2block_matmul",
260
+ "model.layers.21.self_attn.attn.impl.block2batch_matmul",
261
+ "model.layers.21.self_attn.attn.impl.k_cache",
262
+ "model.layers.21.self_attn.attn.impl.v_cache",
263
+ "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
264
+ "model.layers.21.mlp.gate_up_proj",
265
+ "model.layers.21.mlp.down_proj",
266
+ "model.layers.22.self_attn.qkv_proj",
267
+ "model.layers.22.self_attn.o_proj",
268
+ "model.layers.22.self_attn.attn.impl.matmul_qk",
269
+ "model.layers.22.self_attn.attn.impl.softmax",
270
+ "model.layers.22.self_attn.attn.impl.matmul_av",
271
+ "model.layers.22.self_attn.attn.impl.batch2block_matmul",
272
+ "model.layers.22.self_attn.attn.impl.block2batch_matmul",
273
+ "model.layers.22.self_attn.attn.impl.k_cache",
274
+ "model.layers.22.self_attn.attn.impl.v_cache",
275
+ "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
276
+ "model.layers.22.mlp.gate_up_proj",
277
+ "model.layers.22.mlp.down_proj",
278
+ "model.layers.23.self_attn.qkv_proj",
279
+ "model.layers.23.self_attn.o_proj",
280
+ "model.layers.23.self_attn.attn.impl.matmul_qk",
281
+ "model.layers.23.self_attn.attn.impl.softmax",
282
+ "model.layers.23.self_attn.attn.impl.matmul_av",
283
+ "model.layers.23.self_attn.attn.impl.batch2block_matmul",
284
+ "model.layers.23.self_attn.attn.impl.block2batch_matmul",
285
+ "model.layers.23.self_attn.attn.impl.k_cache",
286
+ "model.layers.23.self_attn.attn.impl.v_cache",
287
+ "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
288
+ "model.layers.23.mlp.gate_up_proj",
289
+ "model.layers.23.mlp.down_proj",
290
+ "model.layers.24.self_attn.qkv_proj",
291
+ "model.layers.24.self_attn.o_proj",
292
+ "model.layers.24.self_attn.attn.impl.matmul_qk",
293
+ "model.layers.24.self_attn.attn.impl.softmax",
294
+ "model.layers.24.self_attn.attn.impl.matmul_av",
295
+ "model.layers.24.self_attn.attn.impl.batch2block_matmul",
296
+ "model.layers.24.self_attn.attn.impl.block2batch_matmul",
297
+ "model.layers.24.self_attn.attn.impl.k_cache",
298
+ "model.layers.24.self_attn.attn.impl.v_cache",
299
+ "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
300
+ "model.layers.24.mlp.gate_up_proj",
301
+ "model.layers.24.mlp.down_proj",
302
+ "model.layers.25.self_attn.qkv_proj",
303
+ "model.layers.25.self_attn.o_proj",
304
+ "model.layers.25.self_attn.attn.impl.matmul_qk",
305
+ "model.layers.25.self_attn.attn.impl.softmax",
306
+ "model.layers.25.self_attn.attn.impl.matmul_av",
307
+ "model.layers.25.self_attn.attn.impl.batch2block_matmul",
308
+ "model.layers.25.self_attn.attn.impl.block2batch_matmul",
309
+ "model.layers.25.self_attn.attn.impl.k_cache",
310
+ "model.layers.25.self_attn.attn.impl.v_cache",
311
+ "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
312
+ "model.layers.25.mlp.gate_up_proj",
313
+ "model.layers.25.mlp.down_proj",
314
+ "model.layers.26.self_attn.qkv_proj",
315
+ "model.layers.26.self_attn.o_proj",
316
+ "model.layers.26.self_attn.attn.impl.matmul_qk",
317
+ "model.layers.26.self_attn.attn.impl.softmax",
318
+ "model.layers.26.self_attn.attn.impl.matmul_av",
319
+ "model.layers.26.self_attn.attn.impl.batch2block_matmul",
320
+ "model.layers.26.self_attn.attn.impl.block2batch_matmul",
321
+ "model.layers.26.self_attn.attn.impl.k_cache",
322
+ "model.layers.26.self_attn.attn.impl.v_cache",
323
+ "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
324
+ "model.layers.26.mlp.gate_up_proj",
325
+ "model.layers.26.mlp.down_proj",
326
+ "model.layers.27.self_attn.qkv_proj",
327
+ "model.layers.27.self_attn.o_proj",
328
+ "model.layers.27.self_attn.attn.impl.matmul_qk",
329
+ "model.layers.27.self_attn.attn.impl.softmax",
330
+ "model.layers.27.self_attn.attn.impl.matmul_av",
331
+ "model.layers.27.self_attn.attn.impl.batch2block_matmul",
332
+ "model.layers.27.self_attn.attn.impl.block2batch_matmul",
333
+ "model.layers.27.self_attn.attn.impl.k_cache",
334
+ "model.layers.27.self_attn.attn.impl.v_cache",
335
+ "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
336
+ "model.layers.27.mlp.gate_up_proj",
337
+ "model.layers.27.mlp.down_proj",
338
+ "model.layers.28.self_attn.qkv_proj",
339
+ "model.layers.28.self_attn.o_proj",
340
+ "model.layers.28.self_attn.attn.impl.matmul_qk",
341
+ "model.layers.28.self_attn.attn.impl.softmax",
342
+ "model.layers.28.self_attn.attn.impl.matmul_av",
343
+ "model.layers.28.self_attn.attn.impl.batch2block_matmul",
344
+ "model.layers.28.self_attn.attn.impl.block2batch_matmul",
345
+ "model.layers.28.self_attn.attn.impl.k_cache",
346
+ "model.layers.28.self_attn.attn.impl.v_cache",
347
+ "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
348
+ "model.layers.28.mlp.gate_up_proj",
349
+ "model.layers.28.mlp.down_proj",
350
+ "model.layers.29.self_attn.qkv_proj",
351
+ "model.layers.29.self_attn.o_proj",
352
+ "model.layers.29.self_attn.attn.impl.matmul_qk",
353
+ "model.layers.29.self_attn.attn.impl.softmax",
354
+ "model.layers.29.self_attn.attn.impl.matmul_av",
355
+ "model.layers.29.self_attn.attn.impl.batch2block_matmul",
356
+ "model.layers.29.self_attn.attn.impl.block2batch_matmul",
357
+ "model.layers.29.self_attn.attn.impl.k_cache",
358
+ "model.layers.29.self_attn.attn.impl.v_cache",
359
+ "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
360
+ "model.layers.29.mlp.gate_up_proj",
361
+ "model.layers.29.mlp.down_proj",
362
+ "model.layers.30.self_attn.qkv_proj",
363
+ "model.layers.30.self_attn.o_proj",
364
+ "model.layers.30.self_attn.attn.impl.matmul_qk",
365
+ "model.layers.30.self_attn.attn.impl.softmax",
366
+ "model.layers.30.self_attn.attn.impl.matmul_av",
367
+ "model.layers.30.self_attn.attn.impl.batch2block_matmul",
368
+ "model.layers.30.self_attn.attn.impl.block2batch_matmul",
369
+ "model.layers.30.self_attn.attn.impl.k_cache",
370
+ "model.layers.30.self_attn.attn.impl.v_cache",
371
+ "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
372
+ "model.layers.30.mlp.gate_up_proj",
373
+ "model.layers.30.mlp.down_proj",
374
+ "model.layers.31.self_attn.qkv_proj",
375
+ "model.layers.31.self_attn.o_proj",
376
+ "model.layers.31.self_attn.attn.impl.matmul_qk",
377
+ "model.layers.31.self_attn.attn.impl.softmax",
378
+ "model.layers.31.self_attn.attn.impl.matmul_av",
379
+ "model.layers.31.self_attn.attn.impl.batch2block_matmul",
380
+ "model.layers.31.self_attn.attn.impl.block2batch_matmul",
381
+ "model.layers.31.self_attn.attn.impl.k_cache",
382
+ "model.layers.31.self_attn.attn.impl.v_cache",
383
+ "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
384
+ "model.layers.31.mlp.gate_up_proj",
385
+ "model.layers.31.mlp.down_proj",
386
+ "model.layers.32.self_attn.qkv_proj",
387
+ "model.layers.32.self_attn.o_proj",
388
+ "model.layers.32.self_attn.attn.impl.matmul_qk",
389
+ "model.layers.32.self_attn.attn.impl.softmax",
390
+ "model.layers.32.self_attn.attn.impl.matmul_av",
391
+ "model.layers.32.self_attn.attn.impl.batch2block_matmul",
392
+ "model.layers.32.self_attn.attn.impl.block2batch_matmul",
393
+ "model.layers.32.self_attn.attn.impl.k_cache",
394
+ "model.layers.32.self_attn.attn.impl.v_cache",
395
+ "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
396
+ "model.layers.32.mlp.gate_up_proj",
397
+ "model.layers.32.mlp.down_proj",
398
+ "model.layers.33.self_attn.qkv_proj",
399
+ "model.layers.33.self_attn.o_proj",
400
+ "model.layers.33.self_attn.attn.impl.matmul_qk",
401
+ "model.layers.33.self_attn.attn.impl.softmax",
402
+ "model.layers.33.self_attn.attn.impl.matmul_av",
403
+ "model.layers.33.self_attn.attn.impl.batch2block_matmul",
404
+ "model.layers.33.self_attn.attn.impl.block2batch_matmul",
405
+ "model.layers.33.self_attn.attn.impl.k_cache",
406
+ "model.layers.33.self_attn.attn.impl.v_cache",
407
+ "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
408
+ "model.layers.33.mlp.gate_up_proj",
409
+ "model.layers.33.mlp.down_proj",
410
+ "model.layers.34.self_attn.qkv_proj",
411
+ "model.layers.34.self_attn.o_proj",
412
+ "model.layers.34.self_attn.attn.impl.matmul_qk",
413
+ "model.layers.34.self_attn.attn.impl.softmax",
414
+ "model.layers.34.self_attn.attn.impl.matmul_av",
415
+ "model.layers.34.self_attn.attn.impl.batch2block_matmul",
416
+ "model.layers.34.self_attn.attn.impl.block2batch_matmul",
417
+ "model.layers.34.self_attn.attn.impl.k_cache",
418
+ "model.layers.34.self_attn.attn.impl.v_cache",
419
+ "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
420
+ "model.layers.34.mlp.gate_up_proj",
421
+ "model.layers.34.mlp.down_proj",
422
+ "model.layers.35.self_attn.qkv_proj",
423
+ "model.layers.35.self_attn.o_proj",
424
+ "model.layers.35.self_attn.attn.impl.matmul_qk",
425
+ "model.layers.35.self_attn.attn.impl.softmax",
426
+ "model.layers.35.self_attn.attn.impl.matmul_av",
427
+ "model.layers.35.self_attn.attn.impl.batch2block_matmul",
428
+ "model.layers.35.self_attn.attn.impl.block2batch_matmul",
429
+ "model.layers.35.self_attn.attn.impl.k_cache",
430
+ "model.layers.35.self_attn.attn.impl.v_cache",
431
+ "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
432
+ "model.layers.35.mlp.gate_up_proj",
433
+ "model.layers.35.mlp.down_proj",
434
+ "model.layers.36.self_attn.qkv_proj",
435
+ "model.layers.36.self_attn.o_proj",
436
+ "model.layers.36.self_attn.attn.impl.matmul_qk",
437
+ "model.layers.36.self_attn.attn.impl.softmax",
438
+ "model.layers.36.self_attn.attn.impl.matmul_av",
439
+ "model.layers.36.self_attn.attn.impl.batch2block_matmul",
440
+ "model.layers.36.self_attn.attn.impl.block2batch_matmul",
441
+ "model.layers.36.self_attn.attn.impl.k_cache",
442
+ "model.layers.36.self_attn.attn.impl.v_cache",
443
+ "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
444
+ "model.layers.36.mlp.gate_up_proj",
445
+ "model.layers.36.mlp.down_proj",
446
+ "model.layers.37.self_attn.qkv_proj",
447
+ "model.layers.37.self_attn.o_proj",
448
+ "model.layers.37.self_attn.attn.impl.matmul_qk",
449
+ "model.layers.37.self_attn.attn.impl.softmax",
450
+ "model.layers.37.self_attn.attn.impl.matmul_av",
451
+ "model.layers.37.self_attn.attn.impl.batch2block_matmul",
452
+ "model.layers.37.self_attn.attn.impl.block2batch_matmul",
453
+ "model.layers.37.self_attn.attn.impl.k_cache",
454
+ "model.layers.37.self_attn.attn.impl.v_cache",
455
+ "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
456
+ "model.layers.37.mlp.gate_up_proj",
457
+ "model.layers.37.mlp.down_proj",
458
+ "model.layers.38.self_attn.qkv_proj",
459
+ "model.layers.38.self_attn.o_proj",
460
+ "model.layers.38.self_attn.attn.impl.matmul_qk",
461
+ "model.layers.38.self_attn.attn.impl.softmax",
462
+ "model.layers.38.self_attn.attn.impl.matmul_av",
463
+ "model.layers.38.self_attn.attn.impl.batch2block_matmul",
464
+ "model.layers.38.self_attn.attn.impl.block2batch_matmul",
465
+ "model.layers.38.self_attn.attn.impl.k_cache",
466
+ "model.layers.38.self_attn.attn.impl.v_cache",
467
+ "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
468
+ "model.layers.38.mlp.gate_up_proj",
469
+ "model.layers.38.mlp.down_proj",
470
+ "model.layers.39.self_attn.qkv_proj",
471
+ "model.layers.39.self_attn.o_proj",
472
+ "model.layers.39.self_attn.attn.impl.matmul_qk",
473
+ "model.layers.39.self_attn.attn.impl.softmax",
474
+ "model.layers.39.self_attn.attn.impl.matmul_av",
475
+ "model.layers.39.self_attn.attn.impl.batch2block_matmul",
476
+ "model.layers.39.self_attn.attn.impl.block2batch_matmul",
477
+ "model.layers.39.self_attn.attn.impl.k_cache",
478
+ "model.layers.39.self_attn.attn.impl.v_cache",
479
+ "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
480
+ "model.layers.39.mlp.gate_up_proj",
481
+ "model.layers.39.mlp.down_proj",
482
+ "model.layers.40.self_attn.qkv_proj",
483
+ "model.layers.40.self_attn.o_proj",
484
+ "model.layers.40.self_attn.attn.impl.matmul_qk",
485
+ "model.layers.40.self_attn.attn.impl.softmax",
486
+ "model.layers.40.self_attn.attn.impl.matmul_av",
487
+ "model.layers.40.self_attn.attn.impl.batch2block_matmul",
488
+ "model.layers.40.self_attn.attn.impl.block2batch_matmul",
489
+ "model.layers.40.self_attn.attn.impl.k_cache",
490
+ "model.layers.40.self_attn.attn.impl.v_cache",
491
+ "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
492
+ "model.layers.40.mlp.gate_up_proj",
493
+ "model.layers.40.mlp.down_proj",
494
+ "model.layers.41.self_attn.qkv_proj",
495
+ "model.layers.41.self_attn.o_proj",
496
+ "model.layers.41.self_attn.attn.impl.matmul_qk",
497
+ "model.layers.41.self_attn.attn.impl.softmax",
498
+ "model.layers.41.self_attn.attn.impl.matmul_av",
499
+ "model.layers.41.self_attn.attn.impl.batch2block_matmul",
500
+ "model.layers.41.self_attn.attn.impl.block2batch_matmul",
501
+ "model.layers.41.self_attn.attn.impl.k_cache",
502
+ "model.layers.41.self_attn.attn.impl.v_cache",
503
+ "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
504
+ "model.layers.41.mlp.gate_up_proj",
505
+ "model.layers.41.mlp.down_proj",
506
+ "model.layers.42.self_attn.qkv_proj",
507
+ "model.layers.42.self_attn.o_proj",
508
+ "model.layers.42.self_attn.attn.impl.matmul_qk",
509
+ "model.layers.42.self_attn.attn.impl.softmax",
510
+ "model.layers.42.self_attn.attn.impl.matmul_av",
511
+ "model.layers.42.self_attn.attn.impl.batch2block_matmul",
512
+ "model.layers.42.self_attn.attn.impl.block2batch_matmul",
513
+ "model.layers.42.self_attn.attn.impl.k_cache",
514
+ "model.layers.42.self_attn.attn.impl.v_cache",
515
+ "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
516
+ "model.layers.42.mlp.gate_up_proj",
517
+ "model.layers.42.mlp.down_proj",
518
+ "model.layers.43.self_attn.qkv_proj",
519
+ "model.layers.43.self_attn.o_proj",
520
+ "model.layers.43.self_attn.attn.impl.matmul_qk",
521
+ "model.layers.43.self_attn.attn.impl.softmax",
522
+ "model.layers.43.self_attn.attn.impl.matmul_av",
523
+ "model.layers.43.self_attn.attn.impl.batch2block_matmul",
524
+ "model.layers.43.self_attn.attn.impl.block2batch_matmul",
525
+ "model.layers.43.self_attn.attn.impl.k_cache",
526
+ "model.layers.43.self_attn.attn.impl.v_cache",
527
+ "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
528
+ "model.layers.43.mlp.gate_up_proj",
529
+ "model.layers.43.mlp.down_proj",
530
+ "model.layers.44.self_attn.qkv_proj",
531
+ "model.layers.44.self_attn.o_proj",
532
+ "model.layers.44.self_attn.attn.impl.matmul_qk",
533
+ "model.layers.44.self_attn.attn.impl.softmax",
534
+ "model.layers.44.self_attn.attn.impl.matmul_av",
535
+ "model.layers.44.self_attn.attn.impl.batch2block_matmul",
536
+ "model.layers.44.self_attn.attn.impl.block2batch_matmul",
537
+ "model.layers.44.self_attn.attn.impl.k_cache",
538
+ "model.layers.44.self_attn.attn.impl.v_cache",
539
+ "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
540
+ "model.layers.44.mlp.gate_up_proj",
541
+ "model.layers.44.mlp.down_proj",
542
+ "model.layers.45.self_attn.qkv_proj",
543
+ "model.layers.45.self_attn.o_proj",
544
+ "model.layers.45.self_attn.attn.impl.matmul_qk",
545
+ "model.layers.45.self_attn.attn.impl.softmax",
546
+ "model.layers.45.self_attn.attn.impl.matmul_av",
547
+ "model.layers.45.self_attn.attn.impl.batch2block_matmul",
548
+ "model.layers.45.self_attn.attn.impl.block2batch_matmul",
549
+ "model.layers.45.self_attn.attn.impl.k_cache",
550
+ "model.layers.45.self_attn.attn.impl.v_cache",
551
+ "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
552
+ "model.layers.45.mlp.gate_up_proj",
553
+ "model.layers.45.mlp.down_proj",
554
+ "model.layers.46.self_attn.qkv_proj",
555
+ "model.layers.46.self_attn.o_proj",
556
+ "model.layers.46.self_attn.attn.impl.matmul_qk",
557
+ "model.layers.46.self_attn.attn.impl.softmax",
558
+ "model.layers.46.self_attn.attn.impl.matmul_av",
559
+ "model.layers.46.self_attn.attn.impl.batch2block_matmul",
560
+ "model.layers.46.self_attn.attn.impl.block2batch_matmul",
561
+ "model.layers.46.self_attn.attn.impl.k_cache",
562
+ "model.layers.46.self_attn.attn.impl.v_cache",
563
+ "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
564
+ "model.layers.46.mlp.gate_up_proj",
565
+ "model.layers.46.mlp.down_proj",
566
+ "model.layers.47.self_attn.qkv_proj",
567
+ "model.layers.47.self_attn.o_proj",
568
+ "model.layers.47.self_attn.attn.impl.matmul_qk",
569
+ "model.layers.47.self_attn.attn.impl.softmax",
570
+ "model.layers.47.self_attn.attn.impl.matmul_av",
571
+ "model.layers.47.self_attn.attn.impl.batch2block_matmul",
572
+ "model.layers.47.self_attn.attn.impl.block2batch_matmul",
573
+ "model.layers.47.self_attn.attn.impl.k_cache",
574
+ "model.layers.47.self_attn.attn.impl.v_cache",
575
+ "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
576
+ "model.layers.47.mlp.gate_up_proj",
577
+ "model.layers.47.mlp.down_proj",
578
+ "model.layers.48.self_attn.qkv_proj",
579
+ "model.layers.48.self_attn.o_proj",
580
+ "model.layers.48.self_attn.attn.impl.matmul_qk",
581
+ "model.layers.48.self_attn.attn.impl.softmax",
582
+ "model.layers.48.self_attn.attn.impl.matmul_av",
583
+ "model.layers.48.self_attn.attn.impl.batch2block_matmul",
584
+ "model.layers.48.self_attn.attn.impl.block2batch_matmul",
585
+ "model.layers.48.self_attn.attn.impl.k_cache",
586
+ "model.layers.48.self_attn.attn.impl.v_cache",
587
+ "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
588
+ "model.layers.48.mlp.gate_up_proj",
589
+ "model.layers.48.mlp.down_proj",
590
+ "model.layers.49.self_attn.qkv_proj",
591
+ "model.layers.49.self_attn.o_proj",
592
+ "model.layers.49.self_attn.attn.impl.matmul_qk",
593
+ "model.layers.49.self_attn.attn.impl.softmax",
594
+ "model.layers.49.self_attn.attn.impl.matmul_av",
595
+ "model.layers.49.self_attn.attn.impl.batch2block_matmul",
596
+ "model.layers.49.self_attn.attn.impl.block2batch_matmul",
597
+ "model.layers.49.self_attn.attn.impl.k_cache",
598
+ "model.layers.49.self_attn.attn.impl.v_cache",
599
+ "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
600
+ "model.layers.49.mlp.gate_up_proj",
601
+ "model.layers.49.mlp.down_proj",
602
+ "model.layers.50.self_attn.qkv_proj",
603
+ "model.layers.50.self_attn.o_proj",
604
+ "model.layers.50.self_attn.attn.impl.matmul_qk",
605
+ "model.layers.50.self_attn.attn.impl.softmax",
606
+ "model.layers.50.self_attn.attn.impl.matmul_av",
607
+ "model.layers.50.self_attn.attn.impl.batch2block_matmul",
608
+ "model.layers.50.self_attn.attn.impl.block2batch_matmul",
609
+ "model.layers.50.self_attn.attn.impl.k_cache",
610
+ "model.layers.50.self_attn.attn.impl.v_cache",
611
+ "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
612
+ "model.layers.50.mlp.gate_up_proj",
613
+ "model.layers.50.mlp.down_proj",
614
+ "model.layers.51.self_attn.qkv_proj",
615
+ "model.layers.51.self_attn.o_proj",
616
+ "model.layers.51.self_attn.attn.impl.matmul_qk",
617
+ "model.layers.51.self_attn.attn.impl.softmax",
618
+ "model.layers.51.self_attn.attn.impl.matmul_av",
619
+ "model.layers.51.self_attn.attn.impl.batch2block_matmul",
620
+ "model.layers.51.self_attn.attn.impl.block2batch_matmul",
621
+ "model.layers.51.self_attn.attn.impl.k_cache",
622
+ "model.layers.51.self_attn.attn.impl.v_cache",
623
+ "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
624
+ "model.layers.51.mlp.gate_up_proj",
625
+ "model.layers.51.mlp.down_proj",
626
+ "model.layers.52.self_attn.qkv_proj",
627
+ "model.layers.52.self_attn.o_proj",
628
+ "model.layers.52.self_attn.attn.impl.matmul_qk",
629
+ "model.layers.52.self_attn.attn.impl.softmax",
630
+ "model.layers.52.self_attn.attn.impl.matmul_av",
631
+ "model.layers.52.self_attn.attn.impl.batch2block_matmul",
632
+ "model.layers.52.self_attn.attn.impl.block2batch_matmul",
633
+ "model.layers.52.self_attn.attn.impl.k_cache",
634
+ "model.layers.52.self_attn.attn.impl.v_cache",
635
+ "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
636
+ "model.layers.52.mlp.gate_up_proj",
637
+ "model.layers.52.mlp.down_proj",
638
+ "model.layers.53.self_attn.qkv_proj",
639
+ "model.layers.53.self_attn.o_proj",
640
+ "model.layers.53.self_attn.attn.impl.matmul_qk",
641
+ "model.layers.53.self_attn.attn.impl.softmax",
642
+ "model.layers.53.self_attn.attn.impl.matmul_av",
643
+ "model.layers.53.self_attn.attn.impl.batch2block_matmul",
644
+ "model.layers.53.self_attn.attn.impl.block2batch_matmul",
645
+ "model.layers.53.self_attn.attn.impl.k_cache",
646
+ "model.layers.53.self_attn.attn.impl.v_cache",
647
+ "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
648
+ "model.layers.53.mlp.gate_up_proj",
649
+ "model.layers.53.mlp.down_proj",
650
+ "model.layers.54.self_attn.qkv_proj",
651
+ "model.layers.54.self_attn.o_proj",
652
+ "model.layers.54.self_attn.attn.impl.matmul_qk",
653
+ "model.layers.54.self_attn.attn.impl.softmax",
654
+ "model.layers.54.self_attn.attn.impl.matmul_av",
655
+ "model.layers.54.self_attn.attn.impl.batch2block_matmul",
656
+ "model.layers.54.self_attn.attn.impl.block2batch_matmul",
657
+ "model.layers.54.self_attn.attn.impl.k_cache",
658
+ "model.layers.54.self_attn.attn.impl.v_cache",
659
+ "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
660
+ "model.layers.54.mlp.gate_up_proj",
661
+ "model.layers.54.mlp.down_proj",
662
+ "model.layers.55.self_attn.qkv_proj",
663
+ "model.layers.55.self_attn.o_proj",
664
+ "model.layers.55.self_attn.attn.impl.matmul_qk",
665
+ "model.layers.55.self_attn.attn.impl.softmax",
666
+ "model.layers.55.self_attn.attn.impl.matmul_av",
667
+ "model.layers.55.self_attn.attn.impl.batch2block_matmul",
668
+ "model.layers.55.self_attn.attn.impl.block2batch_matmul",
669
+ "model.layers.55.self_attn.attn.impl.k_cache",
670
+ "model.layers.55.self_attn.attn.impl.v_cache",
671
+ "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
672
+ "model.layers.55.mlp.gate_up_proj",
673
+ "model.layers.55.mlp.down_proj",
674
+ "model.layers.56.self_attn.qkv_proj",
675
+ "model.layers.56.self_attn.o_proj",
676
+ "model.layers.56.self_attn.attn.impl.matmul_qk",
677
+ "model.layers.56.self_attn.attn.impl.softmax",
678
+ "model.layers.56.self_attn.attn.impl.matmul_av",
679
+ "model.layers.56.self_attn.attn.impl.batch2block_matmul",
680
+ "model.layers.56.self_attn.attn.impl.block2batch_matmul",
681
+ "model.layers.56.self_attn.attn.impl.k_cache",
682
+ "model.layers.56.self_attn.attn.impl.v_cache",
683
+ "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
684
+ "model.layers.56.mlp.gate_up_proj",
685
+ "model.layers.56.mlp.down_proj",
686
+ "model.layers.57.self_attn.qkv_proj",
687
+ "model.layers.57.self_attn.o_proj",
688
+ "model.layers.57.self_attn.attn.impl.matmul_qk",
689
+ "model.layers.57.self_attn.attn.impl.softmax",
690
+ "model.layers.57.self_attn.attn.impl.matmul_av",
691
+ "model.layers.57.self_attn.attn.impl.batch2block_matmul",
692
+ "model.layers.57.self_attn.attn.impl.block2batch_matmul",
693
+ "model.layers.57.self_attn.attn.impl.k_cache",
694
+ "model.layers.57.self_attn.attn.impl.v_cache",
695
+ "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
696
+ "model.layers.57.mlp.gate_up_proj",
697
+ "model.layers.57.mlp.down_proj",
698
+ "model.layers.58.self_attn.qkv_proj",
699
+ "model.layers.58.self_attn.o_proj",
700
+ "model.layers.58.self_attn.attn.impl.matmul_qk",
701
+ "model.layers.58.self_attn.attn.impl.softmax",
702
+ "model.layers.58.self_attn.attn.impl.matmul_av",
703
+ "model.layers.58.self_attn.attn.impl.batch2block_matmul",
704
+ "model.layers.58.self_attn.attn.impl.block2batch_matmul",
705
+ "model.layers.58.self_attn.attn.impl.k_cache",
706
+ "model.layers.58.self_attn.attn.impl.v_cache",
707
+ "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
708
+ "model.layers.58.mlp.gate_up_proj",
709
+ "model.layers.58.mlp.down_proj",
710
+ "model.layers.59.self_attn.qkv_proj",
711
+ "model.layers.59.self_attn.o_proj",
712
+ "model.layers.59.self_attn.attn.impl.matmul_qk",
713
+ "model.layers.59.self_attn.attn.impl.softmax",
714
+ "model.layers.59.self_attn.attn.impl.matmul_av",
715
+ "model.layers.59.self_attn.attn.impl.batch2block_matmul",
716
+ "model.layers.59.self_attn.attn.impl.block2batch_matmul",
717
+ "model.layers.59.self_attn.attn.impl.k_cache",
718
+ "model.layers.59.self_attn.attn.impl.v_cache",
719
+ "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
720
+ "model.layers.59.mlp.gate_up_proj",
721
+ "model.layers.59.mlp.down_proj",
722
+ "model.layers.60.self_attn.qkv_proj",
723
+ "model.layers.60.self_attn.o_proj",
724
+ "model.layers.60.self_attn.attn.impl.matmul_qk",
725
+ "model.layers.60.self_attn.attn.impl.softmax",
726
+ "model.layers.60.self_attn.attn.impl.matmul_av",
727
+ "model.layers.60.self_attn.attn.impl.batch2block_matmul",
728
+ "model.layers.60.self_attn.attn.impl.block2batch_matmul",
729
+ "model.layers.60.self_attn.attn.impl.k_cache",
730
+ "model.layers.60.self_attn.attn.impl.v_cache",
731
+ "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
732
+ "model.layers.60.mlp.gate_up_proj",
733
+ "model.layers.60.mlp.down_proj",
734
+ "model.layers.61.self_attn.qkv_proj",
735
+ "model.layers.61.self_attn.o_proj",
736
+ "model.layers.61.self_attn.attn.impl.matmul_qk",
737
+ "model.layers.61.self_attn.attn.impl.softmax",
738
+ "model.layers.61.self_attn.attn.impl.matmul_av",
739
+ "model.layers.61.self_attn.attn.impl.batch2block_matmul",
740
+ "model.layers.61.self_attn.attn.impl.block2batch_matmul",
741
+ "model.layers.61.self_attn.attn.impl.k_cache",
742
+ "model.layers.61.self_attn.attn.impl.v_cache",
743
+ "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
744
+ "model.layers.61.mlp.gate_up_proj",
745
+ "model.layers.61.mlp.down_proj",
746
+ "model.layers.62.self_attn.qkv_proj",
747
+ "model.layers.62.self_attn.o_proj",
748
+ "model.layers.62.self_attn.attn.impl.matmul_qk",
749
+ "model.layers.62.self_attn.attn.impl.softmax",
750
+ "model.layers.62.self_attn.attn.impl.matmul_av",
751
+ "model.layers.62.self_attn.attn.impl.batch2block_matmul",
752
+ "model.layers.62.self_attn.attn.impl.block2batch_matmul",
753
+ "model.layers.62.self_attn.attn.impl.k_cache",
754
+ "model.layers.62.self_attn.attn.impl.v_cache",
755
+ "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
756
+ "model.layers.62.mlp.gate_up_proj",
757
+ "model.layers.62.mlp.down_proj",
758
+ "model.layers.63.self_attn.qkv_proj",
759
+ "model.layers.63.self_attn.o_proj",
760
+ "model.layers.63.self_attn.attn.impl.matmul_qk",
761
+ "model.layers.63.self_attn.attn.impl.softmax",
762
+ "model.layers.63.self_attn.attn.impl.matmul_av",
763
+ "model.layers.63.self_attn.attn.impl.batch2block_matmul",
764
+ "model.layers.63.self_attn.attn.impl.block2batch_matmul",
765
+ "model.layers.63.self_attn.attn.impl.k_cache",
766
+ "model.layers.63.self_attn.attn.impl.v_cache",
767
+ "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
768
+ "model.layers.63.mlp.gate_up_proj",
769
+ "model.layers.63.mlp.down_proj",
770
+ "model.layers.64.self_attn.qkv_proj",
771
+ "model.layers.64.self_attn.o_proj",
772
+ "model.layers.64.self_attn.attn.impl.matmul_qk",
773
+ "model.layers.64.self_attn.attn.impl.softmax",
774
+ "model.layers.64.self_attn.attn.impl.matmul_av",
775
+ "model.layers.64.self_attn.attn.impl.batch2block_matmul",
776
+ "model.layers.64.self_attn.attn.impl.block2batch_matmul",
777
+ "model.layers.64.self_attn.attn.impl.k_cache",
778
+ "model.layers.64.self_attn.attn.impl.v_cache",
779
+ "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
780
+ "model.layers.64.mlp.gate_up_proj",
781
+ "model.layers.64.mlp.down_proj",
782
+ "model.layers.65.self_attn.qkv_proj",
783
+ "model.layers.65.self_attn.o_proj",
784
+ "model.layers.65.self_attn.attn.impl.matmul_qk",
785
+ "model.layers.65.self_attn.attn.impl.softmax",
786
+ "model.layers.65.self_attn.attn.impl.matmul_av",
787
+ "model.layers.65.self_attn.attn.impl.batch2block_matmul",
788
+ "model.layers.65.self_attn.attn.impl.block2batch_matmul",
789
+ "model.layers.65.self_attn.attn.impl.k_cache",
790
+ "model.layers.65.self_attn.attn.impl.v_cache",
791
+ "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
792
+ "model.layers.65.mlp.gate_up_proj",
793
+ "model.layers.65.mlp.down_proj",
794
+ "model.layers.66.self_attn.qkv_proj",
795
+ "model.layers.66.self_attn.o_proj",
796
+ "model.layers.66.self_attn.attn.impl.matmul_qk",
797
+ "model.layers.66.self_attn.attn.impl.softmax",
798
+ "model.layers.66.self_attn.attn.impl.matmul_av",
799
+ "model.layers.66.self_attn.attn.impl.batch2block_matmul",
800
+ "model.layers.66.self_attn.attn.impl.block2batch_matmul",
801
+ "model.layers.66.self_attn.attn.impl.k_cache",
802
+ "model.layers.66.self_attn.attn.impl.v_cache",
803
+ "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
804
+ "model.layers.66.mlp.gate_up_proj",
805
+ "model.layers.66.mlp.down_proj",
806
+ "model.layers.67.self_attn.qkv_proj",
807
+ "model.layers.67.self_attn.o_proj",
808
+ "model.layers.67.self_attn.attn.impl.matmul_qk",
809
+ "model.layers.67.self_attn.attn.impl.softmax",
810
+ "model.layers.67.self_attn.attn.impl.matmul_av",
811
+ "model.layers.67.self_attn.attn.impl.batch2block_matmul",
812
+ "model.layers.67.self_attn.attn.impl.block2batch_matmul",
813
+ "model.layers.67.self_attn.attn.impl.k_cache",
814
+ "model.layers.67.self_attn.attn.impl.v_cache",
815
+ "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
816
+ "model.layers.67.mlp.gate_up_proj",
817
+ "model.layers.67.mlp.down_proj",
818
+ "model.layers.68.self_attn.qkv_proj",
819
+ "model.layers.68.self_attn.o_proj",
820
+ "model.layers.68.self_attn.attn.impl.matmul_qk",
821
+ "model.layers.68.self_attn.attn.impl.softmax",
822
+ "model.layers.68.self_attn.attn.impl.matmul_av",
823
+ "model.layers.68.self_attn.attn.impl.batch2block_matmul",
824
+ "model.layers.68.self_attn.attn.impl.block2batch_matmul",
825
+ "model.layers.68.self_attn.attn.impl.k_cache",
826
+ "model.layers.68.self_attn.attn.impl.v_cache",
827
+ "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
828
+ "model.layers.68.mlp.gate_up_proj",
829
+ "model.layers.68.mlp.down_proj",
830
+ "model.layers.69.self_attn.qkv_proj",
831
+ "model.layers.69.self_attn.o_proj",
832
+ "model.layers.69.self_attn.attn.impl.matmul_qk",
833
+ "model.layers.69.self_attn.attn.impl.softmax",
834
+ "model.layers.69.self_attn.attn.impl.matmul_av",
835
+ "model.layers.69.self_attn.attn.impl.batch2block_matmul",
836
+ "model.layers.69.self_attn.attn.impl.block2batch_matmul",
837
+ "model.layers.69.self_attn.attn.impl.k_cache",
838
+ "model.layers.69.self_attn.attn.impl.v_cache",
839
+ "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
840
+ "model.layers.69.mlp.gate_up_proj",
841
+ "model.layers.69.mlp.down_proj",
842
+ "model.layers.70.self_attn.qkv_proj",
843
+ "model.layers.70.self_attn.o_proj",
844
+ "model.layers.70.self_attn.attn.impl.matmul_qk",
845
+ "model.layers.70.self_attn.attn.impl.softmax",
846
+ "model.layers.70.self_attn.attn.impl.matmul_av",
847
+ "model.layers.70.self_attn.attn.impl.batch2block_matmul",
848
+ "model.layers.70.self_attn.attn.impl.block2batch_matmul",
849
+ "model.layers.70.self_attn.attn.impl.k_cache",
850
+ "model.layers.70.self_attn.attn.impl.v_cache",
851
+ "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
852
+ "model.layers.70.mlp.gate_up_proj",
853
+ "model.layers.70.mlp.down_proj",
854
+ "model.layers.71.self_attn.qkv_proj",
855
+ "model.layers.71.self_attn.o_proj",
856
+ "model.layers.71.self_attn.attn.impl.matmul_qk",
857
+ "model.layers.71.self_attn.attn.impl.softmax",
858
+ "model.layers.71.self_attn.attn.impl.matmul_av",
859
+ "model.layers.71.self_attn.attn.impl.batch2block_matmul",
860
+ "model.layers.71.self_attn.attn.impl.block2batch_matmul",
861
+ "model.layers.71.self_attn.attn.impl.k_cache",
862
+ "model.layers.71.self_attn.attn.impl.v_cache",
863
+ "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
864
+ "model.layers.71.mlp.gate_up_proj",
865
+ "model.layers.71.mlp.down_proj",
866
+ "model.layers.72.self_attn.qkv_proj",
867
+ "model.layers.72.self_attn.o_proj",
868
+ "model.layers.72.self_attn.attn.impl.matmul_qk",
869
+ "model.layers.72.self_attn.attn.impl.softmax",
870
+ "model.layers.72.self_attn.attn.impl.matmul_av",
871
+ "model.layers.72.self_attn.attn.impl.batch2block_matmul",
872
+ "model.layers.72.self_attn.attn.impl.block2batch_matmul",
873
+ "model.layers.72.self_attn.attn.impl.k_cache",
874
+ "model.layers.72.self_attn.attn.impl.v_cache",
875
+ "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
876
+ "model.layers.72.mlp.gate_up_proj",
877
+ "model.layers.72.mlp.down_proj",
878
+ "model.layers.73.self_attn.qkv_proj",
879
+ "model.layers.73.self_attn.o_proj",
880
+ "model.layers.73.self_attn.attn.impl.matmul_qk",
881
+ "model.layers.73.self_attn.attn.impl.softmax",
882
+ "model.layers.73.self_attn.attn.impl.matmul_av",
883
+ "model.layers.73.self_attn.attn.impl.batch2block_matmul",
884
+ "model.layers.73.self_attn.attn.impl.block2batch_matmul",
885
+ "model.layers.73.self_attn.attn.impl.k_cache",
886
+ "model.layers.73.self_attn.attn.impl.v_cache",
887
+ "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
888
+ "model.layers.73.mlp.gate_up_proj",
889
+ "model.layers.73.mlp.down_proj",
890
+ "model.layers.74.self_attn.qkv_proj",
891
+ "model.layers.74.self_attn.o_proj",
892
+ "model.layers.74.self_attn.attn.impl.matmul_qk",
893
+ "model.layers.74.self_attn.attn.impl.softmax",
894
+ "model.layers.74.self_attn.attn.impl.matmul_av",
895
+ "model.layers.74.self_attn.attn.impl.batch2block_matmul",
896
+ "model.layers.74.self_attn.attn.impl.block2batch_matmul",
897
+ "model.layers.74.self_attn.attn.impl.k_cache",
898
+ "model.layers.74.self_attn.attn.impl.v_cache",
899
+ "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
900
+ "model.layers.74.mlp.gate_up_proj",
901
+ "model.layers.74.mlp.down_proj",
902
+ "model.layers.75.self_attn.qkv_proj",
903
+ "model.layers.75.self_attn.o_proj",
904
+ "model.layers.75.self_attn.attn.impl.matmul_qk",
905
+ "model.layers.75.self_attn.attn.impl.softmax",
906
+ "model.layers.75.self_attn.attn.impl.matmul_av",
907
+ "model.layers.75.self_attn.attn.impl.batch2block_matmul",
908
+ "model.layers.75.self_attn.attn.impl.block2batch_matmul",
909
+ "model.layers.75.self_attn.attn.impl.k_cache",
910
+ "model.layers.75.self_attn.attn.impl.v_cache",
911
+ "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
912
+ "model.layers.75.mlp.gate_up_proj",
913
+ "model.layers.75.mlp.down_proj",
914
+ "model.layers.76.self_attn.qkv_proj",
915
+ "model.layers.76.self_attn.o_proj",
916
+ "model.layers.76.self_attn.attn.impl.matmul_qk",
917
+ "model.layers.76.self_attn.attn.impl.softmax",
918
+ "model.layers.76.self_attn.attn.impl.matmul_av",
919
+ "model.layers.76.self_attn.attn.impl.batch2block_matmul",
920
+ "model.layers.76.self_attn.attn.impl.block2batch_matmul",
921
+ "model.layers.76.self_attn.attn.impl.k_cache",
922
+ "model.layers.76.self_attn.attn.impl.v_cache",
923
+ "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
924
+ "model.layers.76.mlp.gate_up_proj",
925
+ "model.layers.76.mlp.down_proj",
926
+ "model.layers.77.self_attn.qkv_proj",
927
+ "model.layers.77.self_attn.o_proj",
928
+ "model.layers.77.self_attn.attn.impl.matmul_qk",
929
+ "model.layers.77.self_attn.attn.impl.softmax",
930
+ "model.layers.77.self_attn.attn.impl.matmul_av",
931
+ "model.layers.77.self_attn.attn.impl.batch2block_matmul",
932
+ "model.layers.77.self_attn.attn.impl.block2batch_matmul",
933
+ "model.layers.77.self_attn.attn.impl.k_cache",
934
+ "model.layers.77.self_attn.attn.impl.v_cache",
935
+ "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
936
+ "model.layers.77.mlp.gate_up_proj",
937
+ "model.layers.77.mlp.down_proj",
938
+ "model.layers.78.self_attn.qkv_proj",
939
+ "model.layers.78.self_attn.o_proj",
940
+ "model.layers.78.self_attn.attn.impl.matmul_qk",
941
+ "model.layers.78.self_attn.attn.impl.softmax",
942
+ "model.layers.78.self_attn.attn.impl.matmul_av",
943
+ "model.layers.78.self_attn.attn.impl.batch2block_matmul",
944
+ "model.layers.78.self_attn.attn.impl.block2batch_matmul",
945
+ "model.layers.78.self_attn.attn.impl.k_cache",
946
+ "model.layers.78.self_attn.attn.impl.v_cache",
947
+ "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
948
+ "model.layers.78.mlp.gate_up_proj",
949
+ "model.layers.78.mlp.down_proj",
950
+ "model.layers.79.self_attn.qkv_proj",
951
+ "model.layers.79.self_attn.o_proj",
952
+ "model.layers.79.self_attn.attn.impl.matmul_qk",
953
+ "model.layers.79.self_attn.attn.impl.softmax",
954
+ "model.layers.79.self_attn.attn.impl.matmul_av",
955
+ "model.layers.79.self_attn.attn.impl.batch2block_matmul",
956
+ "model.layers.79.self_attn.attn.impl.block2batch_matmul",
957
+ "model.layers.79.self_attn.attn.impl.k_cache",
958
+ "model.layers.79.self_attn.attn.impl.v_cache",
959
+ "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
960
+ "model.layers.79.mlp.gate_up_proj",
961
+ "model.layers.79.mlp.down_proj",
962
+ "lm_head"
963
+ ]
quant/g3/inc_output_hooks_maxabs_1_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GlobalRank": null, "LocalRank": 1, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[92.0]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.115234375]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.259765625]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[5.53125]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.2734375]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[452.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[120.0]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.53125]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.2734375]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.8125]], [[5.46875]], [[0.2734375]]], "outputs": [[[0.1103515625]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[31.625]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[22.125]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[2.375]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[9.375]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.072265625]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.1728515625]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.95703125]], [[11.6875]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.306640625]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.453125]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.78125]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[11.6875]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.306640625]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.0]], [[11.6875]], [[0.306640625]]], "outputs": [[[0.0703125]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[5.15625]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.74609375]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[4.8125]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.06884765625]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.283203125]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[13.875]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.62109375]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.125]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.203125]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[13.875]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.62109375]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.75]], [[13.4375]], [[0.546875]]], "outputs": [[[0.05126953125]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[2.03125]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.32421875]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.34375]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[4.65625]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.10888671875]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.1298828125]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[16.25]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.625]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.96875]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.78125]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[16.25]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.625]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.28125]], [[16.125]], [[0.56640625]]], "outputs": [[[0.10888671875]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[8.5]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[1.75]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[1.53125]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.55859375]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.111328125]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.7109375]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[20.125]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.74609375]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.03125]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.34375]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[20.125]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[0.74609375]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[19.5]], [[0.6484375]]], "outputs": [[[0.111328125]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[6.9375]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.427734375]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[0.734375]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[3.8125]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.09521484375]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.2578125]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[16.0]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.91796875]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.0]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[0.91796875]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.53125]], [[14.8125]], [[0.89453125]]], "outputs": [[[0.08837890625]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[8.3125]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[4.625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[1.5546875]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.294921875]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.0888671875]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.12060546875]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[14.125]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.078125]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.875]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.53125]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[14.125]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[1.078125]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.15625]], [[13.3125]], [[0.91796875]]], "outputs": [[[0.0888671875]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[0.90625]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.43359375]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.26171875]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.423828125]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.1708984375]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.181640625]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[12.0]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6328125]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.71875]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.59375]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[1.6328125]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[11.125]], [[1.6328125]]], "outputs": [[[0.13671875]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.40234375]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[0.62109375]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.248046875]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.5234375]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.09716796875]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.34765625]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.640625]], [[21.375]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.703125]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.78125]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.484375]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[21.375]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[1.703125]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.25]], [[20.625]], [[1.4140625]]], "outputs": [[[0.08056640625]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[4.0625]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.265625]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[1.3515625]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.1259765625]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.16796875]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[20.75]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.98046875]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.875]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.5625]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[20.75]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[0.98046875]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0]], [[20.375]], [[0.98046875]]], "outputs": [[[0.1259765625]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[5.15625]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[1.8671875]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.494140625]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.234375]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.22265625]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.166015625]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[10.25]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.46875]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[10.25]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.75]], [[9.375]], [[1.6875]]], "outputs": [[[0.22265625]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.302734375]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.271484375]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.98828125]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.302734375]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.22265625]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69921875]], [[17.125]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1796875]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.125]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[1.1796875]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.21875]], [[16.375]], [[1.1796875]]], "outputs": [[[0.302734375]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.4609375]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.37890625]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.265625]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.1572265625]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.19921875]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[19.125]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0859375]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.5]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.5]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[19.125]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[1.0859375]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.1875]], [[18.875]], [[1.0859375]]], "outputs": [[[0.103515625]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.3125]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[2.15625]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.267578125]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.267578125]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.1943359375]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.734375]], [[13.1875]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.21875]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.03125]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[13.1875]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.21875]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.71875]], [[13.0625]], [[1.21875]]], "outputs": [[[0.30078125]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.423828125]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[0.87109375]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.2890625]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.287109375]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.921875]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.15625]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[15.9375]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1953125]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.5]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.1953125]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[15.4375]], [[1.1015625]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.21875]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.890625]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.2353515625]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.30859375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.57421875]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.20703125]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55078125]], [[10.0]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1328125]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[32.75]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.875]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[10.0]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.1328125]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.96875]], [[9.4375]], [[0.9921875]]], "outputs": [[[0.310546875]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.7265625]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[0.91015625]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.455078125]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.263671875]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.4453125]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.189453125]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[15.6875]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.25]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.25]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.25]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[15.6875]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[1.25]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.1875]], [[14.8125]], [[1.015625]]], "outputs": [[[0.2470703125]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[1.0703125]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.490234375]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.306640625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.53515625]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.1884765625]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[12.75]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0234375]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.875]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.0234375]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[11.125]], [[1.0234375]]], "outputs": [[[0.515625]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.283203125]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[1.5234375]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.78125]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.2431640625]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.2353515625]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[12.25]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.5]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.125]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[11.125]], [[1.1640625]]], "outputs": [[[0.296875]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.3203125]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[1.96875]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[0.6015625]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[0.435546875]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.373046875]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[13.5]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.140625]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.0]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.875]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.140625]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.375]], [[12.375]], [[1.140625]]], "outputs": [[[0.373046875]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[2.234375]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.39453125]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.251953125]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.400390625]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.42578125]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[11.25]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.40625]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[11.25]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[10.5625]], [[1.640625]]], "outputs": [[[0.400390625]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.3359375]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.625]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.478515625]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.30859375]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.1357421875]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.77734375]], [[15.4375]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[32.25]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.25]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[15.4375]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[2.65625]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[15.1875]], [[2.65625]]], "outputs": [[[0.66796875]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[1.90625]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[0.88671875]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.3125]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.41796875]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.388671875]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6328125]], [[15.25]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.03125]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.125]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.625]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[15.25]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[1.03125]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.46875]], [[13.6875]], [[0.9140625]]], "outputs": [[[0.41796875]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.400390625]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[4.46875]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.578125]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.27734375]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[1.0703125]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.447265625]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[13.0]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.125]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[6.125]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[13.0]], [[6.125]]], "outputs": [[[1.0703125]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.59375]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[2.5625]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.275390625]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.45703125]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.37890625]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.267578125]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[14.3125]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.625]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.4375]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.9375]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[14.3125]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[3.625]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.25]], [[12.0]], [[3.625]]], "outputs": [[[0.240234375]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.546875]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[1.8125]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.640625]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.26953125]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.451171875]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[12.625]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.3125]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.59375]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.4375]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[12.625]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[2.3125]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0]], [[12.3125]], [[2.3125]]], "outputs": [[[0.62109375]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.40625]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[2.609375]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[0.53125]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.388671875]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[1.2109375]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.546875]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9296875]], [[17.375]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.15625]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[38.5]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.1875]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[5.15625]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.90625]], [[15.5]], [[5.15625]]], "outputs": [[[0.91015625]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.287109375]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[1.6171875]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.7109375]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.328125]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.734375]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.4140625]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[18.375]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.28125]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[47.0]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.0]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[18.375]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[1.28125]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.78125]], [[18.125]], [[1.28125]]], "outputs": [[[0.47265625]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.447265625]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[2.3125]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.9609375]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.267578125]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[0.55078125]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.396484375]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[19.0]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.28125]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.625]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[19.0]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[3.28125]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[17.375]], [[3.28125]]], "outputs": [[[0.55078125]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[0.341796875]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[1.765625]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.62109375]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.3515625]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[0.546875]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.23046875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[19.625]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.046875]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[45.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[19.625]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[3.046875]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[16.25]], [[3.046875]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[1.515625]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[0.71875]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.35546875]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.6015625]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.57421875]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[16.5]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[8.0625]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.375]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.0]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[8.0625]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[15.375]], [[8.0625]]], "outputs": [[[0.6015625]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.34375]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[2.640625]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[0.74609375]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.2373046875]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.96484375]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.224609375]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87890625]], [[13.9375]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[32.75]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[13.9375]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[1.5]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[13.25]], [[1.3984375]]], "outputs": [[[0.53125]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.455078125]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[2.4375]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.69140625]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.296875]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[0.546875]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.5859375]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.80078125]], [[17.375]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6796875]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[40.5]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[1.6796875]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[16.75]], [[1.6796875]]], "outputs": [[[0.373046875]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.36328125]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[4.375]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[0.640625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.357421875]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[1.03125]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.453125]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[18.25]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8359375]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.25]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.9375]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[18.25]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[1.8359375]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.625]], [[15.1875]], [[1.8359375]]], "outputs": [[[0.734375]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[3.421875]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[1.8828125]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[0.6796875]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.365234375]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[0.59765625]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.271484375]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8515625]], [[16.0]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.71875]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.125]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.75]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[2.71875]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.5625]], [[14.75]], [[2.71875]]], "outputs": [[[0.54296875]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.373046875]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[1.3359375]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.3203125]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.69140625]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.19921875]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[16.375]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.125]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[52.25]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[1.125]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[15.375]], [[1.1015625]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.427734375]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[5.1875]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[1.2734375]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.330078125]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.578125]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.265625]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[14.0]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6328125]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.5]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[1.6328125]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[13.6875]], [[1.6328125]]], "outputs": [[[0.578125]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.703125]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[0.67578125]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.373046875]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.62109375]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[0.1337890625]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[16.5]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.015625]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[45.0]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[1.015625]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.375]], [[16.125]], [[1.015625]]], "outputs": [[[0.56640625]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.359375]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[3.421875]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[0.400390625]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.38671875]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.166015625]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.828125]], [[16.125]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1796875]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.0]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[1.1796875]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[14.6875]], [[1.1796875]]], "outputs": [[[0.53515625]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.53125]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[2.53125]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.921875]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.58984375]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.9609375]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[13.4375]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.59375]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[13.4375]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[4.59375]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[12.6875]], [[4.59375]]], "outputs": [[[0.416015625]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.412109375]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[4.03125]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[1.6484375]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.33203125]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.82421875]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.56640625]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.60546875]], [[11.125]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.4375]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.90625]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.84375]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[11.125]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[4.4375]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[10.4375]], [[4.4375]]], "outputs": [[[0.51171875]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.62890625]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[1.921875]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[0.283203125]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.33203125]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[1.1484375]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.328125]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8046875]], [[16.25]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5625]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.25]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.0]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[16.25]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[1.5625]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[15.0625]], [[1.0390625]]], "outputs": [[[0.765625]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.32421875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[4.15625]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[1.375]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.455078125]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.6953125]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.3359375]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[16.875]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.390625]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.0]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.1875]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[16.875]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[1.390625]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[15.1875]], [[1.2578125]]], "outputs": [[[0.6953125]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.392578125]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[3.078125]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[0.271484375]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.44921875]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.61328125]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[17.25]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.375]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.375]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.875]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[17.25]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[6.375]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.78125]], [[15.125]], [[6.375]]], "outputs": [[[0.76953125]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.353515625]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[3.921875]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.494140625]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.6796875]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.162109375]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.640625]], [[14.0625]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.640625]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.28125]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.75]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.640625]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[13.75]], [[1.640625]]], "outputs": [[[0.5390625]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.5078125]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[3.875]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.90234375]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.462890625]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.6171875]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.375]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[12.75]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.71875]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.0]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[4.71875]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[11.5625]], [[4.71875]]], "outputs": [[[0.357421875]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.58984375]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[3.78125]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.69921875]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.451171875]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.306640625]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[15.5625]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.21875]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.84375]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[15.5625]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[3.21875]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.9375]], [[15.5625]], [[3.21875]]], "outputs": [[[0.349609375]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.52734375]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[3.125]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.21875]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.4296875]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.89453125]], [[14.0625]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.359375]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.3125]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[1.359375]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[14.0625]], [[1.359375]]], "outputs": [[[0.7265625]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.478515625]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[2.8125]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[0.275390625]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.421875]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[0.65625]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.275390625]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.42578125]], [[12.8125]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.359375]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.375]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.59375]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[12.8125]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[1.359375]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.59375]], [[12.8125]], [[1.140625]]], "outputs": [[[0.40625]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.435546875]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[3.078125]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[0.373046875]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.44921875]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.4609375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.181640625]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[12.3125]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.94921875]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.9375]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.40625]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[0.94921875]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[12.3125]], [[0.80078125]]], "outputs": [[[0.421875]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.341796875]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[3.15625]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[1.515625]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.63671875]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.41796875]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.326171875]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.47265625]], [[12.25]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.5625]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.84375]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.6875]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[4.5625]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.875]], [[12.25]], [[4.5625]]], "outputs": [[[0.326171875]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.4296875]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[7.9375]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.31640625]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.61328125]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.35546875]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[12.8125]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.578125]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.875]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.9375]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[12.8125]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[1.578125]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.125]], [[10.75]], [[1.3671875]]], "outputs": [[[0.61328125]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.470703125]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[3.875]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[1.0234375]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.408203125]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[1.421875]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[14.3125]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6015625]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.125]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[14.3125]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[1.6015625]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[13.5625]], [[1.6015625]]], "outputs": [[[1.421875]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.984375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[8.8125]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[1.171875]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.40625]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.7734375]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.287109375]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[11.9375]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4453125]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.125]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.96875]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[1.4453125]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.6875]], [[11.0625]], [[1.4453125]]], "outputs": [[[0.66015625]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.41015625]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[11.375]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[1.4921875]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.703125]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.59765625]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.1884765625]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[18.75]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0390625]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[18.75]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[1.0390625]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.125]], [[18.75]], [[0.859375]]], "outputs": [[[0.48828125]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.283203125]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[7.8125]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[0.408203125]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.4140625]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.70703125]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[0.2236328125]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[11.3125]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.609375]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.25]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.3125]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[11.3125]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.609375]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.28125]], [[9.375]], [[1.2890625]]], "outputs": [[[0.61328125]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.330078125]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[6.5625]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[1.453125]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.37109375]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[1.21875]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.10693359375]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.3515625]], [[13.5]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9140625]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.75]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.8125]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[1.9140625]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.75]], [[13.5]], [[1.7578125]]], "outputs": [[[1.1171875]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.404296875]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[4.0625]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[0.388671875]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.421875]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[0.62890625]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.3671875]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[15.9375]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.78125]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.375]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.90625]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[3.78125]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[13.75]], [[3.78125]]], "outputs": [[[0.62890625]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.353515625]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[7.09375]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.52734375]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.494140625]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.55078125]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.474609375]], [[13.0]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.75]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.5625]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.59375]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[4.75]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.25]], [[12.0]], [[4.75]]], "outputs": [[[0.53515625]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.427734375]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[7.21875]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.7734375]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.52734375]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.251953125]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.37890625]], [[11.9375]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.9453125]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.4375]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.0625]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[0.9453125]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[3.875]], [[10.5625]], [[0.9453125]]], "outputs": [[[0.7421875]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.44140625]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[7.5625]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[0.302734375]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.3359375]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[1.0703125]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.123046875]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.28125]], [[10.9375]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.4375]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.375]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[10.9375]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[2.4375]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.625]], [[10.9375]], [[2.21875]]], "outputs": [[[0.87109375]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.5546875]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[7.875]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[0.6640625]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.52734375]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[0.46484375]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.2119140625]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5]], [[15.1875]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.140625]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.3125]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.3125]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[1.140625]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.125]], [[15.1875]], [[1.1640625]]], "outputs": [[[0.314453125]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.435546875]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[5.21875]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.8515625]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.67578125]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.59375]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.447265625]], [[13.5]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8671875]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.375]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.9375]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[1.8671875]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.9375]], [[13.5]], [[1.8671875]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.36328125]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[7.34375]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[0.3828125]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.63671875]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.546875]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.1455078125]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.40625]], [[14.4375]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.40625]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[20.75]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.875]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[2.40625]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5]], [[14.4375]], [[2.40625]]], "outputs": [[[0.427734375]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.5546875]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[5.4375]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[1.0390625]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.4140625]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[1.234375]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.158203125]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[14.75]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.296875]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[20.5]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.1875]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[14.75]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[2.296875]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[14.625]], [[1.875]]], "outputs": [[[0.8125]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.68359375]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[6.03125]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[0.37890625]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[0.77734375]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[0.453125]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[0.1103515625]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[14.8125]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.79296875]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.6875]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.625]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[0.79296875]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[14.75]], [[0.64453125]]], "outputs": [[[0.3984375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.67578125]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[9.25]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.4921875]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.8125]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.64453125]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[9.875]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.5625]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[9.875]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[4.5625]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.40625]], [[9.875]], [[4.5625]]], "outputs": [[[0.4765625]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[10.125]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[0.45703125]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.314453125]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[1.1484375]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.373046875]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6875]], [[15.375]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.078125]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.625]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[15.375]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[2.078125]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.9375]], [[13.9375]], [[2.078125]]], "outputs": [[[0.671875]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.439453125]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[7.59375]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.255859375]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.359375]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[0.84375]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.2373046875]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.28125]], [[18.125]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.34375]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.375]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[2.34375]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.625]], [[17.125]], [[2.40625]]], "outputs": [[[0.8203125]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.56640625]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[8.9375]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[0.390625]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.419921875]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[0.85546875]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.482421875]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.578125]], [[13.25]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.4375]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.96875]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.625]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[13.25]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[6.4375]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.78125]], [[12.5625]], [[6.4375]]], "outputs": [[[0.76171875]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.2578125]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[8.625]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.21484375]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.5703125]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[1.1015625]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.2236328125]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[14.8125]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.625]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.0]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.5625]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[3.625]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.625]], [[14.8125]], [[3.625]]], "outputs": [[[0.765625]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.439453125]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[6.125]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[0.478515625]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.2578125]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[1.0]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[14.4375]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[13.875]], [[1.9609375]]], "outputs": [[[0.96875]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.48046875]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[7.625]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.328125]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.232421875]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.6953125]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[0.205078125]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.796875]], [[16.5]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.890625]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.875]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[2.890625]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.5625]], [[16.0]], [[1.8359375]]], "outputs": [[[0.8828125]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.365234375]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[9.125]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[0.484375]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.255859375]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.40625]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.4453125]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9375]], [[17.5]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.4375]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.9375]], [[16.375]], [[2.84375]]], "outputs": [[[1.234375]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.53515625]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[13.8125]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[0.6796875]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.4375]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[1.765625]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.369140625]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.890625]], [[16.5]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.03125]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[52.25]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.875]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[3.03125]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.8125]], [[15.6875]], [[2.640625]]], "outputs": [[[1.765625]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.439453125]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[7.5]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[1.1015625]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.384765625]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[1.6015625]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.30078125]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.1328125]], [[16.25]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.109375]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.0]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.875]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[16.25]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[2.109375]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[14.125]], [[15.4375]], [[1.8671875]]], "outputs": [[[1.2578125]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.291015625]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[12.625]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[0.953125]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.318359375]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.7109375]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.3671875]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[14.4375]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.40625]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[60.0]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[28.0]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[2.40625]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.625]], [[12.375]], [[2.375]]], "outputs": [[[1.0078125]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.48046875]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[17.25]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.70703125]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[1.9765625]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.404296875]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87890625]], [[13.375]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[58.5]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[13.375]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[2.65625]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.3125]], [[13.0]], [[1.4375]]], "outputs": [[[1.2421875]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.40234375]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[11.5]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.435546875]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[1.46875]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.2255859375]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[11.8125]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.328125]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.75]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.625]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[11.8125]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[2.328125]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.875]], [[11.3125]], [[1.9765625]]], "outputs": [[[1.15625]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.3828125]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[18.25]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.408203125]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.70703125]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[1.7109375]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.33203125]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6953125]], [[12.0625]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.859375]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[50.25]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.75]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[12.0625]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[1.859375]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[9.8125]], [[1.5234375]]], "outputs": [[[1.46875]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.40234375]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[66.0]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.54296875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.279296875]]}}}}
quant/g3/inc_output_hooks_maxabs_1_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b37e1e61f3612dd47663627ae969cf1037eb0656e27dcc2cc99d4764f8de0bc
3
+ size 206298
quant/g3/inc_output_hooks_maxabs_1_4_mod_list.json ADDED
@@ -0,0 +1,963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ "model.layers.0.self_attn.qkv_proj",
3
+ "model.layers.0.self_attn.o_proj",
4
+ "model.layers.0.self_attn.attn.impl.matmul_qk",
5
+ "model.layers.0.self_attn.attn.impl.softmax",
6
+ "model.layers.0.self_attn.attn.impl.matmul_av",
7
+ "model.layers.0.self_attn.attn.impl.batch2block_matmul",
8
+ "model.layers.0.self_attn.attn.impl.block2batch_matmul",
9
+ "model.layers.0.self_attn.attn.impl.k_cache",
10
+ "model.layers.0.self_attn.attn.impl.v_cache",
11
+ "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
12
+ "model.layers.0.mlp.gate_up_proj",
13
+ "model.layers.0.mlp.down_proj",
14
+ "model.layers.1.self_attn.qkv_proj",
15
+ "model.layers.1.self_attn.o_proj",
16
+ "model.layers.1.self_attn.attn.impl.matmul_qk",
17
+ "model.layers.1.self_attn.attn.impl.softmax",
18
+ "model.layers.1.self_attn.attn.impl.matmul_av",
19
+ "model.layers.1.self_attn.attn.impl.batch2block_matmul",
20
+ "model.layers.1.self_attn.attn.impl.block2batch_matmul",
21
+ "model.layers.1.self_attn.attn.impl.k_cache",
22
+ "model.layers.1.self_attn.attn.impl.v_cache",
23
+ "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
24
+ "model.layers.1.mlp.gate_up_proj",
25
+ "model.layers.1.mlp.down_proj",
26
+ "model.layers.2.self_attn.qkv_proj",
27
+ "model.layers.2.self_attn.o_proj",
28
+ "model.layers.2.self_attn.attn.impl.matmul_qk",
29
+ "model.layers.2.self_attn.attn.impl.softmax",
30
+ "model.layers.2.self_attn.attn.impl.matmul_av",
31
+ "model.layers.2.self_attn.attn.impl.batch2block_matmul",
32
+ "model.layers.2.self_attn.attn.impl.block2batch_matmul",
33
+ "model.layers.2.self_attn.attn.impl.k_cache",
34
+ "model.layers.2.self_attn.attn.impl.v_cache",
35
+ "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
36
+ "model.layers.2.mlp.gate_up_proj",
37
+ "model.layers.2.mlp.down_proj",
38
+ "model.layers.3.self_attn.qkv_proj",
39
+ "model.layers.3.self_attn.o_proj",
40
+ "model.layers.3.self_attn.attn.impl.matmul_qk",
41
+ "model.layers.3.self_attn.attn.impl.softmax",
42
+ "model.layers.3.self_attn.attn.impl.matmul_av",
43
+ "model.layers.3.self_attn.attn.impl.batch2block_matmul",
44
+ "model.layers.3.self_attn.attn.impl.block2batch_matmul",
45
+ "model.layers.3.self_attn.attn.impl.k_cache",
46
+ "model.layers.3.self_attn.attn.impl.v_cache",
47
+ "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
48
+ "model.layers.3.mlp.gate_up_proj",
49
+ "model.layers.3.mlp.down_proj",
50
+ "model.layers.4.self_attn.qkv_proj",
51
+ "model.layers.4.self_attn.o_proj",
52
+ "model.layers.4.self_attn.attn.impl.matmul_qk",
53
+ "model.layers.4.self_attn.attn.impl.softmax",
54
+ "model.layers.4.self_attn.attn.impl.matmul_av",
55
+ "model.layers.4.self_attn.attn.impl.batch2block_matmul",
56
+ "model.layers.4.self_attn.attn.impl.block2batch_matmul",
57
+ "model.layers.4.self_attn.attn.impl.k_cache",
58
+ "model.layers.4.self_attn.attn.impl.v_cache",
59
+ "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
60
+ "model.layers.4.mlp.gate_up_proj",
61
+ "model.layers.4.mlp.down_proj",
62
+ "model.layers.5.self_attn.qkv_proj",
63
+ "model.layers.5.self_attn.o_proj",
64
+ "model.layers.5.self_attn.attn.impl.matmul_qk",
65
+ "model.layers.5.self_attn.attn.impl.softmax",
66
+ "model.layers.5.self_attn.attn.impl.matmul_av",
67
+ "model.layers.5.self_attn.attn.impl.batch2block_matmul",
68
+ "model.layers.5.self_attn.attn.impl.block2batch_matmul",
69
+ "model.layers.5.self_attn.attn.impl.k_cache",
70
+ "model.layers.5.self_attn.attn.impl.v_cache",
71
+ "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
72
+ "model.layers.5.mlp.gate_up_proj",
73
+ "model.layers.5.mlp.down_proj",
74
+ "model.layers.6.self_attn.qkv_proj",
75
+ "model.layers.6.self_attn.o_proj",
76
+ "model.layers.6.self_attn.attn.impl.matmul_qk",
77
+ "model.layers.6.self_attn.attn.impl.softmax",
78
+ "model.layers.6.self_attn.attn.impl.matmul_av",
79
+ "model.layers.6.self_attn.attn.impl.batch2block_matmul",
80
+ "model.layers.6.self_attn.attn.impl.block2batch_matmul",
81
+ "model.layers.6.self_attn.attn.impl.k_cache",
82
+ "model.layers.6.self_attn.attn.impl.v_cache",
83
+ "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
84
+ "model.layers.6.mlp.gate_up_proj",
85
+ "model.layers.6.mlp.down_proj",
86
+ "model.layers.7.self_attn.qkv_proj",
87
+ "model.layers.7.self_attn.o_proj",
88
+ "model.layers.7.self_attn.attn.impl.matmul_qk",
89
+ "model.layers.7.self_attn.attn.impl.softmax",
90
+ "model.layers.7.self_attn.attn.impl.matmul_av",
91
+ "model.layers.7.self_attn.attn.impl.batch2block_matmul",
92
+ "model.layers.7.self_attn.attn.impl.block2batch_matmul",
93
+ "model.layers.7.self_attn.attn.impl.k_cache",
94
+ "model.layers.7.self_attn.attn.impl.v_cache",
95
+ "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
96
+ "model.layers.7.mlp.gate_up_proj",
97
+ "model.layers.7.mlp.down_proj",
98
+ "model.layers.8.self_attn.qkv_proj",
99
+ "model.layers.8.self_attn.o_proj",
100
+ "model.layers.8.self_attn.attn.impl.matmul_qk",
101
+ "model.layers.8.self_attn.attn.impl.softmax",
102
+ "model.layers.8.self_attn.attn.impl.matmul_av",
103
+ "model.layers.8.self_attn.attn.impl.batch2block_matmul",
104
+ "model.layers.8.self_attn.attn.impl.block2batch_matmul",
105
+ "model.layers.8.self_attn.attn.impl.k_cache",
106
+ "model.layers.8.self_attn.attn.impl.v_cache",
107
+ "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
108
+ "model.layers.8.mlp.gate_up_proj",
109
+ "model.layers.8.mlp.down_proj",
110
+ "model.layers.9.self_attn.qkv_proj",
111
+ "model.layers.9.self_attn.o_proj",
112
+ "model.layers.9.self_attn.attn.impl.matmul_qk",
113
+ "model.layers.9.self_attn.attn.impl.softmax",
114
+ "model.layers.9.self_attn.attn.impl.matmul_av",
115
+ "model.layers.9.self_attn.attn.impl.batch2block_matmul",
116
+ "model.layers.9.self_attn.attn.impl.block2batch_matmul",
117
+ "model.layers.9.self_attn.attn.impl.k_cache",
118
+ "model.layers.9.self_attn.attn.impl.v_cache",
119
+ "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
120
+ "model.layers.9.mlp.gate_up_proj",
121
+ "model.layers.9.mlp.down_proj",
122
+ "model.layers.10.self_attn.qkv_proj",
123
+ "model.layers.10.self_attn.o_proj",
124
+ "model.layers.10.self_attn.attn.impl.matmul_qk",
125
+ "model.layers.10.self_attn.attn.impl.softmax",
126
+ "model.layers.10.self_attn.attn.impl.matmul_av",
127
+ "model.layers.10.self_attn.attn.impl.batch2block_matmul",
128
+ "model.layers.10.self_attn.attn.impl.block2batch_matmul",
129
+ "model.layers.10.self_attn.attn.impl.k_cache",
130
+ "model.layers.10.self_attn.attn.impl.v_cache",
131
+ "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
132
+ "model.layers.10.mlp.gate_up_proj",
133
+ "model.layers.10.mlp.down_proj",
134
+ "model.layers.11.self_attn.qkv_proj",
135
+ "model.layers.11.self_attn.o_proj",
136
+ "model.layers.11.self_attn.attn.impl.matmul_qk",
137
+ "model.layers.11.self_attn.attn.impl.softmax",
138
+ "model.layers.11.self_attn.attn.impl.matmul_av",
139
+ "model.layers.11.self_attn.attn.impl.batch2block_matmul",
140
+ "model.layers.11.self_attn.attn.impl.block2batch_matmul",
141
+ "model.layers.11.self_attn.attn.impl.k_cache",
142
+ "model.layers.11.self_attn.attn.impl.v_cache",
143
+ "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
144
+ "model.layers.11.mlp.gate_up_proj",
145
+ "model.layers.11.mlp.down_proj",
146
+ "model.layers.12.self_attn.qkv_proj",
147
+ "model.layers.12.self_attn.o_proj",
148
+ "model.layers.12.self_attn.attn.impl.matmul_qk",
149
+ "model.layers.12.self_attn.attn.impl.softmax",
150
+ "model.layers.12.self_attn.attn.impl.matmul_av",
151
+ "model.layers.12.self_attn.attn.impl.batch2block_matmul",
152
+ "model.layers.12.self_attn.attn.impl.block2batch_matmul",
153
+ "model.layers.12.self_attn.attn.impl.k_cache",
154
+ "model.layers.12.self_attn.attn.impl.v_cache",
155
+ "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
156
+ "model.layers.12.mlp.gate_up_proj",
157
+ "model.layers.12.mlp.down_proj",
158
+ "model.layers.13.self_attn.qkv_proj",
159
+ "model.layers.13.self_attn.o_proj",
160
+ "model.layers.13.self_attn.attn.impl.matmul_qk",
161
+ "model.layers.13.self_attn.attn.impl.softmax",
162
+ "model.layers.13.self_attn.attn.impl.matmul_av",
163
+ "model.layers.13.self_attn.attn.impl.batch2block_matmul",
164
+ "model.layers.13.self_attn.attn.impl.block2batch_matmul",
165
+ "model.layers.13.self_attn.attn.impl.k_cache",
166
+ "model.layers.13.self_attn.attn.impl.v_cache",
167
+ "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
168
+ "model.layers.13.mlp.gate_up_proj",
169
+ "model.layers.13.mlp.down_proj",
170
+ "model.layers.14.self_attn.qkv_proj",
171
+ "model.layers.14.self_attn.o_proj",
172
+ "model.layers.14.self_attn.attn.impl.matmul_qk",
173
+ "model.layers.14.self_attn.attn.impl.softmax",
174
+ "model.layers.14.self_attn.attn.impl.matmul_av",
175
+ "model.layers.14.self_attn.attn.impl.batch2block_matmul",
176
+ "model.layers.14.self_attn.attn.impl.block2batch_matmul",
177
+ "model.layers.14.self_attn.attn.impl.k_cache",
178
+ "model.layers.14.self_attn.attn.impl.v_cache",
179
+ "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
180
+ "model.layers.14.mlp.gate_up_proj",
181
+ "model.layers.14.mlp.down_proj",
182
+ "model.layers.15.self_attn.qkv_proj",
183
+ "model.layers.15.self_attn.o_proj",
184
+ "model.layers.15.self_attn.attn.impl.matmul_qk",
185
+ "model.layers.15.self_attn.attn.impl.softmax",
186
+ "model.layers.15.self_attn.attn.impl.matmul_av",
187
+ "model.layers.15.self_attn.attn.impl.batch2block_matmul",
188
+ "model.layers.15.self_attn.attn.impl.block2batch_matmul",
189
+ "model.layers.15.self_attn.attn.impl.k_cache",
190
+ "model.layers.15.self_attn.attn.impl.v_cache",
191
+ "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
192
+ "model.layers.15.mlp.gate_up_proj",
193
+ "model.layers.15.mlp.down_proj",
194
+ "model.layers.16.self_attn.qkv_proj",
195
+ "model.layers.16.self_attn.o_proj",
196
+ "model.layers.16.self_attn.attn.impl.matmul_qk",
197
+ "model.layers.16.self_attn.attn.impl.softmax",
198
+ "model.layers.16.self_attn.attn.impl.matmul_av",
199
+ "model.layers.16.self_attn.attn.impl.batch2block_matmul",
200
+ "model.layers.16.self_attn.attn.impl.block2batch_matmul",
201
+ "model.layers.16.self_attn.attn.impl.k_cache",
202
+ "model.layers.16.self_attn.attn.impl.v_cache",
203
+ "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
204
+ "model.layers.16.mlp.gate_up_proj",
205
+ "model.layers.16.mlp.down_proj",
206
+ "model.layers.17.self_attn.qkv_proj",
207
+ "model.layers.17.self_attn.o_proj",
208
+ "model.layers.17.self_attn.attn.impl.matmul_qk",
209
+ "model.layers.17.self_attn.attn.impl.softmax",
210
+ "model.layers.17.self_attn.attn.impl.matmul_av",
211
+ "model.layers.17.self_attn.attn.impl.batch2block_matmul",
212
+ "model.layers.17.self_attn.attn.impl.block2batch_matmul",
213
+ "model.layers.17.self_attn.attn.impl.k_cache",
214
+ "model.layers.17.self_attn.attn.impl.v_cache",
215
+ "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
216
+ "model.layers.17.mlp.gate_up_proj",
217
+ "model.layers.17.mlp.down_proj",
218
+ "model.layers.18.self_attn.qkv_proj",
219
+ "model.layers.18.self_attn.o_proj",
220
+ "model.layers.18.self_attn.attn.impl.matmul_qk",
221
+ "model.layers.18.self_attn.attn.impl.softmax",
222
+ "model.layers.18.self_attn.attn.impl.matmul_av",
223
+ "model.layers.18.self_attn.attn.impl.batch2block_matmul",
224
+ "model.layers.18.self_attn.attn.impl.block2batch_matmul",
225
+ "model.layers.18.self_attn.attn.impl.k_cache",
226
+ "model.layers.18.self_attn.attn.impl.v_cache",
227
+ "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
228
+ "model.layers.18.mlp.gate_up_proj",
229
+ "model.layers.18.mlp.down_proj",
230
+ "model.layers.19.self_attn.qkv_proj",
231
+ "model.layers.19.self_attn.o_proj",
232
+ "model.layers.19.self_attn.attn.impl.matmul_qk",
233
+ "model.layers.19.self_attn.attn.impl.softmax",
234
+ "model.layers.19.self_attn.attn.impl.matmul_av",
235
+ "model.layers.19.self_attn.attn.impl.batch2block_matmul",
236
+ "model.layers.19.self_attn.attn.impl.block2batch_matmul",
237
+ "model.layers.19.self_attn.attn.impl.k_cache",
238
+ "model.layers.19.self_attn.attn.impl.v_cache",
239
+ "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
240
+ "model.layers.19.mlp.gate_up_proj",
241
+ "model.layers.19.mlp.down_proj",
242
+ "model.layers.20.self_attn.qkv_proj",
243
+ "model.layers.20.self_attn.o_proj",
244
+ "model.layers.20.self_attn.attn.impl.matmul_qk",
245
+ "model.layers.20.self_attn.attn.impl.softmax",
246
+ "model.layers.20.self_attn.attn.impl.matmul_av",
247
+ "model.layers.20.self_attn.attn.impl.batch2block_matmul",
248
+ "model.layers.20.self_attn.attn.impl.block2batch_matmul",
249
+ "model.layers.20.self_attn.attn.impl.k_cache",
250
+ "model.layers.20.self_attn.attn.impl.v_cache",
251
+ "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
252
+ "model.layers.20.mlp.gate_up_proj",
253
+ "model.layers.20.mlp.down_proj",
254
+ "model.layers.21.self_attn.qkv_proj",
255
+ "model.layers.21.self_attn.o_proj",
256
+ "model.layers.21.self_attn.attn.impl.matmul_qk",
257
+ "model.layers.21.self_attn.attn.impl.softmax",
258
+ "model.layers.21.self_attn.attn.impl.matmul_av",
259
+ "model.layers.21.self_attn.attn.impl.batch2block_matmul",
260
+ "model.layers.21.self_attn.attn.impl.block2batch_matmul",
261
+ "model.layers.21.self_attn.attn.impl.k_cache",
262
+ "model.layers.21.self_attn.attn.impl.v_cache",
263
+ "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
264
+ "model.layers.21.mlp.gate_up_proj",
265
+ "model.layers.21.mlp.down_proj",
266
+ "model.layers.22.self_attn.qkv_proj",
267
+ "model.layers.22.self_attn.o_proj",
268
+ "model.layers.22.self_attn.attn.impl.matmul_qk",
269
+ "model.layers.22.self_attn.attn.impl.softmax",
270
+ "model.layers.22.self_attn.attn.impl.matmul_av",
271
+ "model.layers.22.self_attn.attn.impl.batch2block_matmul",
272
+ "model.layers.22.self_attn.attn.impl.block2batch_matmul",
273
+ "model.layers.22.self_attn.attn.impl.k_cache",
274
+ "model.layers.22.self_attn.attn.impl.v_cache",
275
+ "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
276
+ "model.layers.22.mlp.gate_up_proj",
277
+ "model.layers.22.mlp.down_proj",
278
+ "model.layers.23.self_attn.qkv_proj",
279
+ "model.layers.23.self_attn.o_proj",
280
+ "model.layers.23.self_attn.attn.impl.matmul_qk",
281
+ "model.layers.23.self_attn.attn.impl.softmax",
282
+ "model.layers.23.self_attn.attn.impl.matmul_av",
283
+ "model.layers.23.self_attn.attn.impl.batch2block_matmul",
284
+ "model.layers.23.self_attn.attn.impl.block2batch_matmul",
285
+ "model.layers.23.self_attn.attn.impl.k_cache",
286
+ "model.layers.23.self_attn.attn.impl.v_cache",
287
+ "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
288
+ "model.layers.23.mlp.gate_up_proj",
289
+ "model.layers.23.mlp.down_proj",
290
+ "model.layers.24.self_attn.qkv_proj",
291
+ "model.layers.24.self_attn.o_proj",
292
+ "model.layers.24.self_attn.attn.impl.matmul_qk",
293
+ "model.layers.24.self_attn.attn.impl.softmax",
294
+ "model.layers.24.self_attn.attn.impl.matmul_av",
295
+ "model.layers.24.self_attn.attn.impl.batch2block_matmul",
296
+ "model.layers.24.self_attn.attn.impl.block2batch_matmul",
297
+ "model.layers.24.self_attn.attn.impl.k_cache",
298
+ "model.layers.24.self_attn.attn.impl.v_cache",
299
+ "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
300
+ "model.layers.24.mlp.gate_up_proj",
301
+ "model.layers.24.mlp.down_proj",
302
+ "model.layers.25.self_attn.qkv_proj",
303
+ "model.layers.25.self_attn.o_proj",
304
+ "model.layers.25.self_attn.attn.impl.matmul_qk",
305
+ "model.layers.25.self_attn.attn.impl.softmax",
306
+ "model.layers.25.self_attn.attn.impl.matmul_av",
307
+ "model.layers.25.self_attn.attn.impl.batch2block_matmul",
308
+ "model.layers.25.self_attn.attn.impl.block2batch_matmul",
309
+ "model.layers.25.self_attn.attn.impl.k_cache",
310
+ "model.layers.25.self_attn.attn.impl.v_cache",
311
+ "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
312
+ "model.layers.25.mlp.gate_up_proj",
313
+ "model.layers.25.mlp.down_proj",
314
+ "model.layers.26.self_attn.qkv_proj",
315
+ "model.layers.26.self_attn.o_proj",
316
+ "model.layers.26.self_attn.attn.impl.matmul_qk",
317
+ "model.layers.26.self_attn.attn.impl.softmax",
318
+ "model.layers.26.self_attn.attn.impl.matmul_av",
319
+ "model.layers.26.self_attn.attn.impl.batch2block_matmul",
320
+ "model.layers.26.self_attn.attn.impl.block2batch_matmul",
321
+ "model.layers.26.self_attn.attn.impl.k_cache",
322
+ "model.layers.26.self_attn.attn.impl.v_cache",
323
+ "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
324
+ "model.layers.26.mlp.gate_up_proj",
325
+ "model.layers.26.mlp.down_proj",
326
+ "model.layers.27.self_attn.qkv_proj",
327
+ "model.layers.27.self_attn.o_proj",
328
+ "model.layers.27.self_attn.attn.impl.matmul_qk",
329
+ "model.layers.27.self_attn.attn.impl.softmax",
330
+ "model.layers.27.self_attn.attn.impl.matmul_av",
331
+ "model.layers.27.self_attn.attn.impl.batch2block_matmul",
332
+ "model.layers.27.self_attn.attn.impl.block2batch_matmul",
333
+ "model.layers.27.self_attn.attn.impl.k_cache",
334
+ "model.layers.27.self_attn.attn.impl.v_cache",
335
+ "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
336
+ "model.layers.27.mlp.gate_up_proj",
337
+ "model.layers.27.mlp.down_proj",
338
+ "model.layers.28.self_attn.qkv_proj",
339
+ "model.layers.28.self_attn.o_proj",
340
+ "model.layers.28.self_attn.attn.impl.matmul_qk",
341
+ "model.layers.28.self_attn.attn.impl.softmax",
342
+ "model.layers.28.self_attn.attn.impl.matmul_av",
343
+ "model.layers.28.self_attn.attn.impl.batch2block_matmul",
344
+ "model.layers.28.self_attn.attn.impl.block2batch_matmul",
345
+ "model.layers.28.self_attn.attn.impl.k_cache",
346
+ "model.layers.28.self_attn.attn.impl.v_cache",
347
+ "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
348
+ "model.layers.28.mlp.gate_up_proj",
349
+ "model.layers.28.mlp.down_proj",
350
+ "model.layers.29.self_attn.qkv_proj",
351
+ "model.layers.29.self_attn.o_proj",
352
+ "model.layers.29.self_attn.attn.impl.matmul_qk",
353
+ "model.layers.29.self_attn.attn.impl.softmax",
354
+ "model.layers.29.self_attn.attn.impl.matmul_av",
355
+ "model.layers.29.self_attn.attn.impl.batch2block_matmul",
356
+ "model.layers.29.self_attn.attn.impl.block2batch_matmul",
357
+ "model.layers.29.self_attn.attn.impl.k_cache",
358
+ "model.layers.29.self_attn.attn.impl.v_cache",
359
+ "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
360
+ "model.layers.29.mlp.gate_up_proj",
361
+ "model.layers.29.mlp.down_proj",
362
+ "model.layers.30.self_attn.qkv_proj",
363
+ "model.layers.30.self_attn.o_proj",
364
+ "model.layers.30.self_attn.attn.impl.matmul_qk",
365
+ "model.layers.30.self_attn.attn.impl.softmax",
366
+ "model.layers.30.self_attn.attn.impl.matmul_av",
367
+ "model.layers.30.self_attn.attn.impl.batch2block_matmul",
368
+ "model.layers.30.self_attn.attn.impl.block2batch_matmul",
369
+ "model.layers.30.self_attn.attn.impl.k_cache",
370
+ "model.layers.30.self_attn.attn.impl.v_cache",
371
+ "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
372
+ "model.layers.30.mlp.gate_up_proj",
373
+ "model.layers.30.mlp.down_proj",
374
+ "model.layers.31.self_attn.qkv_proj",
375
+ "model.layers.31.self_attn.o_proj",
376
+ "model.layers.31.self_attn.attn.impl.matmul_qk",
377
+ "model.layers.31.self_attn.attn.impl.softmax",
378
+ "model.layers.31.self_attn.attn.impl.matmul_av",
379
+ "model.layers.31.self_attn.attn.impl.batch2block_matmul",
380
+ "model.layers.31.self_attn.attn.impl.block2batch_matmul",
381
+ "model.layers.31.self_attn.attn.impl.k_cache",
382
+ "model.layers.31.self_attn.attn.impl.v_cache",
383
+ "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
384
+ "model.layers.31.mlp.gate_up_proj",
385
+ "model.layers.31.mlp.down_proj",
386
+ "model.layers.32.self_attn.qkv_proj",
387
+ "model.layers.32.self_attn.o_proj",
388
+ "model.layers.32.self_attn.attn.impl.matmul_qk",
389
+ "model.layers.32.self_attn.attn.impl.softmax",
390
+ "model.layers.32.self_attn.attn.impl.matmul_av",
391
+ "model.layers.32.self_attn.attn.impl.batch2block_matmul",
392
+ "model.layers.32.self_attn.attn.impl.block2batch_matmul",
393
+ "model.layers.32.self_attn.attn.impl.k_cache",
394
+ "model.layers.32.self_attn.attn.impl.v_cache",
395
+ "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
396
+ "model.layers.32.mlp.gate_up_proj",
397
+ "model.layers.32.mlp.down_proj",
398
+ "model.layers.33.self_attn.qkv_proj",
399
+ "model.layers.33.self_attn.o_proj",
400
+ "model.layers.33.self_attn.attn.impl.matmul_qk",
401
+ "model.layers.33.self_attn.attn.impl.softmax",
402
+ "model.layers.33.self_attn.attn.impl.matmul_av",
403
+ "model.layers.33.self_attn.attn.impl.batch2block_matmul",
404
+ "model.layers.33.self_attn.attn.impl.block2batch_matmul",
405
+ "model.layers.33.self_attn.attn.impl.k_cache",
406
+ "model.layers.33.self_attn.attn.impl.v_cache",
407
+ "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
408
+ "model.layers.33.mlp.gate_up_proj",
409
+ "model.layers.33.mlp.down_proj",
410
+ "model.layers.34.self_attn.qkv_proj",
411
+ "model.layers.34.self_attn.o_proj",
412
+ "model.layers.34.self_attn.attn.impl.matmul_qk",
413
+ "model.layers.34.self_attn.attn.impl.softmax",
414
+ "model.layers.34.self_attn.attn.impl.matmul_av",
415
+ "model.layers.34.self_attn.attn.impl.batch2block_matmul",
416
+ "model.layers.34.self_attn.attn.impl.block2batch_matmul",
417
+ "model.layers.34.self_attn.attn.impl.k_cache",
418
+ "model.layers.34.self_attn.attn.impl.v_cache",
419
+ "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
420
+ "model.layers.34.mlp.gate_up_proj",
421
+ "model.layers.34.mlp.down_proj",
422
+ "model.layers.35.self_attn.qkv_proj",
423
+ "model.layers.35.self_attn.o_proj",
424
+ "model.layers.35.self_attn.attn.impl.matmul_qk",
425
+ "model.layers.35.self_attn.attn.impl.softmax",
426
+ "model.layers.35.self_attn.attn.impl.matmul_av",
427
+ "model.layers.35.self_attn.attn.impl.batch2block_matmul",
428
+ "model.layers.35.self_attn.attn.impl.block2batch_matmul",
429
+ "model.layers.35.self_attn.attn.impl.k_cache",
430
+ "model.layers.35.self_attn.attn.impl.v_cache",
431
+ "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
432
+ "model.layers.35.mlp.gate_up_proj",
433
+ "model.layers.35.mlp.down_proj",
434
+ "model.layers.36.self_attn.qkv_proj",
435
+ "model.layers.36.self_attn.o_proj",
436
+ "model.layers.36.self_attn.attn.impl.matmul_qk",
437
+ "model.layers.36.self_attn.attn.impl.softmax",
438
+ "model.layers.36.self_attn.attn.impl.matmul_av",
439
+ "model.layers.36.self_attn.attn.impl.batch2block_matmul",
440
+ "model.layers.36.self_attn.attn.impl.block2batch_matmul",
441
+ "model.layers.36.self_attn.attn.impl.k_cache",
442
+ "model.layers.36.self_attn.attn.impl.v_cache",
443
+ "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
444
+ "model.layers.36.mlp.gate_up_proj",
445
+ "model.layers.36.mlp.down_proj",
446
+ "model.layers.37.self_attn.qkv_proj",
447
+ "model.layers.37.self_attn.o_proj",
448
+ "model.layers.37.self_attn.attn.impl.matmul_qk",
449
+ "model.layers.37.self_attn.attn.impl.softmax",
450
+ "model.layers.37.self_attn.attn.impl.matmul_av",
451
+ "model.layers.37.self_attn.attn.impl.batch2block_matmul",
452
+ "model.layers.37.self_attn.attn.impl.block2batch_matmul",
453
+ "model.layers.37.self_attn.attn.impl.k_cache",
454
+ "model.layers.37.self_attn.attn.impl.v_cache",
455
+ "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
456
+ "model.layers.37.mlp.gate_up_proj",
457
+ "model.layers.37.mlp.down_proj",
458
+ "model.layers.38.self_attn.qkv_proj",
459
+ "model.layers.38.self_attn.o_proj",
460
+ "model.layers.38.self_attn.attn.impl.matmul_qk",
461
+ "model.layers.38.self_attn.attn.impl.softmax",
462
+ "model.layers.38.self_attn.attn.impl.matmul_av",
463
+ "model.layers.38.self_attn.attn.impl.batch2block_matmul",
464
+ "model.layers.38.self_attn.attn.impl.block2batch_matmul",
465
+ "model.layers.38.self_attn.attn.impl.k_cache",
466
+ "model.layers.38.self_attn.attn.impl.v_cache",
467
+ "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
468
+ "model.layers.38.mlp.gate_up_proj",
469
+ "model.layers.38.mlp.down_proj",
470
+ "model.layers.39.self_attn.qkv_proj",
471
+ "model.layers.39.self_attn.o_proj",
472
+ "model.layers.39.self_attn.attn.impl.matmul_qk",
473
+ "model.layers.39.self_attn.attn.impl.softmax",
474
+ "model.layers.39.self_attn.attn.impl.matmul_av",
475
+ "model.layers.39.self_attn.attn.impl.batch2block_matmul",
476
+ "model.layers.39.self_attn.attn.impl.block2batch_matmul",
477
+ "model.layers.39.self_attn.attn.impl.k_cache",
478
+ "model.layers.39.self_attn.attn.impl.v_cache",
479
+ "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
480
+ "model.layers.39.mlp.gate_up_proj",
481
+ "model.layers.39.mlp.down_proj",
482
+ "model.layers.40.self_attn.qkv_proj",
483
+ "model.layers.40.self_attn.o_proj",
484
+ "model.layers.40.self_attn.attn.impl.matmul_qk",
485
+ "model.layers.40.self_attn.attn.impl.softmax",
486
+ "model.layers.40.self_attn.attn.impl.matmul_av",
487
+ "model.layers.40.self_attn.attn.impl.batch2block_matmul",
488
+ "model.layers.40.self_attn.attn.impl.block2batch_matmul",
489
+ "model.layers.40.self_attn.attn.impl.k_cache",
490
+ "model.layers.40.self_attn.attn.impl.v_cache",
491
+ "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
492
+ "model.layers.40.mlp.gate_up_proj",
493
+ "model.layers.40.mlp.down_proj",
494
+ "model.layers.41.self_attn.qkv_proj",
495
+ "model.layers.41.self_attn.o_proj",
496
+ "model.layers.41.self_attn.attn.impl.matmul_qk",
497
+ "model.layers.41.self_attn.attn.impl.softmax",
498
+ "model.layers.41.self_attn.attn.impl.matmul_av",
499
+ "model.layers.41.self_attn.attn.impl.batch2block_matmul",
500
+ "model.layers.41.self_attn.attn.impl.block2batch_matmul",
501
+ "model.layers.41.self_attn.attn.impl.k_cache",
502
+ "model.layers.41.self_attn.attn.impl.v_cache",
503
+ "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
504
+ "model.layers.41.mlp.gate_up_proj",
505
+ "model.layers.41.mlp.down_proj",
506
+ "model.layers.42.self_attn.qkv_proj",
507
+ "model.layers.42.self_attn.o_proj",
508
+ "model.layers.42.self_attn.attn.impl.matmul_qk",
509
+ "model.layers.42.self_attn.attn.impl.softmax",
510
+ "model.layers.42.self_attn.attn.impl.matmul_av",
511
+ "model.layers.42.self_attn.attn.impl.batch2block_matmul",
512
+ "model.layers.42.self_attn.attn.impl.block2batch_matmul",
513
+ "model.layers.42.self_attn.attn.impl.k_cache",
514
+ "model.layers.42.self_attn.attn.impl.v_cache",
515
+ "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
516
+ "model.layers.42.mlp.gate_up_proj",
517
+ "model.layers.42.mlp.down_proj",
518
+ "model.layers.43.self_attn.qkv_proj",
519
+ "model.layers.43.self_attn.o_proj",
520
+ "model.layers.43.self_attn.attn.impl.matmul_qk",
521
+ "model.layers.43.self_attn.attn.impl.softmax",
522
+ "model.layers.43.self_attn.attn.impl.matmul_av",
523
+ "model.layers.43.self_attn.attn.impl.batch2block_matmul",
524
+ "model.layers.43.self_attn.attn.impl.block2batch_matmul",
525
+ "model.layers.43.self_attn.attn.impl.k_cache",
526
+ "model.layers.43.self_attn.attn.impl.v_cache",
527
+ "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
528
+ "model.layers.43.mlp.gate_up_proj",
529
+ "model.layers.43.mlp.down_proj",
530
+ "model.layers.44.self_attn.qkv_proj",
531
+ "model.layers.44.self_attn.o_proj",
532
+ "model.layers.44.self_attn.attn.impl.matmul_qk",
533
+ "model.layers.44.self_attn.attn.impl.softmax",
534
+ "model.layers.44.self_attn.attn.impl.matmul_av",
535
+ "model.layers.44.self_attn.attn.impl.batch2block_matmul",
536
+ "model.layers.44.self_attn.attn.impl.block2batch_matmul",
537
+ "model.layers.44.self_attn.attn.impl.k_cache",
538
+ "model.layers.44.self_attn.attn.impl.v_cache",
539
+ "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
540
+ "model.layers.44.mlp.gate_up_proj",
541
+ "model.layers.44.mlp.down_proj",
542
+ "model.layers.45.self_attn.qkv_proj",
543
+ "model.layers.45.self_attn.o_proj",
544
+ "model.layers.45.self_attn.attn.impl.matmul_qk",
545
+ "model.layers.45.self_attn.attn.impl.softmax",
546
+ "model.layers.45.self_attn.attn.impl.matmul_av",
547
+ "model.layers.45.self_attn.attn.impl.batch2block_matmul",
548
+ "model.layers.45.self_attn.attn.impl.block2batch_matmul",
549
+ "model.layers.45.self_attn.attn.impl.k_cache",
550
+ "model.layers.45.self_attn.attn.impl.v_cache",
551
+ "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
552
+ "model.layers.45.mlp.gate_up_proj",
553
+ "model.layers.45.mlp.down_proj",
554
+ "model.layers.46.self_attn.qkv_proj",
555
+ "model.layers.46.self_attn.o_proj",
556
+ "model.layers.46.self_attn.attn.impl.matmul_qk",
557
+ "model.layers.46.self_attn.attn.impl.softmax",
558
+ "model.layers.46.self_attn.attn.impl.matmul_av",
559
+ "model.layers.46.self_attn.attn.impl.batch2block_matmul",
560
+ "model.layers.46.self_attn.attn.impl.block2batch_matmul",
561
+ "model.layers.46.self_attn.attn.impl.k_cache",
562
+ "model.layers.46.self_attn.attn.impl.v_cache",
563
+ "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
564
+ "model.layers.46.mlp.gate_up_proj",
565
+ "model.layers.46.mlp.down_proj",
566
+ "model.layers.47.self_attn.qkv_proj",
567
+ "model.layers.47.self_attn.o_proj",
568
+ "model.layers.47.self_attn.attn.impl.matmul_qk",
569
+ "model.layers.47.self_attn.attn.impl.softmax",
570
+ "model.layers.47.self_attn.attn.impl.matmul_av",
571
+ "model.layers.47.self_attn.attn.impl.batch2block_matmul",
572
+ "model.layers.47.self_attn.attn.impl.block2batch_matmul",
573
+ "model.layers.47.self_attn.attn.impl.k_cache",
574
+ "model.layers.47.self_attn.attn.impl.v_cache",
575
+ "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
576
+ "model.layers.47.mlp.gate_up_proj",
577
+ "model.layers.47.mlp.down_proj",
578
+ "model.layers.48.self_attn.qkv_proj",
579
+ "model.layers.48.self_attn.o_proj",
580
+ "model.layers.48.self_attn.attn.impl.matmul_qk",
581
+ "model.layers.48.self_attn.attn.impl.softmax",
582
+ "model.layers.48.self_attn.attn.impl.matmul_av",
583
+ "model.layers.48.self_attn.attn.impl.batch2block_matmul",
584
+ "model.layers.48.self_attn.attn.impl.block2batch_matmul",
585
+ "model.layers.48.self_attn.attn.impl.k_cache",
586
+ "model.layers.48.self_attn.attn.impl.v_cache",
587
+ "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
588
+ "model.layers.48.mlp.gate_up_proj",
589
+ "model.layers.48.mlp.down_proj",
590
+ "model.layers.49.self_attn.qkv_proj",
591
+ "model.layers.49.self_attn.o_proj",
592
+ "model.layers.49.self_attn.attn.impl.matmul_qk",
593
+ "model.layers.49.self_attn.attn.impl.softmax",
594
+ "model.layers.49.self_attn.attn.impl.matmul_av",
595
+ "model.layers.49.self_attn.attn.impl.batch2block_matmul",
596
+ "model.layers.49.self_attn.attn.impl.block2batch_matmul",
597
+ "model.layers.49.self_attn.attn.impl.k_cache",
598
+ "model.layers.49.self_attn.attn.impl.v_cache",
599
+ "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
600
+ "model.layers.49.mlp.gate_up_proj",
601
+ "model.layers.49.mlp.down_proj",
602
+ "model.layers.50.self_attn.qkv_proj",
603
+ "model.layers.50.self_attn.o_proj",
604
+ "model.layers.50.self_attn.attn.impl.matmul_qk",
605
+ "model.layers.50.self_attn.attn.impl.softmax",
606
+ "model.layers.50.self_attn.attn.impl.matmul_av",
607
+ "model.layers.50.self_attn.attn.impl.batch2block_matmul",
608
+ "model.layers.50.self_attn.attn.impl.block2batch_matmul",
609
+ "model.layers.50.self_attn.attn.impl.k_cache",
610
+ "model.layers.50.self_attn.attn.impl.v_cache",
611
+ "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
612
+ "model.layers.50.mlp.gate_up_proj",
613
+ "model.layers.50.mlp.down_proj",
614
+ "model.layers.51.self_attn.qkv_proj",
615
+ "model.layers.51.self_attn.o_proj",
616
+ "model.layers.51.self_attn.attn.impl.matmul_qk",
617
+ "model.layers.51.self_attn.attn.impl.softmax",
618
+ "model.layers.51.self_attn.attn.impl.matmul_av",
619
+ "model.layers.51.self_attn.attn.impl.batch2block_matmul",
620
+ "model.layers.51.self_attn.attn.impl.block2batch_matmul",
621
+ "model.layers.51.self_attn.attn.impl.k_cache",
622
+ "model.layers.51.self_attn.attn.impl.v_cache",
623
+ "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
624
+ "model.layers.51.mlp.gate_up_proj",
625
+ "model.layers.51.mlp.down_proj",
626
+ "model.layers.52.self_attn.qkv_proj",
627
+ "model.layers.52.self_attn.o_proj",
628
+ "model.layers.52.self_attn.attn.impl.matmul_qk",
629
+ "model.layers.52.self_attn.attn.impl.softmax",
630
+ "model.layers.52.self_attn.attn.impl.matmul_av",
631
+ "model.layers.52.self_attn.attn.impl.batch2block_matmul",
632
+ "model.layers.52.self_attn.attn.impl.block2batch_matmul",
633
+ "model.layers.52.self_attn.attn.impl.k_cache",
634
+ "model.layers.52.self_attn.attn.impl.v_cache",
635
+ "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
636
+ "model.layers.52.mlp.gate_up_proj",
637
+ "model.layers.52.mlp.down_proj",
638
+ "model.layers.53.self_attn.qkv_proj",
639
+ "model.layers.53.self_attn.o_proj",
640
+ "model.layers.53.self_attn.attn.impl.matmul_qk",
641
+ "model.layers.53.self_attn.attn.impl.softmax",
642
+ "model.layers.53.self_attn.attn.impl.matmul_av",
643
+ "model.layers.53.self_attn.attn.impl.batch2block_matmul",
644
+ "model.layers.53.self_attn.attn.impl.block2batch_matmul",
645
+ "model.layers.53.self_attn.attn.impl.k_cache",
646
+ "model.layers.53.self_attn.attn.impl.v_cache",
647
+ "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
648
+ "model.layers.53.mlp.gate_up_proj",
649
+ "model.layers.53.mlp.down_proj",
650
+ "model.layers.54.self_attn.qkv_proj",
651
+ "model.layers.54.self_attn.o_proj",
652
+ "model.layers.54.self_attn.attn.impl.matmul_qk",
653
+ "model.layers.54.self_attn.attn.impl.softmax",
654
+ "model.layers.54.self_attn.attn.impl.matmul_av",
655
+ "model.layers.54.self_attn.attn.impl.batch2block_matmul",
656
+ "model.layers.54.self_attn.attn.impl.block2batch_matmul",
657
+ "model.layers.54.self_attn.attn.impl.k_cache",
658
+ "model.layers.54.self_attn.attn.impl.v_cache",
659
+ "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
660
+ "model.layers.54.mlp.gate_up_proj",
661
+ "model.layers.54.mlp.down_proj",
662
+ "model.layers.55.self_attn.qkv_proj",
663
+ "model.layers.55.self_attn.o_proj",
664
+ "model.layers.55.self_attn.attn.impl.matmul_qk",
665
+ "model.layers.55.self_attn.attn.impl.softmax",
666
+ "model.layers.55.self_attn.attn.impl.matmul_av",
667
+ "model.layers.55.self_attn.attn.impl.batch2block_matmul",
668
+ "model.layers.55.self_attn.attn.impl.block2batch_matmul",
669
+ "model.layers.55.self_attn.attn.impl.k_cache",
670
+ "model.layers.55.self_attn.attn.impl.v_cache",
671
+ "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
672
+ "model.layers.55.mlp.gate_up_proj",
673
+ "model.layers.55.mlp.down_proj",
674
+ "model.layers.56.self_attn.qkv_proj",
675
+ "model.layers.56.self_attn.o_proj",
676
+ "model.layers.56.self_attn.attn.impl.matmul_qk",
677
+ "model.layers.56.self_attn.attn.impl.softmax",
678
+ "model.layers.56.self_attn.attn.impl.matmul_av",
679
+ "model.layers.56.self_attn.attn.impl.batch2block_matmul",
680
+ "model.layers.56.self_attn.attn.impl.block2batch_matmul",
681
+ "model.layers.56.self_attn.attn.impl.k_cache",
682
+ "model.layers.56.self_attn.attn.impl.v_cache",
683
+ "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
684
+ "model.layers.56.mlp.gate_up_proj",
685
+ "model.layers.56.mlp.down_proj",
686
+ "model.layers.57.self_attn.qkv_proj",
687
+ "model.layers.57.self_attn.o_proj",
688
+ "model.layers.57.self_attn.attn.impl.matmul_qk",
689
+ "model.layers.57.self_attn.attn.impl.softmax",
690
+ "model.layers.57.self_attn.attn.impl.matmul_av",
691
+ "model.layers.57.self_attn.attn.impl.batch2block_matmul",
692
+ "model.layers.57.self_attn.attn.impl.block2batch_matmul",
693
+ "model.layers.57.self_attn.attn.impl.k_cache",
694
+ "model.layers.57.self_attn.attn.impl.v_cache",
695
+ "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
696
+ "model.layers.57.mlp.gate_up_proj",
697
+ "model.layers.57.mlp.down_proj",
698
+ "model.layers.58.self_attn.qkv_proj",
699
+ "model.layers.58.self_attn.o_proj",
700
+ "model.layers.58.self_attn.attn.impl.matmul_qk",
701
+ "model.layers.58.self_attn.attn.impl.softmax",
702
+ "model.layers.58.self_attn.attn.impl.matmul_av",
703
+ "model.layers.58.self_attn.attn.impl.batch2block_matmul",
704
+ "model.layers.58.self_attn.attn.impl.block2batch_matmul",
705
+ "model.layers.58.self_attn.attn.impl.k_cache",
706
+ "model.layers.58.self_attn.attn.impl.v_cache",
707
+ "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
708
+ "model.layers.58.mlp.gate_up_proj",
709
+ "model.layers.58.mlp.down_proj",
710
+ "model.layers.59.self_attn.qkv_proj",
711
+ "model.layers.59.self_attn.o_proj",
712
+ "model.layers.59.self_attn.attn.impl.matmul_qk",
713
+ "model.layers.59.self_attn.attn.impl.softmax",
714
+ "model.layers.59.self_attn.attn.impl.matmul_av",
715
+ "model.layers.59.self_attn.attn.impl.batch2block_matmul",
716
+ "model.layers.59.self_attn.attn.impl.block2batch_matmul",
717
+ "model.layers.59.self_attn.attn.impl.k_cache",
718
+ "model.layers.59.self_attn.attn.impl.v_cache",
719
+ "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
720
+ "model.layers.59.mlp.gate_up_proj",
721
+ "model.layers.59.mlp.down_proj",
722
+ "model.layers.60.self_attn.qkv_proj",
723
+ "model.layers.60.self_attn.o_proj",
724
+ "model.layers.60.self_attn.attn.impl.matmul_qk",
725
+ "model.layers.60.self_attn.attn.impl.softmax",
726
+ "model.layers.60.self_attn.attn.impl.matmul_av",
727
+ "model.layers.60.self_attn.attn.impl.batch2block_matmul",
728
+ "model.layers.60.self_attn.attn.impl.block2batch_matmul",
729
+ "model.layers.60.self_attn.attn.impl.k_cache",
730
+ "model.layers.60.self_attn.attn.impl.v_cache",
731
+ "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
732
+ "model.layers.60.mlp.gate_up_proj",
733
+ "model.layers.60.mlp.down_proj",
734
+ "model.layers.61.self_attn.qkv_proj",
735
+ "model.layers.61.self_attn.o_proj",
736
+ "model.layers.61.self_attn.attn.impl.matmul_qk",
737
+ "model.layers.61.self_attn.attn.impl.softmax",
738
+ "model.layers.61.self_attn.attn.impl.matmul_av",
739
+ "model.layers.61.self_attn.attn.impl.batch2block_matmul",
740
+ "model.layers.61.self_attn.attn.impl.block2batch_matmul",
741
+ "model.layers.61.self_attn.attn.impl.k_cache",
742
+ "model.layers.61.self_attn.attn.impl.v_cache",
743
+ "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
744
+ "model.layers.61.mlp.gate_up_proj",
745
+ "model.layers.61.mlp.down_proj",
746
+ "model.layers.62.self_attn.qkv_proj",
747
+ "model.layers.62.self_attn.o_proj",
748
+ "model.layers.62.self_attn.attn.impl.matmul_qk",
749
+ "model.layers.62.self_attn.attn.impl.softmax",
750
+ "model.layers.62.self_attn.attn.impl.matmul_av",
751
+ "model.layers.62.self_attn.attn.impl.batch2block_matmul",
752
+ "model.layers.62.self_attn.attn.impl.block2batch_matmul",
753
+ "model.layers.62.self_attn.attn.impl.k_cache",
754
+ "model.layers.62.self_attn.attn.impl.v_cache",
755
+ "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
756
+ "model.layers.62.mlp.gate_up_proj",
757
+ "model.layers.62.mlp.down_proj",
758
+ "model.layers.63.self_attn.qkv_proj",
759
+ "model.layers.63.self_attn.o_proj",
760
+ "model.layers.63.self_attn.attn.impl.matmul_qk",
761
+ "model.layers.63.self_attn.attn.impl.softmax",
762
+ "model.layers.63.self_attn.attn.impl.matmul_av",
763
+ "model.layers.63.self_attn.attn.impl.batch2block_matmul",
764
+ "model.layers.63.self_attn.attn.impl.block2batch_matmul",
765
+ "model.layers.63.self_attn.attn.impl.k_cache",
766
+ "model.layers.63.self_attn.attn.impl.v_cache",
767
+ "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
768
+ "model.layers.63.mlp.gate_up_proj",
769
+ "model.layers.63.mlp.down_proj",
770
+ "model.layers.64.self_attn.qkv_proj",
771
+ "model.layers.64.self_attn.o_proj",
772
+ "model.layers.64.self_attn.attn.impl.matmul_qk",
773
+ "model.layers.64.self_attn.attn.impl.softmax",
774
+ "model.layers.64.self_attn.attn.impl.matmul_av",
775
+ "model.layers.64.self_attn.attn.impl.batch2block_matmul",
776
+ "model.layers.64.self_attn.attn.impl.block2batch_matmul",
777
+ "model.layers.64.self_attn.attn.impl.k_cache",
778
+ "model.layers.64.self_attn.attn.impl.v_cache",
779
+ "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
780
+ "model.layers.64.mlp.gate_up_proj",
781
+ "model.layers.64.mlp.down_proj",
782
+ "model.layers.65.self_attn.qkv_proj",
783
+ "model.layers.65.self_attn.o_proj",
784
+ "model.layers.65.self_attn.attn.impl.matmul_qk",
785
+ "model.layers.65.self_attn.attn.impl.softmax",
786
+ "model.layers.65.self_attn.attn.impl.matmul_av",
787
+ "model.layers.65.self_attn.attn.impl.batch2block_matmul",
788
+ "model.layers.65.self_attn.attn.impl.block2batch_matmul",
789
+ "model.layers.65.self_attn.attn.impl.k_cache",
790
+ "model.layers.65.self_attn.attn.impl.v_cache",
791
+ "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
792
+ "model.layers.65.mlp.gate_up_proj",
793
+ "model.layers.65.mlp.down_proj",
794
+ "model.layers.66.self_attn.qkv_proj",
795
+ "model.layers.66.self_attn.o_proj",
796
+ "model.layers.66.self_attn.attn.impl.matmul_qk",
797
+ "model.layers.66.self_attn.attn.impl.softmax",
798
+ "model.layers.66.self_attn.attn.impl.matmul_av",
799
+ "model.layers.66.self_attn.attn.impl.batch2block_matmul",
800
+ "model.layers.66.self_attn.attn.impl.block2batch_matmul",
801
+ "model.layers.66.self_attn.attn.impl.k_cache",
802
+ "model.layers.66.self_attn.attn.impl.v_cache",
803
+ "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
804
+ "model.layers.66.mlp.gate_up_proj",
805
+ "model.layers.66.mlp.down_proj",
806
+ "model.layers.67.self_attn.qkv_proj",
807
+ "model.layers.67.self_attn.o_proj",
808
+ "model.layers.67.self_attn.attn.impl.matmul_qk",
809
+ "model.layers.67.self_attn.attn.impl.softmax",
810
+ "model.layers.67.self_attn.attn.impl.matmul_av",
811
+ "model.layers.67.self_attn.attn.impl.batch2block_matmul",
812
+ "model.layers.67.self_attn.attn.impl.block2batch_matmul",
813
+ "model.layers.67.self_attn.attn.impl.k_cache",
814
+ "model.layers.67.self_attn.attn.impl.v_cache",
815
+ "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
816
+ "model.layers.67.mlp.gate_up_proj",
817
+ "model.layers.67.mlp.down_proj",
818
+ "model.layers.68.self_attn.qkv_proj",
819
+ "model.layers.68.self_attn.o_proj",
820
+ "model.layers.68.self_attn.attn.impl.matmul_qk",
821
+ "model.layers.68.self_attn.attn.impl.softmax",
822
+ "model.layers.68.self_attn.attn.impl.matmul_av",
823
+ "model.layers.68.self_attn.attn.impl.batch2block_matmul",
824
+ "model.layers.68.self_attn.attn.impl.block2batch_matmul",
825
+ "model.layers.68.self_attn.attn.impl.k_cache",
826
+ "model.layers.68.self_attn.attn.impl.v_cache",
827
+ "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
828
+ "model.layers.68.mlp.gate_up_proj",
829
+ "model.layers.68.mlp.down_proj",
830
+ "model.layers.69.self_attn.qkv_proj",
831
+ "model.layers.69.self_attn.o_proj",
832
+ "model.layers.69.self_attn.attn.impl.matmul_qk",
833
+ "model.layers.69.self_attn.attn.impl.softmax",
834
+ "model.layers.69.self_attn.attn.impl.matmul_av",
835
+ "model.layers.69.self_attn.attn.impl.batch2block_matmul",
836
+ "model.layers.69.self_attn.attn.impl.block2batch_matmul",
837
+ "model.layers.69.self_attn.attn.impl.k_cache",
838
+ "model.layers.69.self_attn.attn.impl.v_cache",
839
+ "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
840
+ "model.layers.69.mlp.gate_up_proj",
841
+ "model.layers.69.mlp.down_proj",
842
+ "model.layers.70.self_attn.qkv_proj",
843
+ "model.layers.70.self_attn.o_proj",
844
+ "model.layers.70.self_attn.attn.impl.matmul_qk",
845
+ "model.layers.70.self_attn.attn.impl.softmax",
846
+ "model.layers.70.self_attn.attn.impl.matmul_av",
847
+ "model.layers.70.self_attn.attn.impl.batch2block_matmul",
848
+ "model.layers.70.self_attn.attn.impl.block2batch_matmul",
849
+ "model.layers.70.self_attn.attn.impl.k_cache",
850
+ "model.layers.70.self_attn.attn.impl.v_cache",
851
+ "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
852
+ "model.layers.70.mlp.gate_up_proj",
853
+ "model.layers.70.mlp.down_proj",
854
+ "model.layers.71.self_attn.qkv_proj",
855
+ "model.layers.71.self_attn.o_proj",
856
+ "model.layers.71.self_attn.attn.impl.matmul_qk",
857
+ "model.layers.71.self_attn.attn.impl.softmax",
858
+ "model.layers.71.self_attn.attn.impl.matmul_av",
859
+ "model.layers.71.self_attn.attn.impl.batch2block_matmul",
860
+ "model.layers.71.self_attn.attn.impl.block2batch_matmul",
861
+ "model.layers.71.self_attn.attn.impl.k_cache",
862
+ "model.layers.71.self_attn.attn.impl.v_cache",
863
+ "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
864
+ "model.layers.71.mlp.gate_up_proj",
865
+ "model.layers.71.mlp.down_proj",
866
+ "model.layers.72.self_attn.qkv_proj",
867
+ "model.layers.72.self_attn.o_proj",
868
+ "model.layers.72.self_attn.attn.impl.matmul_qk",
869
+ "model.layers.72.self_attn.attn.impl.softmax",
870
+ "model.layers.72.self_attn.attn.impl.matmul_av",
871
+ "model.layers.72.self_attn.attn.impl.batch2block_matmul",
872
+ "model.layers.72.self_attn.attn.impl.block2batch_matmul",
873
+ "model.layers.72.self_attn.attn.impl.k_cache",
874
+ "model.layers.72.self_attn.attn.impl.v_cache",
875
+ "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
876
+ "model.layers.72.mlp.gate_up_proj",
877
+ "model.layers.72.mlp.down_proj",
878
+ "model.layers.73.self_attn.qkv_proj",
879
+ "model.layers.73.self_attn.o_proj",
880
+ "model.layers.73.self_attn.attn.impl.matmul_qk",
881
+ "model.layers.73.self_attn.attn.impl.softmax",
882
+ "model.layers.73.self_attn.attn.impl.matmul_av",
883
+ "model.layers.73.self_attn.attn.impl.batch2block_matmul",
884
+ "model.layers.73.self_attn.attn.impl.block2batch_matmul",
885
+ "model.layers.73.self_attn.attn.impl.k_cache",
886
+ "model.layers.73.self_attn.attn.impl.v_cache",
887
+ "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
888
+ "model.layers.73.mlp.gate_up_proj",
889
+ "model.layers.73.mlp.down_proj",
890
+ "model.layers.74.self_attn.qkv_proj",
891
+ "model.layers.74.self_attn.o_proj",
892
+ "model.layers.74.self_attn.attn.impl.matmul_qk",
893
+ "model.layers.74.self_attn.attn.impl.softmax",
894
+ "model.layers.74.self_attn.attn.impl.matmul_av",
895
+ "model.layers.74.self_attn.attn.impl.batch2block_matmul",
896
+ "model.layers.74.self_attn.attn.impl.block2batch_matmul",
897
+ "model.layers.74.self_attn.attn.impl.k_cache",
898
+ "model.layers.74.self_attn.attn.impl.v_cache",
899
+ "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
900
+ "model.layers.74.mlp.gate_up_proj",
901
+ "model.layers.74.mlp.down_proj",
902
+ "model.layers.75.self_attn.qkv_proj",
903
+ "model.layers.75.self_attn.o_proj",
904
+ "model.layers.75.self_attn.attn.impl.matmul_qk",
905
+ "model.layers.75.self_attn.attn.impl.softmax",
906
+ "model.layers.75.self_attn.attn.impl.matmul_av",
907
+ "model.layers.75.self_attn.attn.impl.batch2block_matmul",
908
+ "model.layers.75.self_attn.attn.impl.block2batch_matmul",
909
+ "model.layers.75.self_attn.attn.impl.k_cache",
910
+ "model.layers.75.self_attn.attn.impl.v_cache",
911
+ "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
912
+ "model.layers.75.mlp.gate_up_proj",
913
+ "model.layers.75.mlp.down_proj",
914
+ "model.layers.76.self_attn.qkv_proj",
915
+ "model.layers.76.self_attn.o_proj",
916
+ "model.layers.76.self_attn.attn.impl.matmul_qk",
917
+ "model.layers.76.self_attn.attn.impl.softmax",
918
+ "model.layers.76.self_attn.attn.impl.matmul_av",
919
+ "model.layers.76.self_attn.attn.impl.batch2block_matmul",
920
+ "model.layers.76.self_attn.attn.impl.block2batch_matmul",
921
+ "model.layers.76.self_attn.attn.impl.k_cache",
922
+ "model.layers.76.self_attn.attn.impl.v_cache",
923
+ "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
924
+ "model.layers.76.mlp.gate_up_proj",
925
+ "model.layers.76.mlp.down_proj",
926
+ "model.layers.77.self_attn.qkv_proj",
927
+ "model.layers.77.self_attn.o_proj",
928
+ "model.layers.77.self_attn.attn.impl.matmul_qk",
929
+ "model.layers.77.self_attn.attn.impl.softmax",
930
+ "model.layers.77.self_attn.attn.impl.matmul_av",
931
+ "model.layers.77.self_attn.attn.impl.batch2block_matmul",
932
+ "model.layers.77.self_attn.attn.impl.block2batch_matmul",
933
+ "model.layers.77.self_attn.attn.impl.k_cache",
934
+ "model.layers.77.self_attn.attn.impl.v_cache",
935
+ "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
936
+ "model.layers.77.mlp.gate_up_proj",
937
+ "model.layers.77.mlp.down_proj",
938
+ "model.layers.78.self_attn.qkv_proj",
939
+ "model.layers.78.self_attn.o_proj",
940
+ "model.layers.78.self_attn.attn.impl.matmul_qk",
941
+ "model.layers.78.self_attn.attn.impl.softmax",
942
+ "model.layers.78.self_attn.attn.impl.matmul_av",
943
+ "model.layers.78.self_attn.attn.impl.batch2block_matmul",
944
+ "model.layers.78.self_attn.attn.impl.block2batch_matmul",
945
+ "model.layers.78.self_attn.attn.impl.k_cache",
946
+ "model.layers.78.self_attn.attn.impl.v_cache",
947
+ "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
948
+ "model.layers.78.mlp.gate_up_proj",
949
+ "model.layers.78.mlp.down_proj",
950
+ "model.layers.79.self_attn.qkv_proj",
951
+ "model.layers.79.self_attn.o_proj",
952
+ "model.layers.79.self_attn.attn.impl.matmul_qk",
953
+ "model.layers.79.self_attn.attn.impl.softmax",
954
+ "model.layers.79.self_attn.attn.impl.matmul_av",
955
+ "model.layers.79.self_attn.attn.impl.batch2block_matmul",
956
+ "model.layers.79.self_attn.attn.impl.block2batch_matmul",
957
+ "model.layers.79.self_attn.attn.impl.k_cache",
958
+ "model.layers.79.self_attn.attn.impl.v_cache",
959
+ "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
960
+ "model.layers.79.mlp.gate_up_proj",
961
+ "model.layers.79.mlp.down_proj",
962
+ "lm_head"
963
+ ]
quant/g3/inc_output_hooks_maxabs_2_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GlobalRank": null, "LocalRank": 2, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[78.5]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.1318359375]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.341796875]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55078125]], [[5.78125]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.1396484375]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[540.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[121.5]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.78125]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.1396484375]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.46875]], [[5.78125]], [[0.1337890625]]], "outputs": [[[0.1318359375]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[8.4375]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[0.220703125]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[0.5625]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[12.1875]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.087890625]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.287109375]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.52734375]], [[17.125]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.55859375]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.34375]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.90625]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.55859375]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.25]], [[17.125]], [[0.48046875]]], "outputs": [[[0.0849609375]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[0.875]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[0.314453125]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.46875]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[3.453125]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.0927734375]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.12451171875]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8828125]], [[14.375]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.353515625]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.640625]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.203125]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[14.375]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.353515625]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.8125]], [[13.8125]], [[0.357421875]]], "outputs": [[[0.0927734375]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[1.609375]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.734375]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.421875]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[7.5]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.1318359375]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.185546875]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[14.1875]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.416015625]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.71875]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[14.1875]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.416015625]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[14.1875]], [[0.376953125]]], "outputs": [[[0.1318359375]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[13.9375]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[143.0]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[2.171875]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.408203125]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.10205078125]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.3125]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.703125]], [[16.625]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.140625]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.09375]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.96875]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[16.625]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[1.140625]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.25]], [[16.0]], [[1.1015625]]], "outputs": [[[0.10205078125]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[1.765625]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.52734375]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[0.51953125]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[2.125]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.12890625]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.1494140625]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5859375]], [[17.375]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3203125]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.078125]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[1.3203125]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.03125]], [[16.25]], [[1.1953125]]], "outputs": [[[0.06982421875]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[3.546875]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[0.478515625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.376953125]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.359375]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.224609375]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[14.0]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3046875]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.5]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.796875]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[1.3046875]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.21875]], [[13.375]], [[1.3046875]]], "outputs": [[[0.11669921875]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[1.5859375]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.75390625]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.26171875]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.26953125]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.427734375]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.1376953125]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59765625]], [[11.25]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8046875]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.375]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.90625]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[11.25]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[1.8046875]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[10.125]], [[1.6015625]]], "outputs": [[[0.427734375]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.447265625]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.259765625]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.25]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.224609375]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58203125]], [[22.375]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.80078125]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.984375]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.640625]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[22.375]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[0.80078125]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.03125]], [[20.75]], [[0.68359375]]], "outputs": [[[0.224609375]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[1.5234375]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.5234375]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.2314453125]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[0.68359375]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.150390625]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.15234375]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[15.875]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.609375]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.375]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.21875]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[15.875]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[0.609375]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.65625]], [[15.25]], [[0.58203125]]], "outputs": [[[0.150390625]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[7.71875]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[6.84375]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.84375]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.328125]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.294921875]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.1416015625]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[11.875]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.91015625]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.0625]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.125]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[11.875]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[0.91015625]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[10.8125]], [[0.9140625]]], "outputs": [[[0.169921875]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.326171875]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[0.76953125]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.326171875]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.373046875]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.19140625]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.19921875]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.474609375]], [[10.1875]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.046875]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.890625]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[10.1875]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[1.046875]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.8125]], [[8.8125]], [[1.046875]]], "outputs": [[[0.19140625]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.0390625]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.87890625]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.154296875]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.216796875]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.1591796875]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.1552734375]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5078125]], [[13.625]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6796875]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[1.6796875]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.3125]], [[13.0]], [[1.6796875]]], "outputs": [[[0.1552734375]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.478515625]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[0.62890625]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.25390625]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.1552734375]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[18.0]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.90625]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[18.0]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[17.625]], [[1.484375]]], "outputs": [[[0.3359375]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.39453125]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[1.5390625]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.265625]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.275390625]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.578125]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.1923828125]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[12.3125]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3203125]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.125]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.375]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.3203125]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.65625]], [[11.5625]], [[1.0859375]]], "outputs": [[[0.447265625]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.859375]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.2373046875]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.369140625]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.091796875]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[9.875]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5703125]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.375]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.25]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[9.875]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.5703125]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[9.75]], [[1.5703125]]], "outputs": [[[0.255859375]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.298828125]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[1.0546875]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.24609375]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.328125]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.44921875]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.1455078125]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[14.375]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5390625]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.375]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.5]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[14.375]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[1.5390625]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.15625]], [[13.0]], [[1.5390625]]], "outputs": [[[0.25]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[0.2734375]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[1.0625]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.375]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.1962890625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.609375]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.212890625]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.796875]], [[10.375]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.234375]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[10.375]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.234375]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[10.1875]], [[1.234375]]], "outputs": [[[0.50390625]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.416015625]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.255859375]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.162109375]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[14.4375]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8984375]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.25]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.375]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.8984375]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[13.625]], [[1.0703125]]], "outputs": [[[0.455078125]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[2.421875]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[0.490234375]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.3515625]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[0.5234375]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.1416015625]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[16.625]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1796875]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[43.5]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.375]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[16.625]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.1796875]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5]], [[15.75]], [[1.046875]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.2734375]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[3.453125]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.86328125]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.2470703125]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.5859375]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.2412109375]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.609375]], [[11.0]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3203125]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.5]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.8125]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[11.0]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.3203125]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[10.375]], [[0.87109375]]], "outputs": [[[0.5859375]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.32421875]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.375]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.4375]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.294921875]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.36328125]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.734375]], [[14.25]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.75]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.8125]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[12.375]], [[1.2890625]]], "outputs": [[[0.58203125]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.54296875]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[2.640625]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[0.6015625]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.26171875]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.99609375]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.388671875]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.89453125]], [[11.375]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.0]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.5]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[11.375]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[6.0]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[10.625]], [[6.0]]], "outputs": [[[0.703125]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.3046875]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[1.71875]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.625]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.37109375]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[0.6171875]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[18.125]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.234375]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[46.5]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[1.234375]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.40625]], [[17.75]], [[1.234375]]], "outputs": [[[0.451171875]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.279296875]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[2.15625]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.6640625]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.453125]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.5390625]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.49609375]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[12.75]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.4375]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.25]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[2.4375]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[11.4375]], [[1.46875]]], "outputs": [[[0.41796875]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.353515625]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[12.5625]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.255859375]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[0.5546875]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.77734375]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.82421875]], [[15.9375]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[7.53125]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.0]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.8125]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[7.53125]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[15.75]], [[7.53125]]], "outputs": [[[0.388671875]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.279296875]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[4.15625]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[0.47265625]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.30859375]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[0.7109375]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.4140625]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.90625]], [[14.875]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.25]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[14.875]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.125]], [[13.9375]], [[2.84375]]], "outputs": [[[0.482421875]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.28515625]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[1.7578125]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.9375]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.373046875]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.76953125]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.255859375]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8046875]], [[17.875]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0390625]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[40.25]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.0]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[17.875]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[1.0390625]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.90625]], [[16.0]], [[1.0390625]]], "outputs": [[[0.76953125]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.458984375]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[2.546875]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.609375]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.302734375]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[0.75]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.337890625]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91796875]], [[16.0]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.359375]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[56.75]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.0]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[2.359375]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[15.375]], [[2.359375]]], "outputs": [[[0.71484375]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[1.0859375]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[4.21875]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.84375]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[0.416015625]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.63671875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.609375]], [[14.5]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.65625]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.875]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[14.5]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[4.65625]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.34375]], [[13.5625]], [[4.65625]]], "outputs": [[[0.416015625]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.310546875]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[1.984375]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[0.578125]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.423828125]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.6328125]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[16.875]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.125]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[16.875]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0]], [[15.875]], [[1.0]]], "outputs": [[[0.50390625]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.49609375]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[2.984375]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[1.4453125]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.298828125]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.734375]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.361328125]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8828125]], [[19.125]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.21875]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[52.75]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[19.125]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[2.21875]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.5625]], [[18.75]], [[2.21875]]], "outputs": [[[0.72265625]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.8046875]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[1.9609375]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.74609375]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.357421875]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[0.5625]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.6484375]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[13.6875]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.5]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.5]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[13.6875]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[4.40625]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.34375]], [[11.75]], [[4.40625]]], "outputs": [[[0.5625]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.3515625]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[1.7265625]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[0.53515625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.27734375]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[0.79296875]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.24609375]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[18.0]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.828125]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.25]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.875]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[18.0]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[2.828125]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[16.5]], [[2.828125]]], "outputs": [[[0.5390625]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[9.25]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[1.9453125]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[0.734375]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.318359375]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[0.765625]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.203125]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.90625]], [[16.125]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.734375]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[2.734375]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.375]], [[15.6875]], [[2.734375]]], "outputs": [[[0.66015625]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.318359375]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[0.55078125]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.373046875]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.90234375]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.408203125]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[18.375]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.0]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[18.375]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.4375]], [[17.0]], [[2.8125]]], "outputs": [[[0.60546875]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.26953125]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[2.640625]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[0.4375]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.33984375]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.5546875]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.310546875]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[15.8125]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.375]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.0]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[15.8125]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[2.375]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.3125]], [[14.25]], [[2.375]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[2.546875]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[1.46875]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.54296875]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[0.18359375]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[20.0]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.109375]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[47.75]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.625]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[20.0]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[1.109375]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[16.625]], [[0.828125]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.7265625]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[2.671875]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[1.40625]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.28125]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[1.09375]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.59375]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[15.125]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.625]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.78125]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.90625]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[15.125]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[4.625]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0]], [[14.5]], [[4.625]]], "outputs": [[[1.09375]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.58984375]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.67578125]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.5]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[0.81640625]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.10791015625]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.82421875]], [[17.5]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1953125]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[49.75]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[1.1953125]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.4375]], [[16.5]], [[1.1953125]]], "outputs": [[[0.5625]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.318359375]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[2.46875]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[0.390625]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.31640625]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[12.5]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6953125]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.5]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[1.6953125]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5625]], [[11.625]], [[1.328125]]], "outputs": [[[0.7421875]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[3.21875]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[0.44921875]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.375]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[0.486328125]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.30078125]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[15.3125]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.96484375]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.0]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.9375]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[0.96484375]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[14.375]], [[1.1015625]]], "outputs": [[[0.390625]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.294921875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[3.203125]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.494140625]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.34765625]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.328125]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53125]], [[11.9375]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.609375]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.84375]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.8125]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[3.609375]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.53125]], [[11.9375]], [[3.609375]]], "outputs": [[[0.3359375]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.375]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[3.8125]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[0.396484375]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.384765625]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.6640625]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.24609375]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.51171875]], [[12.5]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.83203125]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.65625]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[0.83203125]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.375]], [[11.375]], [[0.83203125]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.40625]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[9.4375]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.77734375]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.3515625]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.91796875]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.310546875]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.95703125]], [[12.625]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6015625]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.125]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.375]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[12.625]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.6015625]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.03125]], [[12.3125]], [[1.546875]]], "outputs": [[[0.6328125]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[6.65625]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.4375]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.412109375]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.5859375]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.205078125]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.57421875]], [[12.125]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.3125]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.25]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[12.125]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.65625]], [[11.8125]], [[0.8984375]]], "outputs": [[[0.46484375]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.6484375]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[8.625]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[0.38671875]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.73046875]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.384765625]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.1689453125]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[15.625]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.609375]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.125]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.84375]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[15.625]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[0.609375]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[15.625]], [[0.609375]]], "outputs": [[[0.384765625]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[4.15625]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.251953125]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.431640625]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.6640625]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.244140625]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.60546875]], [[12.3125]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.609375]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.875]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.125]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[3.609375]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[11.625]], [[3.609375]]], "outputs": [[[0.431640625]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.51953125]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[6.15625]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[0.236328125]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[0.72265625]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.1796875]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.54296875]], [[13.625]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2578125]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.5625]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.5625]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[1.2578125]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.53125]], [[13.0625]], [[1.1953125]]], "outputs": [[[0.72265625]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.5703125]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[4.8125]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.46484375]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.443359375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.232421875]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[11.5625]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.77734375]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.6875]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.75]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[11.5625]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[0.77734375]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[11.375]], [[0.76953125]]], "outputs": [[[0.361328125]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[3.9375]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[0.24609375]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.486328125]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.7734375]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.1826171875]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.25]], [[11.75]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.546875]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[26.75]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.6875]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[11.75]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[1.546875]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.4375]], [[11.0625]], [[1.484375]]], "outputs": [[[0.59375]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.45703125]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[9.6875]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.44140625]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.77734375]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.51171875]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.3359375]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.54296875]], [[12.5]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.8125]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.6875]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.625]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[4.8125]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.03125]], [[12.5]], [[4.8125]]], "outputs": [[[0.51171875]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.40625]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[8.9375]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[0.4296875]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.33203125]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[0.63671875]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.306640625]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[13.8125]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3046875]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[1.3046875]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.21875]], [[12.625]], [[1.265625]]], "outputs": [[[0.6328125]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.412109375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[3.296875]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[0.271484375]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.419921875]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.67578125]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.212890625]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[13.75]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2578125]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.59375]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[1.2578125]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.34375]], [[12.875]], [[1.2578125]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.416015625]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[5.21875]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[1.1796875]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.59375]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.43359375]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.19140625]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.609375]], [[12.875]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2734375]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.125]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[12.875]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[1.2734375]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.75]], [[12.875]], [[1.2734375]]], "outputs": [[[0.345703125]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.82421875]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[8.0625]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[1.2890625]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.58203125]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.74609375]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[0.2001953125]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.39453125]], [[16.0]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3828125]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.625]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.125]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.3828125]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5]], [[12.3125]], [[1.3828125]]], "outputs": [[[0.74609375]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.66015625]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[5.375]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[0.408203125]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.376953125]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[1.4921875]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.09912109375]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.296875]], [[13.75]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.28125]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.25]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.8125]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[2.28125]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.1875]], [[13.0]], [[1.6328125]]], "outputs": [[[0.5390625]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.41015625]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[6.875]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[0.275390625]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.466796875]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.22265625]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5546875]], [[14.5625]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2109375]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.28125]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[14.5625]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[1.2109375]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[14.5625]], [[1.0390625]]], "outputs": [[[0.53515625]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.4140625]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[5.59375]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.578125]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.484375]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[0.70703125]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.1923828125]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59375]], [[17.375]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.77734375]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.875]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.3125]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[0.77734375]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.15625]], [[14.0]], [[0.7578125]]], "outputs": [[[0.48828125]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.271484375]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[6.0]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.296875]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.6015625]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.57421875]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.228515625]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5078125]], [[11.4375]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1328125]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.875]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.875]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[11.4375]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[1.1328125]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.0625]], [[11.4375]], [[1.1328125]]], "outputs": [[[0.5078125]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.3125]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[7.40625]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[0.490234375]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.400390625]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[1.1328125]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.20703125]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[17.75]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.078125]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.1875]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.78125]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[2.078125]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.46875]], [[11.9375]], [[1.2578125]]], "outputs": [[[0.734375]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.373046875]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[13.375]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[1.5]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.58984375]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[0.4609375]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.1982421875]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5859375]], [[15.6875]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4140625]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0625]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[15.6875]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[1.4140625]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.3125]], [[15.6875]], [[1.3359375]]], "outputs": [[[0.4609375]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.322265625]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[8.75]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.412109375]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.9453125]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.478515625]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.12158203125]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[25.125]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.64453125]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.5]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[25.125]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[0.64453125]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.6875]], [[25.125]], [[0.77734375]]], "outputs": [[[0.443359375]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.322265625]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[8.5]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[0.765625]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.65625]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.482421875]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.310546875]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[13.5625]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.390625]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.875]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.6875]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[13.5625]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[1.390625]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.78125]], [[12.625]], [[1.390625]]], "outputs": [[[0.353515625]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.4375]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[6.875]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[0.1865234375]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.427734375]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[0.62890625]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.34375]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.57421875]], [[13.0625]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.28125]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.0625]], [[0.83984375]]], "outputs": [[[0.62890625]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.484375]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[5.78125]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[0.482421875]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[1.6484375]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[0.10986328125]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[12.75]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.84375]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.71875]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[1.84375]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.59375]], [[11.625]], [[1.0]]], "outputs": [[[0.59375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.419921875]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[9.9375]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.5234375]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.49609375]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.54296875]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.10205078125]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[13.4375]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.9375]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.0]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.09375]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[13.4375]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[0.9375]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[11.5625]], [[0.9375]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.359375]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[8.375]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[1.28125]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.490234375]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[0.609375]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.2177734375]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[13.0]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.78125]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.875]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.75]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[3.78125]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.53125]], [[12.0]], [[3.78125]]], "outputs": [[[0.56640625]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.41015625]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[4.84375]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.3125]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.51953125]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[1.84375]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.130859375]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[14.0625]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.109375]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.6875]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[2.109375]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.65625]], [[13.25]], [[1.28125]]], "outputs": [[[0.8515625]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.470703125]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[6.125]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[0.234375]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.396484375]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[1.4609375]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.291015625]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.66796875]], [[17.5]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.109375]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.625]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.1875]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[2.109375]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[15.0]], [[2.109375]]], "outputs": [[[1.4296875]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.419921875]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[12.5625]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.3203125]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[0.9921875]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.7578125]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[15.5]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.71875]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.4375]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.34375]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[15.5]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[1.71875]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.15625]], [[14.0]], [[1.703125]]], "outputs": [[[0.859375]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.54296875]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[12.6875]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[1.0546875]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.302734375]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[2.484375]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.54296875]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0859375]], [[15.0]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.109375]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.0]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.78125]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[3.109375]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.75]], [[14.0]], [[2.796875]]], "outputs": [[[1.5625]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.375]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[6.46875]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.69921875]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.42578125]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.984375]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[0.265625]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.921875]], [[20.875]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.390625]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0625]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[20.875]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[3.390625]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.6875]], [[20.375]], [[3.21875]]], "outputs": [[[1.953125]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.427734375]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[7.9375]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[0.6328125]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.322265625]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.640625]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.224609375]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0546875]], [[13.3125]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.703125]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.875]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.15625]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[13.3125]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[2.703125]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.625]], [[12.6875]], [[2.734375]]], "outputs": [[[0.76953125]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.66015625]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[7.125]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[0.55078125]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.2470703125]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[1.4609375]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.78515625]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[18.75]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.28125]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.375]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.625]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[18.75]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[2.28125]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.75]], [[18.375]], [[2.28125]]], "outputs": [[[0.84765625]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.390625]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[11.0625]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[0.703125]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[1.8984375]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.193359375]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[17.875]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.515625]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.375]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[17.875]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[2.515625]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.5]], [[16.375]], [[1.9921875]]], "outputs": [[[1.09375]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[7.90625]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[0.70703125]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.2421875]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.40625]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.43359375]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.03125]], [[17.125]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.046875]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.875]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0625]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[3.046875]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.8125]], [[15.5625]], [[3.046875]]], "outputs": [[[1.3984375]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.478515625]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[12.75]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.66796875]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.349609375]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[2.0625]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.28125]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[15.9375]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.625]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[36.0]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[2.625]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.5625]], [[13.0625]], [[2.25]]], "outputs": [[[1.3828125]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.265625]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[12.1875]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.50390625]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.263671875]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[3.0625]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.173828125]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[17.625]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.65625]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.5]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[17.625]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[3.65625]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.875]], [[15.5]], [[3.03125]]], "outputs": [[[2.28125]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.40625]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[73.0]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.546875]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.31640625]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[3.484375]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.318359375]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59375]], [[11.9375]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.28125]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.75]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[4.28125]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.8125]], [[10.3125]], [[3.46875]]], "outputs": [[[2.109375]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.390625]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[47.5]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.451171875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.294921875]]}}}}
quant/g3/inc_output_hooks_maxabs_2_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd1dcfe8c3012610aa934c544fc532e85858aa306a3177b9cbed9ae56e5fdff
3
+ size 206298
quant/g3/inc_output_hooks_maxabs_2_4_mod_list.json ADDED
@@ -0,0 +1,963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ "model.layers.0.self_attn.qkv_proj",
3
+ "model.layers.0.self_attn.o_proj",
4
+ "model.layers.0.self_attn.attn.impl.matmul_qk",
5
+ "model.layers.0.self_attn.attn.impl.softmax",
6
+ "model.layers.0.self_attn.attn.impl.matmul_av",
7
+ "model.layers.0.self_attn.attn.impl.batch2block_matmul",
8
+ "model.layers.0.self_attn.attn.impl.block2batch_matmul",
9
+ "model.layers.0.self_attn.attn.impl.k_cache",
10
+ "model.layers.0.self_attn.attn.impl.v_cache",
11
+ "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
12
+ "model.layers.0.mlp.gate_up_proj",
13
+ "model.layers.0.mlp.down_proj",
14
+ "model.layers.1.self_attn.qkv_proj",
15
+ "model.layers.1.self_attn.o_proj",
16
+ "model.layers.1.self_attn.attn.impl.matmul_qk",
17
+ "model.layers.1.self_attn.attn.impl.softmax",
18
+ "model.layers.1.self_attn.attn.impl.matmul_av",
19
+ "model.layers.1.self_attn.attn.impl.batch2block_matmul",
20
+ "model.layers.1.self_attn.attn.impl.block2batch_matmul",
21
+ "model.layers.1.self_attn.attn.impl.k_cache",
22
+ "model.layers.1.self_attn.attn.impl.v_cache",
23
+ "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
24
+ "model.layers.1.mlp.gate_up_proj",
25
+ "model.layers.1.mlp.down_proj",
26
+ "model.layers.2.self_attn.qkv_proj",
27
+ "model.layers.2.self_attn.o_proj",
28
+ "model.layers.2.self_attn.attn.impl.matmul_qk",
29
+ "model.layers.2.self_attn.attn.impl.softmax",
30
+ "model.layers.2.self_attn.attn.impl.matmul_av",
31
+ "model.layers.2.self_attn.attn.impl.batch2block_matmul",
32
+ "model.layers.2.self_attn.attn.impl.block2batch_matmul",
33
+ "model.layers.2.self_attn.attn.impl.k_cache",
34
+ "model.layers.2.self_attn.attn.impl.v_cache",
35
+ "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
36
+ "model.layers.2.mlp.gate_up_proj",
37
+ "model.layers.2.mlp.down_proj",
38
+ "model.layers.3.self_attn.qkv_proj",
39
+ "model.layers.3.self_attn.o_proj",
40
+ "model.layers.3.self_attn.attn.impl.matmul_qk",
41
+ "model.layers.3.self_attn.attn.impl.softmax",
42
+ "model.layers.3.self_attn.attn.impl.matmul_av",
43
+ "model.layers.3.self_attn.attn.impl.batch2block_matmul",
44
+ "model.layers.3.self_attn.attn.impl.block2batch_matmul",
45
+ "model.layers.3.self_attn.attn.impl.k_cache",
46
+ "model.layers.3.self_attn.attn.impl.v_cache",
47
+ "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
48
+ "model.layers.3.mlp.gate_up_proj",
49
+ "model.layers.3.mlp.down_proj",
50
+ "model.layers.4.self_attn.qkv_proj",
51
+ "model.layers.4.self_attn.o_proj",
52
+ "model.layers.4.self_attn.attn.impl.matmul_qk",
53
+ "model.layers.4.self_attn.attn.impl.softmax",
54
+ "model.layers.4.self_attn.attn.impl.matmul_av",
55
+ "model.layers.4.self_attn.attn.impl.batch2block_matmul",
56
+ "model.layers.4.self_attn.attn.impl.block2batch_matmul",
57
+ "model.layers.4.self_attn.attn.impl.k_cache",
58
+ "model.layers.4.self_attn.attn.impl.v_cache",
59
+ "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
60
+ "model.layers.4.mlp.gate_up_proj",
61
+ "model.layers.4.mlp.down_proj",
62
+ "model.layers.5.self_attn.qkv_proj",
63
+ "model.layers.5.self_attn.o_proj",
64
+ "model.layers.5.self_attn.attn.impl.matmul_qk",
65
+ "model.layers.5.self_attn.attn.impl.softmax",
66
+ "model.layers.5.self_attn.attn.impl.matmul_av",
67
+ "model.layers.5.self_attn.attn.impl.batch2block_matmul",
68
+ "model.layers.5.self_attn.attn.impl.block2batch_matmul",
69
+ "model.layers.5.self_attn.attn.impl.k_cache",
70
+ "model.layers.5.self_attn.attn.impl.v_cache",
71
+ "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
72
+ "model.layers.5.mlp.gate_up_proj",
73
+ "model.layers.5.mlp.down_proj",
74
+ "model.layers.6.self_attn.qkv_proj",
75
+ "model.layers.6.self_attn.o_proj",
76
+ "model.layers.6.self_attn.attn.impl.matmul_qk",
77
+ "model.layers.6.self_attn.attn.impl.softmax",
78
+ "model.layers.6.self_attn.attn.impl.matmul_av",
79
+ "model.layers.6.self_attn.attn.impl.batch2block_matmul",
80
+ "model.layers.6.self_attn.attn.impl.block2batch_matmul",
81
+ "model.layers.6.self_attn.attn.impl.k_cache",
82
+ "model.layers.6.self_attn.attn.impl.v_cache",
83
+ "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
84
+ "model.layers.6.mlp.gate_up_proj",
85
+ "model.layers.6.mlp.down_proj",
86
+ "model.layers.7.self_attn.qkv_proj",
87
+ "model.layers.7.self_attn.o_proj",
88
+ "model.layers.7.self_attn.attn.impl.matmul_qk",
89
+ "model.layers.7.self_attn.attn.impl.softmax",
90
+ "model.layers.7.self_attn.attn.impl.matmul_av",
91
+ "model.layers.7.self_attn.attn.impl.batch2block_matmul",
92
+ "model.layers.7.self_attn.attn.impl.block2batch_matmul",
93
+ "model.layers.7.self_attn.attn.impl.k_cache",
94
+ "model.layers.7.self_attn.attn.impl.v_cache",
95
+ "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
96
+ "model.layers.7.mlp.gate_up_proj",
97
+ "model.layers.7.mlp.down_proj",
98
+ "model.layers.8.self_attn.qkv_proj",
99
+ "model.layers.8.self_attn.o_proj",
100
+ "model.layers.8.self_attn.attn.impl.matmul_qk",
101
+ "model.layers.8.self_attn.attn.impl.softmax",
102
+ "model.layers.8.self_attn.attn.impl.matmul_av",
103
+ "model.layers.8.self_attn.attn.impl.batch2block_matmul",
104
+ "model.layers.8.self_attn.attn.impl.block2batch_matmul",
105
+ "model.layers.8.self_attn.attn.impl.k_cache",
106
+ "model.layers.8.self_attn.attn.impl.v_cache",
107
+ "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
108
+ "model.layers.8.mlp.gate_up_proj",
109
+ "model.layers.8.mlp.down_proj",
110
+ "model.layers.9.self_attn.qkv_proj",
111
+ "model.layers.9.self_attn.o_proj",
112
+ "model.layers.9.self_attn.attn.impl.matmul_qk",
113
+ "model.layers.9.self_attn.attn.impl.softmax",
114
+ "model.layers.9.self_attn.attn.impl.matmul_av",
115
+ "model.layers.9.self_attn.attn.impl.batch2block_matmul",
116
+ "model.layers.9.self_attn.attn.impl.block2batch_matmul",
117
+ "model.layers.9.self_attn.attn.impl.k_cache",
118
+ "model.layers.9.self_attn.attn.impl.v_cache",
119
+ "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
120
+ "model.layers.9.mlp.gate_up_proj",
121
+ "model.layers.9.mlp.down_proj",
122
+ "model.layers.10.self_attn.qkv_proj",
123
+ "model.layers.10.self_attn.o_proj",
124
+ "model.layers.10.self_attn.attn.impl.matmul_qk",
125
+ "model.layers.10.self_attn.attn.impl.softmax",
126
+ "model.layers.10.self_attn.attn.impl.matmul_av",
127
+ "model.layers.10.self_attn.attn.impl.batch2block_matmul",
128
+ "model.layers.10.self_attn.attn.impl.block2batch_matmul",
129
+ "model.layers.10.self_attn.attn.impl.k_cache",
130
+ "model.layers.10.self_attn.attn.impl.v_cache",
131
+ "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
132
+ "model.layers.10.mlp.gate_up_proj",
133
+ "model.layers.10.mlp.down_proj",
134
+ "model.layers.11.self_attn.qkv_proj",
135
+ "model.layers.11.self_attn.o_proj",
136
+ "model.layers.11.self_attn.attn.impl.matmul_qk",
137
+ "model.layers.11.self_attn.attn.impl.softmax",
138
+ "model.layers.11.self_attn.attn.impl.matmul_av",
139
+ "model.layers.11.self_attn.attn.impl.batch2block_matmul",
140
+ "model.layers.11.self_attn.attn.impl.block2batch_matmul",
141
+ "model.layers.11.self_attn.attn.impl.k_cache",
142
+ "model.layers.11.self_attn.attn.impl.v_cache",
143
+ "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
144
+ "model.layers.11.mlp.gate_up_proj",
145
+ "model.layers.11.mlp.down_proj",
146
+ "model.layers.12.self_attn.qkv_proj",
147
+ "model.layers.12.self_attn.o_proj",
148
+ "model.layers.12.self_attn.attn.impl.matmul_qk",
149
+ "model.layers.12.self_attn.attn.impl.softmax",
150
+ "model.layers.12.self_attn.attn.impl.matmul_av",
151
+ "model.layers.12.self_attn.attn.impl.batch2block_matmul",
152
+ "model.layers.12.self_attn.attn.impl.block2batch_matmul",
153
+ "model.layers.12.self_attn.attn.impl.k_cache",
154
+ "model.layers.12.self_attn.attn.impl.v_cache",
155
+ "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
156
+ "model.layers.12.mlp.gate_up_proj",
157
+ "model.layers.12.mlp.down_proj",
158
+ "model.layers.13.self_attn.qkv_proj",
159
+ "model.layers.13.self_attn.o_proj",
160
+ "model.layers.13.self_attn.attn.impl.matmul_qk",
161
+ "model.layers.13.self_attn.attn.impl.softmax",
162
+ "model.layers.13.self_attn.attn.impl.matmul_av",
163
+ "model.layers.13.self_attn.attn.impl.batch2block_matmul",
164
+ "model.layers.13.self_attn.attn.impl.block2batch_matmul",
165
+ "model.layers.13.self_attn.attn.impl.k_cache",
166
+ "model.layers.13.self_attn.attn.impl.v_cache",
167
+ "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
168
+ "model.layers.13.mlp.gate_up_proj",
169
+ "model.layers.13.mlp.down_proj",
170
+ "model.layers.14.self_attn.qkv_proj",
171
+ "model.layers.14.self_attn.o_proj",
172
+ "model.layers.14.self_attn.attn.impl.matmul_qk",
173
+ "model.layers.14.self_attn.attn.impl.softmax",
174
+ "model.layers.14.self_attn.attn.impl.matmul_av",
175
+ "model.layers.14.self_attn.attn.impl.batch2block_matmul",
176
+ "model.layers.14.self_attn.attn.impl.block2batch_matmul",
177
+ "model.layers.14.self_attn.attn.impl.k_cache",
178
+ "model.layers.14.self_attn.attn.impl.v_cache",
179
+ "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
180
+ "model.layers.14.mlp.gate_up_proj",
181
+ "model.layers.14.mlp.down_proj",
182
+ "model.layers.15.self_attn.qkv_proj",
183
+ "model.layers.15.self_attn.o_proj",
184
+ "model.layers.15.self_attn.attn.impl.matmul_qk",
185
+ "model.layers.15.self_attn.attn.impl.softmax",
186
+ "model.layers.15.self_attn.attn.impl.matmul_av",
187
+ "model.layers.15.self_attn.attn.impl.batch2block_matmul",
188
+ "model.layers.15.self_attn.attn.impl.block2batch_matmul",
189
+ "model.layers.15.self_attn.attn.impl.k_cache",
190
+ "model.layers.15.self_attn.attn.impl.v_cache",
191
+ "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
192
+ "model.layers.15.mlp.gate_up_proj",
193
+ "model.layers.15.mlp.down_proj",
194
+ "model.layers.16.self_attn.qkv_proj",
195
+ "model.layers.16.self_attn.o_proj",
196
+ "model.layers.16.self_attn.attn.impl.matmul_qk",
197
+ "model.layers.16.self_attn.attn.impl.softmax",
198
+ "model.layers.16.self_attn.attn.impl.matmul_av",
199
+ "model.layers.16.self_attn.attn.impl.batch2block_matmul",
200
+ "model.layers.16.self_attn.attn.impl.block2batch_matmul",
201
+ "model.layers.16.self_attn.attn.impl.k_cache",
202
+ "model.layers.16.self_attn.attn.impl.v_cache",
203
+ "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
204
+ "model.layers.16.mlp.gate_up_proj",
205
+ "model.layers.16.mlp.down_proj",
206
+ "model.layers.17.self_attn.qkv_proj",
207
+ "model.layers.17.self_attn.o_proj",
208
+ "model.layers.17.self_attn.attn.impl.matmul_qk",
209
+ "model.layers.17.self_attn.attn.impl.softmax",
210
+ "model.layers.17.self_attn.attn.impl.matmul_av",
211
+ "model.layers.17.self_attn.attn.impl.batch2block_matmul",
212
+ "model.layers.17.self_attn.attn.impl.block2batch_matmul",
213
+ "model.layers.17.self_attn.attn.impl.k_cache",
214
+ "model.layers.17.self_attn.attn.impl.v_cache",
215
+ "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
216
+ "model.layers.17.mlp.gate_up_proj",
217
+ "model.layers.17.mlp.down_proj",
218
+ "model.layers.18.self_attn.qkv_proj",
219
+ "model.layers.18.self_attn.o_proj",
220
+ "model.layers.18.self_attn.attn.impl.matmul_qk",
221
+ "model.layers.18.self_attn.attn.impl.softmax",
222
+ "model.layers.18.self_attn.attn.impl.matmul_av",
223
+ "model.layers.18.self_attn.attn.impl.batch2block_matmul",
224
+ "model.layers.18.self_attn.attn.impl.block2batch_matmul",
225
+ "model.layers.18.self_attn.attn.impl.k_cache",
226
+ "model.layers.18.self_attn.attn.impl.v_cache",
227
+ "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
228
+ "model.layers.18.mlp.gate_up_proj",
229
+ "model.layers.18.mlp.down_proj",
230
+ "model.layers.19.self_attn.qkv_proj",
231
+ "model.layers.19.self_attn.o_proj",
232
+ "model.layers.19.self_attn.attn.impl.matmul_qk",
233
+ "model.layers.19.self_attn.attn.impl.softmax",
234
+ "model.layers.19.self_attn.attn.impl.matmul_av",
235
+ "model.layers.19.self_attn.attn.impl.batch2block_matmul",
236
+ "model.layers.19.self_attn.attn.impl.block2batch_matmul",
237
+ "model.layers.19.self_attn.attn.impl.k_cache",
238
+ "model.layers.19.self_attn.attn.impl.v_cache",
239
+ "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
240
+ "model.layers.19.mlp.gate_up_proj",
241
+ "model.layers.19.mlp.down_proj",
242
+ "model.layers.20.self_attn.qkv_proj",
243
+ "model.layers.20.self_attn.o_proj",
244
+ "model.layers.20.self_attn.attn.impl.matmul_qk",
245
+ "model.layers.20.self_attn.attn.impl.softmax",
246
+ "model.layers.20.self_attn.attn.impl.matmul_av",
247
+ "model.layers.20.self_attn.attn.impl.batch2block_matmul",
248
+ "model.layers.20.self_attn.attn.impl.block2batch_matmul",
249
+ "model.layers.20.self_attn.attn.impl.k_cache",
250
+ "model.layers.20.self_attn.attn.impl.v_cache",
251
+ "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
252
+ "model.layers.20.mlp.gate_up_proj",
253
+ "model.layers.20.mlp.down_proj",
254
+ "model.layers.21.self_attn.qkv_proj",
255
+ "model.layers.21.self_attn.o_proj",
256
+ "model.layers.21.self_attn.attn.impl.matmul_qk",
257
+ "model.layers.21.self_attn.attn.impl.softmax",
258
+ "model.layers.21.self_attn.attn.impl.matmul_av",
259
+ "model.layers.21.self_attn.attn.impl.batch2block_matmul",
260
+ "model.layers.21.self_attn.attn.impl.block2batch_matmul",
261
+ "model.layers.21.self_attn.attn.impl.k_cache",
262
+ "model.layers.21.self_attn.attn.impl.v_cache",
263
+ "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
264
+ "model.layers.21.mlp.gate_up_proj",
265
+ "model.layers.21.mlp.down_proj",
266
+ "model.layers.22.self_attn.qkv_proj",
267
+ "model.layers.22.self_attn.o_proj",
268
+ "model.layers.22.self_attn.attn.impl.matmul_qk",
269
+ "model.layers.22.self_attn.attn.impl.softmax",
270
+ "model.layers.22.self_attn.attn.impl.matmul_av",
271
+ "model.layers.22.self_attn.attn.impl.batch2block_matmul",
272
+ "model.layers.22.self_attn.attn.impl.block2batch_matmul",
273
+ "model.layers.22.self_attn.attn.impl.k_cache",
274
+ "model.layers.22.self_attn.attn.impl.v_cache",
275
+ "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
276
+ "model.layers.22.mlp.gate_up_proj",
277
+ "model.layers.22.mlp.down_proj",
278
+ "model.layers.23.self_attn.qkv_proj",
279
+ "model.layers.23.self_attn.o_proj",
280
+ "model.layers.23.self_attn.attn.impl.matmul_qk",
281
+ "model.layers.23.self_attn.attn.impl.softmax",
282
+ "model.layers.23.self_attn.attn.impl.matmul_av",
283
+ "model.layers.23.self_attn.attn.impl.batch2block_matmul",
284
+ "model.layers.23.self_attn.attn.impl.block2batch_matmul",
285
+ "model.layers.23.self_attn.attn.impl.k_cache",
286
+ "model.layers.23.self_attn.attn.impl.v_cache",
287
+ "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
288
+ "model.layers.23.mlp.gate_up_proj",
289
+ "model.layers.23.mlp.down_proj",
290
+ "model.layers.24.self_attn.qkv_proj",
291
+ "model.layers.24.self_attn.o_proj",
292
+ "model.layers.24.self_attn.attn.impl.matmul_qk",
293
+ "model.layers.24.self_attn.attn.impl.softmax",
294
+ "model.layers.24.self_attn.attn.impl.matmul_av",
295
+ "model.layers.24.self_attn.attn.impl.batch2block_matmul",
296
+ "model.layers.24.self_attn.attn.impl.block2batch_matmul",
297
+ "model.layers.24.self_attn.attn.impl.k_cache",
298
+ "model.layers.24.self_attn.attn.impl.v_cache",
299
+ "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
300
+ "model.layers.24.mlp.gate_up_proj",
301
+ "model.layers.24.mlp.down_proj",
302
+ "model.layers.25.self_attn.qkv_proj",
303
+ "model.layers.25.self_attn.o_proj",
304
+ "model.layers.25.self_attn.attn.impl.matmul_qk",
305
+ "model.layers.25.self_attn.attn.impl.softmax",
306
+ "model.layers.25.self_attn.attn.impl.matmul_av",
307
+ "model.layers.25.self_attn.attn.impl.batch2block_matmul",
308
+ "model.layers.25.self_attn.attn.impl.block2batch_matmul",
309
+ "model.layers.25.self_attn.attn.impl.k_cache",
310
+ "model.layers.25.self_attn.attn.impl.v_cache",
311
+ "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
312
+ "model.layers.25.mlp.gate_up_proj",
313
+ "model.layers.25.mlp.down_proj",
314
+ "model.layers.26.self_attn.qkv_proj",
315
+ "model.layers.26.self_attn.o_proj",
316
+ "model.layers.26.self_attn.attn.impl.matmul_qk",
317
+ "model.layers.26.self_attn.attn.impl.softmax",
318
+ "model.layers.26.self_attn.attn.impl.matmul_av",
319
+ "model.layers.26.self_attn.attn.impl.batch2block_matmul",
320
+ "model.layers.26.self_attn.attn.impl.block2batch_matmul",
321
+ "model.layers.26.self_attn.attn.impl.k_cache",
322
+ "model.layers.26.self_attn.attn.impl.v_cache",
323
+ "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
324
+ "model.layers.26.mlp.gate_up_proj",
325
+ "model.layers.26.mlp.down_proj",
326
+ "model.layers.27.self_attn.qkv_proj",
327
+ "model.layers.27.self_attn.o_proj",
328
+ "model.layers.27.self_attn.attn.impl.matmul_qk",
329
+ "model.layers.27.self_attn.attn.impl.softmax",
330
+ "model.layers.27.self_attn.attn.impl.matmul_av",
331
+ "model.layers.27.self_attn.attn.impl.batch2block_matmul",
332
+ "model.layers.27.self_attn.attn.impl.block2batch_matmul",
333
+ "model.layers.27.self_attn.attn.impl.k_cache",
334
+ "model.layers.27.self_attn.attn.impl.v_cache",
335
+ "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
336
+ "model.layers.27.mlp.gate_up_proj",
337
+ "model.layers.27.mlp.down_proj",
338
+ "model.layers.28.self_attn.qkv_proj",
339
+ "model.layers.28.self_attn.o_proj",
340
+ "model.layers.28.self_attn.attn.impl.matmul_qk",
341
+ "model.layers.28.self_attn.attn.impl.softmax",
342
+ "model.layers.28.self_attn.attn.impl.matmul_av",
343
+ "model.layers.28.self_attn.attn.impl.batch2block_matmul",
344
+ "model.layers.28.self_attn.attn.impl.block2batch_matmul",
345
+ "model.layers.28.self_attn.attn.impl.k_cache",
346
+ "model.layers.28.self_attn.attn.impl.v_cache",
347
+ "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
348
+ "model.layers.28.mlp.gate_up_proj",
349
+ "model.layers.28.mlp.down_proj",
350
+ "model.layers.29.self_attn.qkv_proj",
351
+ "model.layers.29.self_attn.o_proj",
352
+ "model.layers.29.self_attn.attn.impl.matmul_qk",
353
+ "model.layers.29.self_attn.attn.impl.softmax",
354
+ "model.layers.29.self_attn.attn.impl.matmul_av",
355
+ "model.layers.29.self_attn.attn.impl.batch2block_matmul",
356
+ "model.layers.29.self_attn.attn.impl.block2batch_matmul",
357
+ "model.layers.29.self_attn.attn.impl.k_cache",
358
+ "model.layers.29.self_attn.attn.impl.v_cache",
359
+ "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
360
+ "model.layers.29.mlp.gate_up_proj",
361
+ "model.layers.29.mlp.down_proj",
362
+ "model.layers.30.self_attn.qkv_proj",
363
+ "model.layers.30.self_attn.o_proj",
364
+ "model.layers.30.self_attn.attn.impl.matmul_qk",
365
+ "model.layers.30.self_attn.attn.impl.softmax",
366
+ "model.layers.30.self_attn.attn.impl.matmul_av",
367
+ "model.layers.30.self_attn.attn.impl.batch2block_matmul",
368
+ "model.layers.30.self_attn.attn.impl.block2batch_matmul",
369
+ "model.layers.30.self_attn.attn.impl.k_cache",
370
+ "model.layers.30.self_attn.attn.impl.v_cache",
371
+ "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
372
+ "model.layers.30.mlp.gate_up_proj",
373
+ "model.layers.30.mlp.down_proj",
374
+ "model.layers.31.self_attn.qkv_proj",
375
+ "model.layers.31.self_attn.o_proj",
376
+ "model.layers.31.self_attn.attn.impl.matmul_qk",
377
+ "model.layers.31.self_attn.attn.impl.softmax",
378
+ "model.layers.31.self_attn.attn.impl.matmul_av",
379
+ "model.layers.31.self_attn.attn.impl.batch2block_matmul",
380
+ "model.layers.31.self_attn.attn.impl.block2batch_matmul",
381
+ "model.layers.31.self_attn.attn.impl.k_cache",
382
+ "model.layers.31.self_attn.attn.impl.v_cache",
383
+ "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
384
+ "model.layers.31.mlp.gate_up_proj",
385
+ "model.layers.31.mlp.down_proj",
386
+ "model.layers.32.self_attn.qkv_proj",
387
+ "model.layers.32.self_attn.o_proj",
388
+ "model.layers.32.self_attn.attn.impl.matmul_qk",
389
+ "model.layers.32.self_attn.attn.impl.softmax",
390
+ "model.layers.32.self_attn.attn.impl.matmul_av",
391
+ "model.layers.32.self_attn.attn.impl.batch2block_matmul",
392
+ "model.layers.32.self_attn.attn.impl.block2batch_matmul",
393
+ "model.layers.32.self_attn.attn.impl.k_cache",
394
+ "model.layers.32.self_attn.attn.impl.v_cache",
395
+ "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
396
+ "model.layers.32.mlp.gate_up_proj",
397
+ "model.layers.32.mlp.down_proj",
398
+ "model.layers.33.self_attn.qkv_proj",
399
+ "model.layers.33.self_attn.o_proj",
400
+ "model.layers.33.self_attn.attn.impl.matmul_qk",
401
+ "model.layers.33.self_attn.attn.impl.softmax",
402
+ "model.layers.33.self_attn.attn.impl.matmul_av",
403
+ "model.layers.33.self_attn.attn.impl.batch2block_matmul",
404
+ "model.layers.33.self_attn.attn.impl.block2batch_matmul",
405
+ "model.layers.33.self_attn.attn.impl.k_cache",
406
+ "model.layers.33.self_attn.attn.impl.v_cache",
407
+ "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
408
+ "model.layers.33.mlp.gate_up_proj",
409
+ "model.layers.33.mlp.down_proj",
410
+ "model.layers.34.self_attn.qkv_proj",
411
+ "model.layers.34.self_attn.o_proj",
412
+ "model.layers.34.self_attn.attn.impl.matmul_qk",
413
+ "model.layers.34.self_attn.attn.impl.softmax",
414
+ "model.layers.34.self_attn.attn.impl.matmul_av",
415
+ "model.layers.34.self_attn.attn.impl.batch2block_matmul",
416
+ "model.layers.34.self_attn.attn.impl.block2batch_matmul",
417
+ "model.layers.34.self_attn.attn.impl.k_cache",
418
+ "model.layers.34.self_attn.attn.impl.v_cache",
419
+ "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
420
+ "model.layers.34.mlp.gate_up_proj",
421
+ "model.layers.34.mlp.down_proj",
422
+ "model.layers.35.self_attn.qkv_proj",
423
+ "model.layers.35.self_attn.o_proj",
424
+ "model.layers.35.self_attn.attn.impl.matmul_qk",
425
+ "model.layers.35.self_attn.attn.impl.softmax",
426
+ "model.layers.35.self_attn.attn.impl.matmul_av",
427
+ "model.layers.35.self_attn.attn.impl.batch2block_matmul",
428
+ "model.layers.35.self_attn.attn.impl.block2batch_matmul",
429
+ "model.layers.35.self_attn.attn.impl.k_cache",
430
+ "model.layers.35.self_attn.attn.impl.v_cache",
431
+ "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
432
+ "model.layers.35.mlp.gate_up_proj",
433
+ "model.layers.35.mlp.down_proj",
434
+ "model.layers.36.self_attn.qkv_proj",
435
+ "model.layers.36.self_attn.o_proj",
436
+ "model.layers.36.self_attn.attn.impl.matmul_qk",
437
+ "model.layers.36.self_attn.attn.impl.softmax",
438
+ "model.layers.36.self_attn.attn.impl.matmul_av",
439
+ "model.layers.36.self_attn.attn.impl.batch2block_matmul",
440
+ "model.layers.36.self_attn.attn.impl.block2batch_matmul",
441
+ "model.layers.36.self_attn.attn.impl.k_cache",
442
+ "model.layers.36.self_attn.attn.impl.v_cache",
443
+ "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
444
+ "model.layers.36.mlp.gate_up_proj",
445
+ "model.layers.36.mlp.down_proj",
446
+ "model.layers.37.self_attn.qkv_proj",
447
+ "model.layers.37.self_attn.o_proj",
448
+ "model.layers.37.self_attn.attn.impl.matmul_qk",
449
+ "model.layers.37.self_attn.attn.impl.softmax",
450
+ "model.layers.37.self_attn.attn.impl.matmul_av",
451
+ "model.layers.37.self_attn.attn.impl.batch2block_matmul",
452
+ "model.layers.37.self_attn.attn.impl.block2batch_matmul",
453
+ "model.layers.37.self_attn.attn.impl.k_cache",
454
+ "model.layers.37.self_attn.attn.impl.v_cache",
455
+ "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
456
+ "model.layers.37.mlp.gate_up_proj",
457
+ "model.layers.37.mlp.down_proj",
458
+ "model.layers.38.self_attn.qkv_proj",
459
+ "model.layers.38.self_attn.o_proj",
460
+ "model.layers.38.self_attn.attn.impl.matmul_qk",
461
+ "model.layers.38.self_attn.attn.impl.softmax",
462
+ "model.layers.38.self_attn.attn.impl.matmul_av",
463
+ "model.layers.38.self_attn.attn.impl.batch2block_matmul",
464
+ "model.layers.38.self_attn.attn.impl.block2batch_matmul",
465
+ "model.layers.38.self_attn.attn.impl.k_cache",
466
+ "model.layers.38.self_attn.attn.impl.v_cache",
467
+ "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
468
+ "model.layers.38.mlp.gate_up_proj",
469
+ "model.layers.38.mlp.down_proj",
470
+ "model.layers.39.self_attn.qkv_proj",
471
+ "model.layers.39.self_attn.o_proj",
472
+ "model.layers.39.self_attn.attn.impl.matmul_qk",
473
+ "model.layers.39.self_attn.attn.impl.softmax",
474
+ "model.layers.39.self_attn.attn.impl.matmul_av",
475
+ "model.layers.39.self_attn.attn.impl.batch2block_matmul",
476
+ "model.layers.39.self_attn.attn.impl.block2batch_matmul",
477
+ "model.layers.39.self_attn.attn.impl.k_cache",
478
+ "model.layers.39.self_attn.attn.impl.v_cache",
479
+ "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
480
+ "model.layers.39.mlp.gate_up_proj",
481
+ "model.layers.39.mlp.down_proj",
482
+ "model.layers.40.self_attn.qkv_proj",
483
+ "model.layers.40.self_attn.o_proj",
484
+ "model.layers.40.self_attn.attn.impl.matmul_qk",
485
+ "model.layers.40.self_attn.attn.impl.softmax",
486
+ "model.layers.40.self_attn.attn.impl.matmul_av",
487
+ "model.layers.40.self_attn.attn.impl.batch2block_matmul",
488
+ "model.layers.40.self_attn.attn.impl.block2batch_matmul",
489
+ "model.layers.40.self_attn.attn.impl.k_cache",
490
+ "model.layers.40.self_attn.attn.impl.v_cache",
491
+ "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
492
+ "model.layers.40.mlp.gate_up_proj",
493
+ "model.layers.40.mlp.down_proj",
494
+ "model.layers.41.self_attn.qkv_proj",
495
+ "model.layers.41.self_attn.o_proj",
496
+ "model.layers.41.self_attn.attn.impl.matmul_qk",
497
+ "model.layers.41.self_attn.attn.impl.softmax",
498
+ "model.layers.41.self_attn.attn.impl.matmul_av",
499
+ "model.layers.41.self_attn.attn.impl.batch2block_matmul",
500
+ "model.layers.41.self_attn.attn.impl.block2batch_matmul",
501
+ "model.layers.41.self_attn.attn.impl.k_cache",
502
+ "model.layers.41.self_attn.attn.impl.v_cache",
503
+ "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
504
+ "model.layers.41.mlp.gate_up_proj",
505
+ "model.layers.41.mlp.down_proj",
506
+ "model.layers.42.self_attn.qkv_proj",
507
+ "model.layers.42.self_attn.o_proj",
508
+ "model.layers.42.self_attn.attn.impl.matmul_qk",
509
+ "model.layers.42.self_attn.attn.impl.softmax",
510
+ "model.layers.42.self_attn.attn.impl.matmul_av",
511
+ "model.layers.42.self_attn.attn.impl.batch2block_matmul",
512
+ "model.layers.42.self_attn.attn.impl.block2batch_matmul",
513
+ "model.layers.42.self_attn.attn.impl.k_cache",
514
+ "model.layers.42.self_attn.attn.impl.v_cache",
515
+ "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
516
+ "model.layers.42.mlp.gate_up_proj",
517
+ "model.layers.42.mlp.down_proj",
518
+ "model.layers.43.self_attn.qkv_proj",
519
+ "model.layers.43.self_attn.o_proj",
520
+ "model.layers.43.self_attn.attn.impl.matmul_qk",
521
+ "model.layers.43.self_attn.attn.impl.softmax",
522
+ "model.layers.43.self_attn.attn.impl.matmul_av",
523
+ "model.layers.43.self_attn.attn.impl.batch2block_matmul",
524
+ "model.layers.43.self_attn.attn.impl.block2batch_matmul",
525
+ "model.layers.43.self_attn.attn.impl.k_cache",
526
+ "model.layers.43.self_attn.attn.impl.v_cache",
527
+ "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
528
+ "model.layers.43.mlp.gate_up_proj",
529
+ "model.layers.43.mlp.down_proj",
530
+ "model.layers.44.self_attn.qkv_proj",
531
+ "model.layers.44.self_attn.o_proj",
532
+ "model.layers.44.self_attn.attn.impl.matmul_qk",
533
+ "model.layers.44.self_attn.attn.impl.softmax",
534
+ "model.layers.44.self_attn.attn.impl.matmul_av",
535
+ "model.layers.44.self_attn.attn.impl.batch2block_matmul",
536
+ "model.layers.44.self_attn.attn.impl.block2batch_matmul",
537
+ "model.layers.44.self_attn.attn.impl.k_cache",
538
+ "model.layers.44.self_attn.attn.impl.v_cache",
539
+ "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
540
+ "model.layers.44.mlp.gate_up_proj",
541
+ "model.layers.44.mlp.down_proj",
542
+ "model.layers.45.self_attn.qkv_proj",
543
+ "model.layers.45.self_attn.o_proj",
544
+ "model.layers.45.self_attn.attn.impl.matmul_qk",
545
+ "model.layers.45.self_attn.attn.impl.softmax",
546
+ "model.layers.45.self_attn.attn.impl.matmul_av",
547
+ "model.layers.45.self_attn.attn.impl.batch2block_matmul",
548
+ "model.layers.45.self_attn.attn.impl.block2batch_matmul",
549
+ "model.layers.45.self_attn.attn.impl.k_cache",
550
+ "model.layers.45.self_attn.attn.impl.v_cache",
551
+ "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
552
+ "model.layers.45.mlp.gate_up_proj",
553
+ "model.layers.45.mlp.down_proj",
554
+ "model.layers.46.self_attn.qkv_proj",
555
+ "model.layers.46.self_attn.o_proj",
556
+ "model.layers.46.self_attn.attn.impl.matmul_qk",
557
+ "model.layers.46.self_attn.attn.impl.softmax",
558
+ "model.layers.46.self_attn.attn.impl.matmul_av",
559
+ "model.layers.46.self_attn.attn.impl.batch2block_matmul",
560
+ "model.layers.46.self_attn.attn.impl.block2batch_matmul",
561
+ "model.layers.46.self_attn.attn.impl.k_cache",
562
+ "model.layers.46.self_attn.attn.impl.v_cache",
563
+ "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
564
+ "model.layers.46.mlp.gate_up_proj",
565
+ "model.layers.46.mlp.down_proj",
566
+ "model.layers.47.self_attn.qkv_proj",
567
+ "model.layers.47.self_attn.o_proj",
568
+ "model.layers.47.self_attn.attn.impl.matmul_qk",
569
+ "model.layers.47.self_attn.attn.impl.softmax",
570
+ "model.layers.47.self_attn.attn.impl.matmul_av",
571
+ "model.layers.47.self_attn.attn.impl.batch2block_matmul",
572
+ "model.layers.47.self_attn.attn.impl.block2batch_matmul",
573
+ "model.layers.47.self_attn.attn.impl.k_cache",
574
+ "model.layers.47.self_attn.attn.impl.v_cache",
575
+ "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
576
+ "model.layers.47.mlp.gate_up_proj",
577
+ "model.layers.47.mlp.down_proj",
578
+ "model.layers.48.self_attn.qkv_proj",
579
+ "model.layers.48.self_attn.o_proj",
580
+ "model.layers.48.self_attn.attn.impl.matmul_qk",
581
+ "model.layers.48.self_attn.attn.impl.softmax",
582
+ "model.layers.48.self_attn.attn.impl.matmul_av",
583
+ "model.layers.48.self_attn.attn.impl.batch2block_matmul",
584
+ "model.layers.48.self_attn.attn.impl.block2batch_matmul",
585
+ "model.layers.48.self_attn.attn.impl.k_cache",
586
+ "model.layers.48.self_attn.attn.impl.v_cache",
587
+ "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
588
+ "model.layers.48.mlp.gate_up_proj",
589
+ "model.layers.48.mlp.down_proj",
590
+ "model.layers.49.self_attn.qkv_proj",
591
+ "model.layers.49.self_attn.o_proj",
592
+ "model.layers.49.self_attn.attn.impl.matmul_qk",
593
+ "model.layers.49.self_attn.attn.impl.softmax",
594
+ "model.layers.49.self_attn.attn.impl.matmul_av",
595
+ "model.layers.49.self_attn.attn.impl.batch2block_matmul",
596
+ "model.layers.49.self_attn.attn.impl.block2batch_matmul",
597
+ "model.layers.49.self_attn.attn.impl.k_cache",
598
+ "model.layers.49.self_attn.attn.impl.v_cache",
599
+ "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
600
+ "model.layers.49.mlp.gate_up_proj",
601
+ "model.layers.49.mlp.down_proj",
602
+ "model.layers.50.self_attn.qkv_proj",
603
+ "model.layers.50.self_attn.o_proj",
604
+ "model.layers.50.self_attn.attn.impl.matmul_qk",
605
+ "model.layers.50.self_attn.attn.impl.softmax",
606
+ "model.layers.50.self_attn.attn.impl.matmul_av",
607
+ "model.layers.50.self_attn.attn.impl.batch2block_matmul",
608
+ "model.layers.50.self_attn.attn.impl.block2batch_matmul",
609
+ "model.layers.50.self_attn.attn.impl.k_cache",
610
+ "model.layers.50.self_attn.attn.impl.v_cache",
611
+ "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
612
+ "model.layers.50.mlp.gate_up_proj",
613
+ "model.layers.50.mlp.down_proj",
614
+ "model.layers.51.self_attn.qkv_proj",
615
+ "model.layers.51.self_attn.o_proj",
616
+ "model.layers.51.self_attn.attn.impl.matmul_qk",
617
+ "model.layers.51.self_attn.attn.impl.softmax",
618
+ "model.layers.51.self_attn.attn.impl.matmul_av",
619
+ "model.layers.51.self_attn.attn.impl.batch2block_matmul",
620
+ "model.layers.51.self_attn.attn.impl.block2batch_matmul",
621
+ "model.layers.51.self_attn.attn.impl.k_cache",
622
+ "model.layers.51.self_attn.attn.impl.v_cache",
623
+ "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
624
+ "model.layers.51.mlp.gate_up_proj",
625
+ "model.layers.51.mlp.down_proj",
626
+ "model.layers.52.self_attn.qkv_proj",
627
+ "model.layers.52.self_attn.o_proj",
628
+ "model.layers.52.self_attn.attn.impl.matmul_qk",
629
+ "model.layers.52.self_attn.attn.impl.softmax",
630
+ "model.layers.52.self_attn.attn.impl.matmul_av",
631
+ "model.layers.52.self_attn.attn.impl.batch2block_matmul",
632
+ "model.layers.52.self_attn.attn.impl.block2batch_matmul",
633
+ "model.layers.52.self_attn.attn.impl.k_cache",
634
+ "model.layers.52.self_attn.attn.impl.v_cache",
635
+ "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
636
+ "model.layers.52.mlp.gate_up_proj",
637
+ "model.layers.52.mlp.down_proj",
638
+ "model.layers.53.self_attn.qkv_proj",
639
+ "model.layers.53.self_attn.o_proj",
640
+ "model.layers.53.self_attn.attn.impl.matmul_qk",
641
+ "model.layers.53.self_attn.attn.impl.softmax",
642
+ "model.layers.53.self_attn.attn.impl.matmul_av",
643
+ "model.layers.53.self_attn.attn.impl.batch2block_matmul",
644
+ "model.layers.53.self_attn.attn.impl.block2batch_matmul",
645
+ "model.layers.53.self_attn.attn.impl.k_cache",
646
+ "model.layers.53.self_attn.attn.impl.v_cache",
647
+ "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
648
+ "model.layers.53.mlp.gate_up_proj",
649
+ "model.layers.53.mlp.down_proj",
650
+ "model.layers.54.self_attn.qkv_proj",
651
+ "model.layers.54.self_attn.o_proj",
652
+ "model.layers.54.self_attn.attn.impl.matmul_qk",
653
+ "model.layers.54.self_attn.attn.impl.softmax",
654
+ "model.layers.54.self_attn.attn.impl.matmul_av",
655
+ "model.layers.54.self_attn.attn.impl.batch2block_matmul",
656
+ "model.layers.54.self_attn.attn.impl.block2batch_matmul",
657
+ "model.layers.54.self_attn.attn.impl.k_cache",
658
+ "model.layers.54.self_attn.attn.impl.v_cache",
659
+ "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
660
+ "model.layers.54.mlp.gate_up_proj",
661
+ "model.layers.54.mlp.down_proj",
662
+ "model.layers.55.self_attn.qkv_proj",
663
+ "model.layers.55.self_attn.o_proj",
664
+ "model.layers.55.self_attn.attn.impl.matmul_qk",
665
+ "model.layers.55.self_attn.attn.impl.softmax",
666
+ "model.layers.55.self_attn.attn.impl.matmul_av",
667
+ "model.layers.55.self_attn.attn.impl.batch2block_matmul",
668
+ "model.layers.55.self_attn.attn.impl.block2batch_matmul",
669
+ "model.layers.55.self_attn.attn.impl.k_cache",
670
+ "model.layers.55.self_attn.attn.impl.v_cache",
671
+ "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
672
+ "model.layers.55.mlp.gate_up_proj",
673
+ "model.layers.55.mlp.down_proj",
674
+ "model.layers.56.self_attn.qkv_proj",
675
+ "model.layers.56.self_attn.o_proj",
676
+ "model.layers.56.self_attn.attn.impl.matmul_qk",
677
+ "model.layers.56.self_attn.attn.impl.softmax",
678
+ "model.layers.56.self_attn.attn.impl.matmul_av",
679
+ "model.layers.56.self_attn.attn.impl.batch2block_matmul",
680
+ "model.layers.56.self_attn.attn.impl.block2batch_matmul",
681
+ "model.layers.56.self_attn.attn.impl.k_cache",
682
+ "model.layers.56.self_attn.attn.impl.v_cache",
683
+ "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
684
+ "model.layers.56.mlp.gate_up_proj",
685
+ "model.layers.56.mlp.down_proj",
686
+ "model.layers.57.self_attn.qkv_proj",
687
+ "model.layers.57.self_attn.o_proj",
688
+ "model.layers.57.self_attn.attn.impl.matmul_qk",
689
+ "model.layers.57.self_attn.attn.impl.softmax",
690
+ "model.layers.57.self_attn.attn.impl.matmul_av",
691
+ "model.layers.57.self_attn.attn.impl.batch2block_matmul",
692
+ "model.layers.57.self_attn.attn.impl.block2batch_matmul",
693
+ "model.layers.57.self_attn.attn.impl.k_cache",
694
+ "model.layers.57.self_attn.attn.impl.v_cache",
695
+ "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
696
+ "model.layers.57.mlp.gate_up_proj",
697
+ "model.layers.57.mlp.down_proj",
698
+ "model.layers.58.self_attn.qkv_proj",
699
+ "model.layers.58.self_attn.o_proj",
700
+ "model.layers.58.self_attn.attn.impl.matmul_qk",
701
+ "model.layers.58.self_attn.attn.impl.softmax",
702
+ "model.layers.58.self_attn.attn.impl.matmul_av",
703
+ "model.layers.58.self_attn.attn.impl.batch2block_matmul",
704
+ "model.layers.58.self_attn.attn.impl.block2batch_matmul",
705
+ "model.layers.58.self_attn.attn.impl.k_cache",
706
+ "model.layers.58.self_attn.attn.impl.v_cache",
707
+ "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
708
+ "model.layers.58.mlp.gate_up_proj",
709
+ "model.layers.58.mlp.down_proj",
710
+ "model.layers.59.self_attn.qkv_proj",
711
+ "model.layers.59.self_attn.o_proj",
712
+ "model.layers.59.self_attn.attn.impl.matmul_qk",
713
+ "model.layers.59.self_attn.attn.impl.softmax",
714
+ "model.layers.59.self_attn.attn.impl.matmul_av",
715
+ "model.layers.59.self_attn.attn.impl.batch2block_matmul",
716
+ "model.layers.59.self_attn.attn.impl.block2batch_matmul",
717
+ "model.layers.59.self_attn.attn.impl.k_cache",
718
+ "model.layers.59.self_attn.attn.impl.v_cache",
719
+ "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
720
+ "model.layers.59.mlp.gate_up_proj",
721
+ "model.layers.59.mlp.down_proj",
722
+ "model.layers.60.self_attn.qkv_proj",
723
+ "model.layers.60.self_attn.o_proj",
724
+ "model.layers.60.self_attn.attn.impl.matmul_qk",
725
+ "model.layers.60.self_attn.attn.impl.softmax",
726
+ "model.layers.60.self_attn.attn.impl.matmul_av",
727
+ "model.layers.60.self_attn.attn.impl.batch2block_matmul",
728
+ "model.layers.60.self_attn.attn.impl.block2batch_matmul",
729
+ "model.layers.60.self_attn.attn.impl.k_cache",
730
+ "model.layers.60.self_attn.attn.impl.v_cache",
731
+ "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
732
+ "model.layers.60.mlp.gate_up_proj",
733
+ "model.layers.60.mlp.down_proj",
734
+ "model.layers.61.self_attn.qkv_proj",
735
+ "model.layers.61.self_attn.o_proj",
736
+ "model.layers.61.self_attn.attn.impl.matmul_qk",
737
+ "model.layers.61.self_attn.attn.impl.softmax",
738
+ "model.layers.61.self_attn.attn.impl.matmul_av",
739
+ "model.layers.61.self_attn.attn.impl.batch2block_matmul",
740
+ "model.layers.61.self_attn.attn.impl.block2batch_matmul",
741
+ "model.layers.61.self_attn.attn.impl.k_cache",
742
+ "model.layers.61.self_attn.attn.impl.v_cache",
743
+ "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
744
+ "model.layers.61.mlp.gate_up_proj",
745
+ "model.layers.61.mlp.down_proj",
746
+ "model.layers.62.self_attn.qkv_proj",
747
+ "model.layers.62.self_attn.o_proj",
748
+ "model.layers.62.self_attn.attn.impl.matmul_qk",
749
+ "model.layers.62.self_attn.attn.impl.softmax",
750
+ "model.layers.62.self_attn.attn.impl.matmul_av",
751
+ "model.layers.62.self_attn.attn.impl.batch2block_matmul",
752
+ "model.layers.62.self_attn.attn.impl.block2batch_matmul",
753
+ "model.layers.62.self_attn.attn.impl.k_cache",
754
+ "model.layers.62.self_attn.attn.impl.v_cache",
755
+ "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
756
+ "model.layers.62.mlp.gate_up_proj",
757
+ "model.layers.62.mlp.down_proj",
758
+ "model.layers.63.self_attn.qkv_proj",
759
+ "model.layers.63.self_attn.o_proj",
760
+ "model.layers.63.self_attn.attn.impl.matmul_qk",
761
+ "model.layers.63.self_attn.attn.impl.softmax",
762
+ "model.layers.63.self_attn.attn.impl.matmul_av",
763
+ "model.layers.63.self_attn.attn.impl.batch2block_matmul",
764
+ "model.layers.63.self_attn.attn.impl.block2batch_matmul",
765
+ "model.layers.63.self_attn.attn.impl.k_cache",
766
+ "model.layers.63.self_attn.attn.impl.v_cache",
767
+ "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
768
+ "model.layers.63.mlp.gate_up_proj",
769
+ "model.layers.63.mlp.down_proj",
770
+ "model.layers.64.self_attn.qkv_proj",
771
+ "model.layers.64.self_attn.o_proj",
772
+ "model.layers.64.self_attn.attn.impl.matmul_qk",
773
+ "model.layers.64.self_attn.attn.impl.softmax",
774
+ "model.layers.64.self_attn.attn.impl.matmul_av",
775
+ "model.layers.64.self_attn.attn.impl.batch2block_matmul",
776
+ "model.layers.64.self_attn.attn.impl.block2batch_matmul",
777
+ "model.layers.64.self_attn.attn.impl.k_cache",
778
+ "model.layers.64.self_attn.attn.impl.v_cache",
779
+ "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
780
+ "model.layers.64.mlp.gate_up_proj",
781
+ "model.layers.64.mlp.down_proj",
782
+ "model.layers.65.self_attn.qkv_proj",
783
+ "model.layers.65.self_attn.o_proj",
784
+ "model.layers.65.self_attn.attn.impl.matmul_qk",
785
+ "model.layers.65.self_attn.attn.impl.softmax",
786
+ "model.layers.65.self_attn.attn.impl.matmul_av",
787
+ "model.layers.65.self_attn.attn.impl.batch2block_matmul",
788
+ "model.layers.65.self_attn.attn.impl.block2batch_matmul",
789
+ "model.layers.65.self_attn.attn.impl.k_cache",
790
+ "model.layers.65.self_attn.attn.impl.v_cache",
791
+ "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
792
+ "model.layers.65.mlp.gate_up_proj",
793
+ "model.layers.65.mlp.down_proj",
794
+ "model.layers.66.self_attn.qkv_proj",
795
+ "model.layers.66.self_attn.o_proj",
796
+ "model.layers.66.self_attn.attn.impl.matmul_qk",
797
+ "model.layers.66.self_attn.attn.impl.softmax",
798
+ "model.layers.66.self_attn.attn.impl.matmul_av",
799
+ "model.layers.66.self_attn.attn.impl.batch2block_matmul",
800
+ "model.layers.66.self_attn.attn.impl.block2batch_matmul",
801
+ "model.layers.66.self_attn.attn.impl.k_cache",
802
+ "model.layers.66.self_attn.attn.impl.v_cache",
803
+ "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
804
+ "model.layers.66.mlp.gate_up_proj",
805
+ "model.layers.66.mlp.down_proj",
806
+ "model.layers.67.self_attn.qkv_proj",
807
+ "model.layers.67.self_attn.o_proj",
808
+ "model.layers.67.self_attn.attn.impl.matmul_qk",
809
+ "model.layers.67.self_attn.attn.impl.softmax",
810
+ "model.layers.67.self_attn.attn.impl.matmul_av",
811
+ "model.layers.67.self_attn.attn.impl.batch2block_matmul",
812
+ "model.layers.67.self_attn.attn.impl.block2batch_matmul",
813
+ "model.layers.67.self_attn.attn.impl.k_cache",
814
+ "model.layers.67.self_attn.attn.impl.v_cache",
815
+ "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
816
+ "model.layers.67.mlp.gate_up_proj",
817
+ "model.layers.67.mlp.down_proj",
818
+ "model.layers.68.self_attn.qkv_proj",
819
+ "model.layers.68.self_attn.o_proj",
820
+ "model.layers.68.self_attn.attn.impl.matmul_qk",
821
+ "model.layers.68.self_attn.attn.impl.softmax",
822
+ "model.layers.68.self_attn.attn.impl.matmul_av",
823
+ "model.layers.68.self_attn.attn.impl.batch2block_matmul",
824
+ "model.layers.68.self_attn.attn.impl.block2batch_matmul",
825
+ "model.layers.68.self_attn.attn.impl.k_cache",
826
+ "model.layers.68.self_attn.attn.impl.v_cache",
827
+ "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
828
+ "model.layers.68.mlp.gate_up_proj",
829
+ "model.layers.68.mlp.down_proj",
830
+ "model.layers.69.self_attn.qkv_proj",
831
+ "model.layers.69.self_attn.o_proj",
832
+ "model.layers.69.self_attn.attn.impl.matmul_qk",
833
+ "model.layers.69.self_attn.attn.impl.softmax",
834
+ "model.layers.69.self_attn.attn.impl.matmul_av",
835
+ "model.layers.69.self_attn.attn.impl.batch2block_matmul",
836
+ "model.layers.69.self_attn.attn.impl.block2batch_matmul",
837
+ "model.layers.69.self_attn.attn.impl.k_cache",
838
+ "model.layers.69.self_attn.attn.impl.v_cache",
839
+ "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
840
+ "model.layers.69.mlp.gate_up_proj",
841
+ "model.layers.69.mlp.down_proj",
842
+ "model.layers.70.self_attn.qkv_proj",
843
+ "model.layers.70.self_attn.o_proj",
844
+ "model.layers.70.self_attn.attn.impl.matmul_qk",
845
+ "model.layers.70.self_attn.attn.impl.softmax",
846
+ "model.layers.70.self_attn.attn.impl.matmul_av",
847
+ "model.layers.70.self_attn.attn.impl.batch2block_matmul",
848
+ "model.layers.70.self_attn.attn.impl.block2batch_matmul",
849
+ "model.layers.70.self_attn.attn.impl.k_cache",
850
+ "model.layers.70.self_attn.attn.impl.v_cache",
851
+ "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
852
+ "model.layers.70.mlp.gate_up_proj",
853
+ "model.layers.70.mlp.down_proj",
854
+ "model.layers.71.self_attn.qkv_proj",
855
+ "model.layers.71.self_attn.o_proj",
856
+ "model.layers.71.self_attn.attn.impl.matmul_qk",
857
+ "model.layers.71.self_attn.attn.impl.softmax",
858
+ "model.layers.71.self_attn.attn.impl.matmul_av",
859
+ "model.layers.71.self_attn.attn.impl.batch2block_matmul",
860
+ "model.layers.71.self_attn.attn.impl.block2batch_matmul",
861
+ "model.layers.71.self_attn.attn.impl.k_cache",
862
+ "model.layers.71.self_attn.attn.impl.v_cache",
863
+ "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
864
+ "model.layers.71.mlp.gate_up_proj",
865
+ "model.layers.71.mlp.down_proj",
866
+ "model.layers.72.self_attn.qkv_proj",
867
+ "model.layers.72.self_attn.o_proj",
868
+ "model.layers.72.self_attn.attn.impl.matmul_qk",
869
+ "model.layers.72.self_attn.attn.impl.softmax",
870
+ "model.layers.72.self_attn.attn.impl.matmul_av",
871
+ "model.layers.72.self_attn.attn.impl.batch2block_matmul",
872
+ "model.layers.72.self_attn.attn.impl.block2batch_matmul",
873
+ "model.layers.72.self_attn.attn.impl.k_cache",
874
+ "model.layers.72.self_attn.attn.impl.v_cache",
875
+ "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
876
+ "model.layers.72.mlp.gate_up_proj",
877
+ "model.layers.72.mlp.down_proj",
878
+ "model.layers.73.self_attn.qkv_proj",
879
+ "model.layers.73.self_attn.o_proj",
880
+ "model.layers.73.self_attn.attn.impl.matmul_qk",
881
+ "model.layers.73.self_attn.attn.impl.softmax",
882
+ "model.layers.73.self_attn.attn.impl.matmul_av",
883
+ "model.layers.73.self_attn.attn.impl.batch2block_matmul",
884
+ "model.layers.73.self_attn.attn.impl.block2batch_matmul",
885
+ "model.layers.73.self_attn.attn.impl.k_cache",
886
+ "model.layers.73.self_attn.attn.impl.v_cache",
887
+ "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
888
+ "model.layers.73.mlp.gate_up_proj",
889
+ "model.layers.73.mlp.down_proj",
890
+ "model.layers.74.self_attn.qkv_proj",
891
+ "model.layers.74.self_attn.o_proj",
892
+ "model.layers.74.self_attn.attn.impl.matmul_qk",
893
+ "model.layers.74.self_attn.attn.impl.softmax",
894
+ "model.layers.74.self_attn.attn.impl.matmul_av",
895
+ "model.layers.74.self_attn.attn.impl.batch2block_matmul",
896
+ "model.layers.74.self_attn.attn.impl.block2batch_matmul",
897
+ "model.layers.74.self_attn.attn.impl.k_cache",
898
+ "model.layers.74.self_attn.attn.impl.v_cache",
899
+ "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
900
+ "model.layers.74.mlp.gate_up_proj",
901
+ "model.layers.74.mlp.down_proj",
902
+ "model.layers.75.self_attn.qkv_proj",
903
+ "model.layers.75.self_attn.o_proj",
904
+ "model.layers.75.self_attn.attn.impl.matmul_qk",
905
+ "model.layers.75.self_attn.attn.impl.softmax",
906
+ "model.layers.75.self_attn.attn.impl.matmul_av",
907
+ "model.layers.75.self_attn.attn.impl.batch2block_matmul",
908
+ "model.layers.75.self_attn.attn.impl.block2batch_matmul",
909
+ "model.layers.75.self_attn.attn.impl.k_cache",
910
+ "model.layers.75.self_attn.attn.impl.v_cache",
911
+ "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
912
+ "model.layers.75.mlp.gate_up_proj",
913
+ "model.layers.75.mlp.down_proj",
914
+ "model.layers.76.self_attn.qkv_proj",
915
+ "model.layers.76.self_attn.o_proj",
916
+ "model.layers.76.self_attn.attn.impl.matmul_qk",
917
+ "model.layers.76.self_attn.attn.impl.softmax",
918
+ "model.layers.76.self_attn.attn.impl.matmul_av",
919
+ "model.layers.76.self_attn.attn.impl.batch2block_matmul",
920
+ "model.layers.76.self_attn.attn.impl.block2batch_matmul",
921
+ "model.layers.76.self_attn.attn.impl.k_cache",
922
+ "model.layers.76.self_attn.attn.impl.v_cache",
923
+ "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
924
+ "model.layers.76.mlp.gate_up_proj",
925
+ "model.layers.76.mlp.down_proj",
926
+ "model.layers.77.self_attn.qkv_proj",
927
+ "model.layers.77.self_attn.o_proj",
928
+ "model.layers.77.self_attn.attn.impl.matmul_qk",
929
+ "model.layers.77.self_attn.attn.impl.softmax",
930
+ "model.layers.77.self_attn.attn.impl.matmul_av",
931
+ "model.layers.77.self_attn.attn.impl.batch2block_matmul",
932
+ "model.layers.77.self_attn.attn.impl.block2batch_matmul",
933
+ "model.layers.77.self_attn.attn.impl.k_cache",
934
+ "model.layers.77.self_attn.attn.impl.v_cache",
935
+ "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
936
+ "model.layers.77.mlp.gate_up_proj",
937
+ "model.layers.77.mlp.down_proj",
938
+ "model.layers.78.self_attn.qkv_proj",
939
+ "model.layers.78.self_attn.o_proj",
940
+ "model.layers.78.self_attn.attn.impl.matmul_qk",
941
+ "model.layers.78.self_attn.attn.impl.softmax",
942
+ "model.layers.78.self_attn.attn.impl.matmul_av",
943
+ "model.layers.78.self_attn.attn.impl.batch2block_matmul",
944
+ "model.layers.78.self_attn.attn.impl.block2batch_matmul",
945
+ "model.layers.78.self_attn.attn.impl.k_cache",
946
+ "model.layers.78.self_attn.attn.impl.v_cache",
947
+ "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
948
+ "model.layers.78.mlp.gate_up_proj",
949
+ "model.layers.78.mlp.down_proj",
950
+ "model.layers.79.self_attn.qkv_proj",
951
+ "model.layers.79.self_attn.o_proj",
952
+ "model.layers.79.self_attn.attn.impl.matmul_qk",
953
+ "model.layers.79.self_attn.attn.impl.softmax",
954
+ "model.layers.79.self_attn.attn.impl.matmul_av",
955
+ "model.layers.79.self_attn.attn.impl.batch2block_matmul",
956
+ "model.layers.79.self_attn.attn.impl.block2batch_matmul",
957
+ "model.layers.79.self_attn.attn.impl.k_cache",
958
+ "model.layers.79.self_attn.attn.impl.v_cache",
959
+ "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
960
+ "model.layers.79.mlp.gate_up_proj",
961
+ "model.layers.79.mlp.down_proj",
962
+ "lm_head"
963
+ ]
quant/g3/inc_output_hooks_maxabs_3_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GlobalRank": null, "LocalRank": 3, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[29.0]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.12353515625]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.30859375]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.388671875]], [[5.0]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.1884765625]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[404.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[123.0]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.0]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.1884765625]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.71875]], [[5.0]], [[0.1884765625]]], "outputs": [[[0.12353515625]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[43.25]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[0.5390625]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[0.64453125]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[4.875]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.158203125]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.515625]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.85546875]], [[12.4375]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.8359375]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.609375]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.984375]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[12.4375]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.8359375]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.9375]], [[12.4375]], [[0.8203125]]], "outputs": [[[0.1123046875]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[7.875]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[6.5625]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.52734375]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[1.2890625]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.06787109375]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.2158203125]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0625]], [[12.1875]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.5234375]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.65625]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[12.1875]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.5234375]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.4375]], [[11.75]], [[0.5078125]]], "outputs": [[[0.05078125]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[2.78125]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.26171875]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[7.875]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.26953125]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.48046875]], [[12.8125]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.53515625]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.375]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.140625]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[12.8125]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.53515625]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.0625]], [[12.0]], [[0.48046875]]], "outputs": [[[0.26953125]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[3.203125]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[1.0078125]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[1.3671875]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.322265625]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.16796875]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.330078125]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[13.75]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.875]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.8125]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[0.875]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.9375]], [[13.1875]], [[0.875]]], "outputs": [[[0.1328125]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[1.1328125]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.388671875]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[1.0234375]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[3.1875]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.146484375]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.09326171875]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[18.875]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.76953125]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.5]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.015625]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[18.875]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[0.76953125]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.1875]], [[17.625]], [[0.76953125]]], "outputs": [[[0.107421875]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[11.875]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[0.369140625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[0.66796875]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.345703125]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.1064453125]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.146484375]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[15.75]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.94921875]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.3125]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[15.75]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[0.94921875]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.21875]], [[14.8125]], [[0.86328125]]], "outputs": [[[0.0771484375]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[1.015625]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.69140625]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.345703125]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.357421875]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.216796875]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.181640625]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[12.875]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.9765625]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.1875]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[12.875]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[0.9765625]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.1875]], [[12.1875]], [[0.921875]]], "outputs": [[[0.134765625]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.4453125]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[1.8984375]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.62109375]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.333984375]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.1728515625]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.12158203125]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[17.125]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.7109375]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.78125]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.890625]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[0.7109375]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[16.5]], [[0.66015625]]], "outputs": [[[0.1728515625]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[3.09375]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.51953125]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.240234375]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[0.515625]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.16015625]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.130859375]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6015625]], [[22.25]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.640625]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.96875]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.0]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[22.25]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[0.640625]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[21.125]], [[0.5234375]]], "outputs": [[[0.16015625]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[15.4375]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[0.9140625]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.2236328125]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.328125]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.359375]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.248046875]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[11.9375]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.234375]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.84375]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.765625]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[1.234375]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.25]], [[11.5]], [[1.234375]]], "outputs": [[[0.1494140625]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.400390625]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[0.92578125]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.31640625]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[2.8125]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.20703125]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.193359375]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.640625]], [[15.5625]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.89453125]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.09375]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.84375]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[15.5625]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[0.89453125]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[15.125]], [[0.8203125]]], "outputs": [[[0.1611328125]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.6015625]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.9921875]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.2001953125]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.37109375]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.357421875]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.1962890625]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8515625]], [[13.25]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.796875]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.5]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.03125]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[13.25]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[0.796875]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.375]], [[12.625]], [[0.8046875]]], "outputs": [[[0.291015625]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.8203125]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[0.72265625]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.2578125]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.3671875]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.16015625]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[15.1875]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.859375]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.96875]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.859375]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.859375]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.46875]], [[14.9375]], [[1.328125]]], "outputs": [[[0.333984375]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.25390625]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[0.98828125]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.240234375]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.2197265625]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.240234375]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.1845703125]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[10.125]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6171875]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.25]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.375]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[10.125]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.6171875]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5625]], [[9.8125]], [[1.4921875]]], "outputs": [[[0.2138671875]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.255859375]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.94140625]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.330078125]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.2255859375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.427734375]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.1357421875]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[12.3125]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5625]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.5625]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.5625]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.71875]], [[11.25]], [[1.234375]]], "outputs": [[[0.306640625]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.30078125]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[1.2734375]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.62109375]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.431640625]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.53125]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.1953125]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[16.0]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.984375]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.0625]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.875]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[1.984375]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.3125]], [[15.375]], [[1.4921875]]], "outputs": [[[0.359375]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[0.5078125]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[1.15625]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.486328125]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.3515625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.1044921875]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.72265625]], [[13.0625]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.109375]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[37.25]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.109375]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.6875]], [[12.0625]], [[1.0234375]]], "outputs": [[[0.43359375]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.380859375]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[1.4765625]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.546875]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.322265625]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.498046875]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.1142578125]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[14.625]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.90625]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.5]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[14.625]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.90625]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.71875]], [[13.75]], [[1.0]]], "outputs": [[[0.392578125]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.26171875]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[27.0]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[1.109375]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.255859375]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[0.4921875]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.16796875]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.703125]], [[12.375]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6640625]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[37.5]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.25]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[12.375]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.6640625]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[11.375]], [[1.5390625]]], "outputs": [[[0.306640625]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.44921875]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[1.953125]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.44140625]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.390625]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.625]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.2119140625]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[18.125]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.46875]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.25]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.875]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.46875]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.03125]], [[16.375]], [[1.3203125]]], "outputs": [[[0.40234375]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.314453125]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.015625]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.59375]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.84765625]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.1806640625]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[14.875]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.296875]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.5]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[14.875]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[1.296875]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[13.625]], [[1.21875]]], "outputs": [[[0.5078125]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.416015625]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[2.171875]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[1.1640625]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.296875]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.6171875]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.380859375]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[15.1875]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.296875]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[20.875]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[1.296875]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0625]], [[14.1875]], [[1.0859375]]], "outputs": [[[0.4375]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.5859375]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[2.046875]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.482421875]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.33203125]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[0.63671875]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.380859375]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[16.375]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.09375]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.25]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.0]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[1.09375]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.71875]], [[16.125]], [[1.0078125]]], "outputs": [[[0.51953125]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.390625]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[6.375]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.396484375]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.375]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.5703125]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.33984375]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6484375]], [[13.0]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.1875]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.8125]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[11.5625]], [[1.6875]]], "outputs": [[[0.546875]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.50390625]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[2.421875]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.79296875]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.302734375]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91015625]], [[14.4375]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.703125]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.5]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[21.375]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[2.703125]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[14.4375]], [[2.703125]]], "outputs": [[[0.388671875]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.439453125]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[1.796875]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[0.7734375]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.353515625]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[0.765625]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.400390625]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[13.8125]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.015625]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.625]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.25]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[2.015625]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.65625]], [[13.4375]], [[2.015625]]], "outputs": [[[0.44140625]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.4296875]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[1.9921875]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.7578125]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.376953125]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.53125]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.408203125]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[15.8125]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.71875]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.125]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[15.8125]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[2.71875]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[13.5625]], [[2.71875]]], "outputs": [[[0.53125]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.361328125]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[5.71875]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.62890625]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.3046875]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[2.0]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.875]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[11.9375]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.59375]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.125]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.03125]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[6.59375]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.65625]], [[10.0]], [[6.59375]]], "outputs": [[[2.0]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[0.6328125]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[1.78125]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.92578125]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.3828125]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.890625]], [[15.375]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.4375]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[46.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.75]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[15.375]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[5.4375]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[15.375]], [[5.4375]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[1.703125]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[0.51171875]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.5625]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.5078125]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.31640625]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[20.25]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0859375]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.125]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.875]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[20.25]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[1.0859375]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.75]], [[18.375]], [[0.8046875]]], "outputs": [[[0.4921875]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.4921875]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[3.0]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[0.6484375]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.2314453125]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.90625]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.400390625]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.828125]], [[17.625]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9921875]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[37.5]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.375]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[17.625]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[1.9921875]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[17.125]], [[1.9921875]]], "outputs": [[[0.53125]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.396484375]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[2.453125]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.53515625]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.400390625]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[1.0546875]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.44140625]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6484375]], [[16.375]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.34375]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.25]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[4.34375]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[16.375]], [[4.34375]]], "outputs": [[[1.0546875]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.3671875]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[4.28125]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[1.015625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.421875]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[0.75]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.490234375]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7890625]], [[17.875]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.0625]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.0]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.25]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[17.875]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[2.0625]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.71875]], [[17.0]], [[2.0625]]], "outputs": [[[0.57421875]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[28.125]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[3.203125]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[1.25]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.337890625]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.298828125]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.85546875]], [[18.125]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.71875]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.375]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[1.71875]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.75]], [[17.25]], [[1.71875]]], "outputs": [[[0.57421875]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.765625]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[1.9140625]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[0.59375]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.271484375]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.875]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.96875]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.796875]], [[18.5]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.734375]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[18.5]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[2.734375]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[16.875]], [[2.734375]]], "outputs": [[[0.6953125]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.388671875]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[3.34375]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[0.328125]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.46875]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.5234375]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.5390625]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[17.375]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.90625]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[36.0]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.375]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[5.90625]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.25]], [[16.5]], [[5.90625]]], "outputs": [[[0.515625]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.458984375]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[2.671875]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[0.73828125]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.291015625]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.9921875]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[1.0859375]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[16.75]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.1875]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.0625]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[5.1875]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.59375]], [[14.875]], [[5.1875]]], "outputs": [[[0.77734375]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.42578125]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[2.671875]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[0.6171875]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.97265625]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.34375]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.890625]], [[18.25]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.40625]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[44.0]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.4375]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[18.25]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[1.40625]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.125]], [[17.5]], [[1.0234375]]], "outputs": [[[0.7109375]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.376953125]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[7.09375]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.9609375]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.310546875]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[0.90234375]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.40234375]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.60546875]], [[14.6875]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.640625]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.78125]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[14.6875]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[3.640625]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[13.75]], [[3.640625]]], "outputs": [[[0.70703125]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.5078125]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[2.359375]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[1.0859375]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.32421875]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.78515625]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.30078125]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91796875]], [[10.5625]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.015625]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.875]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[10.5625]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[2.015625]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.3125]], [[10.375]], [[1.140625]]], "outputs": [[[0.400390625]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.404296875]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[3.40625]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[1.2734375]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.384765625]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.37890625]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8828125]], [[15.0]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4609375]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.75]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.375]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[1.4609375]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.6875]], [[14.0625]], [[1.0703125]]], "outputs": [[[0.63671875]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.357421875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[2.65625]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[0.384765625]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.451171875]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.2578125]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.2314453125]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[12.375]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.7890625]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.5625]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.84375]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[12.375]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[0.7890625]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.4375]], [[11.5]], [[0.8125]]], "outputs": [[[0.2578125]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.427734375]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[2.984375]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[0.267578125]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.388671875]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.76171875]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.2333984375]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6875]], [[18.25]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.34375]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.75]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.6875]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[18.25]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[1.34375]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.4375]], [[15.0]], [[1.234375]]], "outputs": [[[0.546875]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.78125]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[3.03125]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.384765625]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.94140625]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.21484375]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91796875]], [[14.75]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6796875]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.125]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.875]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[14.75]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.6796875]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.5]], [[14.1875]], [[1.1484375]]], "outputs": [[[0.76171875]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.5703125]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[3.828125]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.92578125]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.294921875]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.6875]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.28125]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.56640625]], [[15.0]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3828125]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.75]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.375]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[1.3828125]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.9375]], [[0.90625]]], "outputs": [[[0.47265625]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.46875]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[4.25]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[1.5703125]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.71875]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.359375]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.14453125]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[16.75]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.5703125]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.75]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.625]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[0.5703125]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.125]], [[16.75]], [[0.49609375]]], "outputs": [[[0.33203125]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.462890625]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[4.0625]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.408203125]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.412109375]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.3984375]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.2333984375]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[14.8125]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.0625]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[2.0625]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.96875]], [[13.625]], [[2.0625]]], "outputs": [[[0.369140625]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.392578125]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[4.28125]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[1.4375]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.52734375]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[0.60546875]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[12.625]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3515625]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.625]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[12.625]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[1.3515625]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[10.0]], [[1.1015625]]], "outputs": [[[0.5703125]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.62890625]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[4.125]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[1.2265625]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.37890625]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.83984375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.51953125]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[15.3125]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.5625]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[6.53125]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[12.9375]], [[6.53125]]], "outputs": [[[0.47265625]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.60546875]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[4.40625]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[0.359375]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.4375]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.45703125]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.1923828125]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5]], [[12.5]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2578125]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.9375]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0625]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[1.2578125]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.71875]], [[11.125]], [[1.2578125]]], "outputs": [[[0.45703125]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.46484375]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[3.6875]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.53125]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.40625]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.1630859375]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5390625]], [[15.0]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.8984375]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.0]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[0.8984375]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.03125]], [[14.625]], [[0.83203125]]], "outputs": [[[0.40625]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.515625]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[4.5625]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[0.92578125]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.37109375]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[1.3203125]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.984375]], [[12.375]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5625]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.875]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.375]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[12.375]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[1.5625]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.3125]], [[12.25]], [[1.5625]]], "outputs": [[[0.69921875]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.59375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[5.125]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[0.419921875]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.498046875]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.423828125]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.3359375]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[14.0]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.859375]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.75]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[3.859375]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.9375]], [[14.0]], [[3.859375]]], "outputs": [[[0.423828125]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.5]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[4.75]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[0.5859375]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.53515625]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.640625]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.55859375]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.47265625]], [[13.125]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.484375]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.75]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[3.484375]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.875]], [[13.125]], [[3.484375]]], "outputs": [[[0.60546875]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.490234375]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[9.6875]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[0.22265625]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.61328125]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.50390625]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[1.578125]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.48828125]], [[13.125]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.546875]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.4375]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.546875]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[12.75]], [[1.546875]]], "outputs": [[[0.50390625]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.458984375]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[6.0]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[0.52734375]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.38671875]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[0.57421875]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.2080078125]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55078125]], [[14.4375]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.078125]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.125]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.8125]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[2.078125]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.78125]], [[14.4375]], [[2.078125]]], "outputs": [[[0.546875]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.58984375]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[4.84375]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[1.46875]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.396484375]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[0.7890625]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.185546875]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[13.625]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.6875]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.3125]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5]], [[12.625]], [[1.0625]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.384765625]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[4.3125]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.275390625]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.578125]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[0.482421875]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.466796875]], [[13.0625]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.80859375]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.4375]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[0.80859375]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.65625]], [[12.75]], [[0.67578125]]], "outputs": [[[0.326171875]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.4140625]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[9.625]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.392578125]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.58203125]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.1611328125]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.47265625]], [[17.75]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3359375]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.375]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[1.3359375]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5625]], [[13.375]], [[1.2734375]]], "outputs": [[[0.73828125]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.53125]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[5.78125]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[1.6484375]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.349609375]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[1.09375]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.1298828125]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0390625]], [[15.75]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9140625]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[15.75]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[1.9140625]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.25]], [[15.75]], [[1.8359375]]], "outputs": [[[0.6953125]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.380859375]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[7.375]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[0.498046875]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.59375]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[0.703125]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.07763671875]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53515625]], [[14.125]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1328125]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.125]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.09375]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[14.125]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[1.1328125]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.625]], [[12.9375]], [[0.890625]]], "outputs": [[[0.61328125]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.373046875]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[6.5]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.474609375]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.76953125]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.291015625]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.0927734375]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[16.75]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.5234375]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.53125]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[0.5234375]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.1875]], [[16.75]], [[0.5625]]], "outputs": [[[0.291015625]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.5]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[9.0]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[1.1953125]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.8125]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.25390625]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5703125]], [[12.0]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.421875]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.625]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.8125]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[1.421875]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[10.3125]], [[1.3203125]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.58203125]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[6.9375]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[0.28125]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.337890625]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[1.1875]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.14453125]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.1953125]], [[12.9375]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.78125]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[12.9375]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[2.453125]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.25]], [[12.75]], [[2.09375]]], "outputs": [[[1.1171875]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.423828125]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[9.1875]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[0.98046875]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[0.81640625]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[0.5234375]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[0.42578125]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.494140625]], [[20.125]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.5625]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.75]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[20.125]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[4.9375]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.28125]], [[20.125]], [[4.9375]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.375]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[14.9375]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.6640625]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.71484375]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.59375]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.208984375]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.44140625]], [[14.375]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.75]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[14.375]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[2.46875]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.71875]], [[14.375]], [[2.46875]]], "outputs": [[[0.4921875]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.49609375]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[7.125]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[0.50390625]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.427734375]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[1.3515625]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.1962890625]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.921875]], [[17.75]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.09375]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.75]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.25]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[2.09375]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.1875]], [[17.75]], [[1.9453125]]], "outputs": [[[1.015625]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.390625]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[8.375]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.427734375]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.384765625]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[1.046875]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.49609375]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8671875]], [[15.0625]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.5]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.125]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[15.0625]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[2.46875]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[14.0625]], [[2.21875]]], "outputs": [[[1.015625]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.369140625]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[11.75]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[1.34375]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.2578125]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[1.390625]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.1435546875]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59765625]], [[13.4375]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.828125]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.28125]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[13.4375]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[1.828125]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[13.4375]], [[1.78125]]], "outputs": [[[0.921875]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.5625]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[7.8125]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.4375]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.435546875]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[0.9609375]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.255859375]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[14.1875]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9921875]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.15625]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[14.1875]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[1.9921875]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.625]], [[12.875]], [[1.453125]]], "outputs": [[[0.85546875]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.53125]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[8.3125]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[0.337890625]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.28125]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[1.1875]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.11767578125]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[16.125]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.890625]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.0625]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[1.890625]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.90625]], [[13.5625]], [[1.890625]]], "outputs": [[[0.8671875]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.46484375]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[9.9375]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.328125]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.302734375]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.8125]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[1.0]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9375]], [[14.8125]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.484375]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.65625]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[2.484375]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.3125]], [[12.8125]], [[2.46875]]], "outputs": [[[1.0625]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.5234375]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[9.5]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[1.203125]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.248046875]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.4609375]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.6953125]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.828125]], [[19.125]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.515625]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.625]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[19.125]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[2.515625]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.75]], [[18.375]], [[2.65625]]], "outputs": [[[1.1328125]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.474609375]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[9.75]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[0.91796875]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.1611328125]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[3.40625]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.29296875]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[17.5]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.125]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.625]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[5.125]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.875]], [[17.25]], [[3.265625]]], "outputs": [[[1.6484375]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.27734375]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[11.5]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[0.90234375]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.1904296875]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[2.6875]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.431640625]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0078125]], [[15.875]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.578125]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[15.875]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[3.578125]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.3125]], [[14.4375]], [[2.984375]]], "outputs": [[[2.15625]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[10.5625]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[0.63671875]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.263671875]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.84375]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.58984375]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.296875]], [[14.4375]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.546875]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[2.546875]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.5]], [[13.125]], [[2.546875]]], "outputs": [[[1.6953125]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.38671875]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[8.75]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.72265625]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.287109375]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[2.375]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.31640625]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9453125]], [[14.6875]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.59375]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.375]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[14.6875]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[4.59375]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.75]], [[13.3125]], [[4.3125]]], "outputs": [[[2.375]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.345703125]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[13.6875]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.50390625]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.365234375]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[1.7890625]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.283203125]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.921875]], [[13.5625]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[49.0]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[13.5625]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[2.65625]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.1875]], [[11.3125]], [[2.5]]], "outputs": [[[1.5078125]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.6640625]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[82.5]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.58203125]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.4296875]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[1.1484375]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.2412109375]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[13.125]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8671875]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.25]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.75]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[1.8671875]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[12.9375]], [[1.9609375]]], "outputs": [[[0.95703125]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.5078125]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[44.25]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.6796875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.251953125]]}}}}
quant/g3/inc_output_hooks_maxabs_3_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8011c1c1bc44ac18ac30a7148905c6d88a49653d9609b3be41ce2425f9c917e
3
+ size 206298
quant/g3/inc_output_hooks_maxabs_3_4_mod_list.json ADDED
@@ -0,0 +1,963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ "model.layers.0.self_attn.qkv_proj",
3
+ "model.layers.0.self_attn.o_proj",
4
+ "model.layers.0.self_attn.attn.impl.matmul_qk",
5
+ "model.layers.0.self_attn.attn.impl.softmax",
6
+ "model.layers.0.self_attn.attn.impl.matmul_av",
7
+ "model.layers.0.self_attn.attn.impl.batch2block_matmul",
8
+ "model.layers.0.self_attn.attn.impl.block2batch_matmul",
9
+ "model.layers.0.self_attn.attn.impl.k_cache",
10
+ "model.layers.0.self_attn.attn.impl.v_cache",
11
+ "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
12
+ "model.layers.0.mlp.gate_up_proj",
13
+ "model.layers.0.mlp.down_proj",
14
+ "model.layers.1.self_attn.qkv_proj",
15
+ "model.layers.1.self_attn.o_proj",
16
+ "model.layers.1.self_attn.attn.impl.matmul_qk",
17
+ "model.layers.1.self_attn.attn.impl.softmax",
18
+ "model.layers.1.self_attn.attn.impl.matmul_av",
19
+ "model.layers.1.self_attn.attn.impl.batch2block_matmul",
20
+ "model.layers.1.self_attn.attn.impl.block2batch_matmul",
21
+ "model.layers.1.self_attn.attn.impl.k_cache",
22
+ "model.layers.1.self_attn.attn.impl.v_cache",
23
+ "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
24
+ "model.layers.1.mlp.gate_up_proj",
25
+ "model.layers.1.mlp.down_proj",
26
+ "model.layers.2.self_attn.qkv_proj",
27
+ "model.layers.2.self_attn.o_proj",
28
+ "model.layers.2.self_attn.attn.impl.matmul_qk",
29
+ "model.layers.2.self_attn.attn.impl.softmax",
30
+ "model.layers.2.self_attn.attn.impl.matmul_av",
31
+ "model.layers.2.self_attn.attn.impl.batch2block_matmul",
32
+ "model.layers.2.self_attn.attn.impl.block2batch_matmul",
33
+ "model.layers.2.self_attn.attn.impl.k_cache",
34
+ "model.layers.2.self_attn.attn.impl.v_cache",
35
+ "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
36
+ "model.layers.2.mlp.gate_up_proj",
37
+ "model.layers.2.mlp.down_proj",
38
+ "model.layers.3.self_attn.qkv_proj",
39
+ "model.layers.3.self_attn.o_proj",
40
+ "model.layers.3.self_attn.attn.impl.matmul_qk",
41
+ "model.layers.3.self_attn.attn.impl.softmax",
42
+ "model.layers.3.self_attn.attn.impl.matmul_av",
43
+ "model.layers.3.self_attn.attn.impl.batch2block_matmul",
44
+ "model.layers.3.self_attn.attn.impl.block2batch_matmul",
45
+ "model.layers.3.self_attn.attn.impl.k_cache",
46
+ "model.layers.3.self_attn.attn.impl.v_cache",
47
+ "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
48
+ "model.layers.3.mlp.gate_up_proj",
49
+ "model.layers.3.mlp.down_proj",
50
+ "model.layers.4.self_attn.qkv_proj",
51
+ "model.layers.4.self_attn.o_proj",
52
+ "model.layers.4.self_attn.attn.impl.matmul_qk",
53
+ "model.layers.4.self_attn.attn.impl.softmax",
54
+ "model.layers.4.self_attn.attn.impl.matmul_av",
55
+ "model.layers.4.self_attn.attn.impl.batch2block_matmul",
56
+ "model.layers.4.self_attn.attn.impl.block2batch_matmul",
57
+ "model.layers.4.self_attn.attn.impl.k_cache",
58
+ "model.layers.4.self_attn.attn.impl.v_cache",
59
+ "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
60
+ "model.layers.4.mlp.gate_up_proj",
61
+ "model.layers.4.mlp.down_proj",
62
+ "model.layers.5.self_attn.qkv_proj",
63
+ "model.layers.5.self_attn.o_proj",
64
+ "model.layers.5.self_attn.attn.impl.matmul_qk",
65
+ "model.layers.5.self_attn.attn.impl.softmax",
66
+ "model.layers.5.self_attn.attn.impl.matmul_av",
67
+ "model.layers.5.self_attn.attn.impl.batch2block_matmul",
68
+ "model.layers.5.self_attn.attn.impl.block2batch_matmul",
69
+ "model.layers.5.self_attn.attn.impl.k_cache",
70
+ "model.layers.5.self_attn.attn.impl.v_cache",
71
+ "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
72
+ "model.layers.5.mlp.gate_up_proj",
73
+ "model.layers.5.mlp.down_proj",
74
+ "model.layers.6.self_attn.qkv_proj",
75
+ "model.layers.6.self_attn.o_proj",
76
+ "model.layers.6.self_attn.attn.impl.matmul_qk",
77
+ "model.layers.6.self_attn.attn.impl.softmax",
78
+ "model.layers.6.self_attn.attn.impl.matmul_av",
79
+ "model.layers.6.self_attn.attn.impl.batch2block_matmul",
80
+ "model.layers.6.self_attn.attn.impl.block2batch_matmul",
81
+ "model.layers.6.self_attn.attn.impl.k_cache",
82
+ "model.layers.6.self_attn.attn.impl.v_cache",
83
+ "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
84
+ "model.layers.6.mlp.gate_up_proj",
85
+ "model.layers.6.mlp.down_proj",
86
+ "model.layers.7.self_attn.qkv_proj",
87
+ "model.layers.7.self_attn.o_proj",
88
+ "model.layers.7.self_attn.attn.impl.matmul_qk",
89
+ "model.layers.7.self_attn.attn.impl.softmax",
90
+ "model.layers.7.self_attn.attn.impl.matmul_av",
91
+ "model.layers.7.self_attn.attn.impl.batch2block_matmul",
92
+ "model.layers.7.self_attn.attn.impl.block2batch_matmul",
93
+ "model.layers.7.self_attn.attn.impl.k_cache",
94
+ "model.layers.7.self_attn.attn.impl.v_cache",
95
+ "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
96
+ "model.layers.7.mlp.gate_up_proj",
97
+ "model.layers.7.mlp.down_proj",
98
+ "model.layers.8.self_attn.qkv_proj",
99
+ "model.layers.8.self_attn.o_proj",
100
+ "model.layers.8.self_attn.attn.impl.matmul_qk",
101
+ "model.layers.8.self_attn.attn.impl.softmax",
102
+ "model.layers.8.self_attn.attn.impl.matmul_av",
103
+ "model.layers.8.self_attn.attn.impl.batch2block_matmul",
104
+ "model.layers.8.self_attn.attn.impl.block2batch_matmul",
105
+ "model.layers.8.self_attn.attn.impl.k_cache",
106
+ "model.layers.8.self_attn.attn.impl.v_cache",
107
+ "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
108
+ "model.layers.8.mlp.gate_up_proj",
109
+ "model.layers.8.mlp.down_proj",
110
+ "model.layers.9.self_attn.qkv_proj",
111
+ "model.layers.9.self_attn.o_proj",
112
+ "model.layers.9.self_attn.attn.impl.matmul_qk",
113
+ "model.layers.9.self_attn.attn.impl.softmax",
114
+ "model.layers.9.self_attn.attn.impl.matmul_av",
115
+ "model.layers.9.self_attn.attn.impl.batch2block_matmul",
116
+ "model.layers.9.self_attn.attn.impl.block2batch_matmul",
117
+ "model.layers.9.self_attn.attn.impl.k_cache",
118
+ "model.layers.9.self_attn.attn.impl.v_cache",
119
+ "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
120
+ "model.layers.9.mlp.gate_up_proj",
121
+ "model.layers.9.mlp.down_proj",
122
+ "model.layers.10.self_attn.qkv_proj",
123
+ "model.layers.10.self_attn.o_proj",
124
+ "model.layers.10.self_attn.attn.impl.matmul_qk",
125
+ "model.layers.10.self_attn.attn.impl.softmax",
126
+ "model.layers.10.self_attn.attn.impl.matmul_av",
127
+ "model.layers.10.self_attn.attn.impl.batch2block_matmul",
128
+ "model.layers.10.self_attn.attn.impl.block2batch_matmul",
129
+ "model.layers.10.self_attn.attn.impl.k_cache",
130
+ "model.layers.10.self_attn.attn.impl.v_cache",
131
+ "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
132
+ "model.layers.10.mlp.gate_up_proj",
133
+ "model.layers.10.mlp.down_proj",
134
+ "model.layers.11.self_attn.qkv_proj",
135
+ "model.layers.11.self_attn.o_proj",
136
+ "model.layers.11.self_attn.attn.impl.matmul_qk",
137
+ "model.layers.11.self_attn.attn.impl.softmax",
138
+ "model.layers.11.self_attn.attn.impl.matmul_av",
139
+ "model.layers.11.self_attn.attn.impl.batch2block_matmul",
140
+ "model.layers.11.self_attn.attn.impl.block2batch_matmul",
141
+ "model.layers.11.self_attn.attn.impl.k_cache",
142
+ "model.layers.11.self_attn.attn.impl.v_cache",
143
+ "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
144
+ "model.layers.11.mlp.gate_up_proj",
145
+ "model.layers.11.mlp.down_proj",
146
+ "model.layers.12.self_attn.qkv_proj",
147
+ "model.layers.12.self_attn.o_proj",
148
+ "model.layers.12.self_attn.attn.impl.matmul_qk",
149
+ "model.layers.12.self_attn.attn.impl.softmax",
150
+ "model.layers.12.self_attn.attn.impl.matmul_av",
151
+ "model.layers.12.self_attn.attn.impl.batch2block_matmul",
152
+ "model.layers.12.self_attn.attn.impl.block2batch_matmul",
153
+ "model.layers.12.self_attn.attn.impl.k_cache",
154
+ "model.layers.12.self_attn.attn.impl.v_cache",
155
+ "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
156
+ "model.layers.12.mlp.gate_up_proj",
157
+ "model.layers.12.mlp.down_proj",
158
+ "model.layers.13.self_attn.qkv_proj",
159
+ "model.layers.13.self_attn.o_proj",
160
+ "model.layers.13.self_attn.attn.impl.matmul_qk",
161
+ "model.layers.13.self_attn.attn.impl.softmax",
162
+ "model.layers.13.self_attn.attn.impl.matmul_av",
163
+ "model.layers.13.self_attn.attn.impl.batch2block_matmul",
164
+ "model.layers.13.self_attn.attn.impl.block2batch_matmul",
165
+ "model.layers.13.self_attn.attn.impl.k_cache",
166
+ "model.layers.13.self_attn.attn.impl.v_cache",
167
+ "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
168
+ "model.layers.13.mlp.gate_up_proj",
169
+ "model.layers.13.mlp.down_proj",
170
+ "model.layers.14.self_attn.qkv_proj",
171
+ "model.layers.14.self_attn.o_proj",
172
+ "model.layers.14.self_attn.attn.impl.matmul_qk",
173
+ "model.layers.14.self_attn.attn.impl.softmax",
174
+ "model.layers.14.self_attn.attn.impl.matmul_av",
175
+ "model.layers.14.self_attn.attn.impl.batch2block_matmul",
176
+ "model.layers.14.self_attn.attn.impl.block2batch_matmul",
177
+ "model.layers.14.self_attn.attn.impl.k_cache",
178
+ "model.layers.14.self_attn.attn.impl.v_cache",
179
+ "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
180
+ "model.layers.14.mlp.gate_up_proj",
181
+ "model.layers.14.mlp.down_proj",
182
+ "model.layers.15.self_attn.qkv_proj",
183
+ "model.layers.15.self_attn.o_proj",
184
+ "model.layers.15.self_attn.attn.impl.matmul_qk",
185
+ "model.layers.15.self_attn.attn.impl.softmax",
186
+ "model.layers.15.self_attn.attn.impl.matmul_av",
187
+ "model.layers.15.self_attn.attn.impl.batch2block_matmul",
188
+ "model.layers.15.self_attn.attn.impl.block2batch_matmul",
189
+ "model.layers.15.self_attn.attn.impl.k_cache",
190
+ "model.layers.15.self_attn.attn.impl.v_cache",
191
+ "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
192
+ "model.layers.15.mlp.gate_up_proj",
193
+ "model.layers.15.mlp.down_proj",
194
+ "model.layers.16.self_attn.qkv_proj",
195
+ "model.layers.16.self_attn.o_proj",
196
+ "model.layers.16.self_attn.attn.impl.matmul_qk",
197
+ "model.layers.16.self_attn.attn.impl.softmax",
198
+ "model.layers.16.self_attn.attn.impl.matmul_av",
199
+ "model.layers.16.self_attn.attn.impl.batch2block_matmul",
200
+ "model.layers.16.self_attn.attn.impl.block2batch_matmul",
201
+ "model.layers.16.self_attn.attn.impl.k_cache",
202
+ "model.layers.16.self_attn.attn.impl.v_cache",
203
+ "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
204
+ "model.layers.16.mlp.gate_up_proj",
205
+ "model.layers.16.mlp.down_proj",
206
+ "model.layers.17.self_attn.qkv_proj",
207
+ "model.layers.17.self_attn.o_proj",
208
+ "model.layers.17.self_attn.attn.impl.matmul_qk",
209
+ "model.layers.17.self_attn.attn.impl.softmax",
210
+ "model.layers.17.self_attn.attn.impl.matmul_av",
211
+ "model.layers.17.self_attn.attn.impl.batch2block_matmul",
212
+ "model.layers.17.self_attn.attn.impl.block2batch_matmul",
213
+ "model.layers.17.self_attn.attn.impl.k_cache",
214
+ "model.layers.17.self_attn.attn.impl.v_cache",
215
+ "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
216
+ "model.layers.17.mlp.gate_up_proj",
217
+ "model.layers.17.mlp.down_proj",
218
+ "model.layers.18.self_attn.qkv_proj",
219
+ "model.layers.18.self_attn.o_proj",
220
+ "model.layers.18.self_attn.attn.impl.matmul_qk",
221
+ "model.layers.18.self_attn.attn.impl.softmax",
222
+ "model.layers.18.self_attn.attn.impl.matmul_av",
223
+ "model.layers.18.self_attn.attn.impl.batch2block_matmul",
224
+ "model.layers.18.self_attn.attn.impl.block2batch_matmul",
225
+ "model.layers.18.self_attn.attn.impl.k_cache",
226
+ "model.layers.18.self_attn.attn.impl.v_cache",
227
+ "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
228
+ "model.layers.18.mlp.gate_up_proj",
229
+ "model.layers.18.mlp.down_proj",
230
+ "model.layers.19.self_attn.qkv_proj",
231
+ "model.layers.19.self_attn.o_proj",
232
+ "model.layers.19.self_attn.attn.impl.matmul_qk",
233
+ "model.layers.19.self_attn.attn.impl.softmax",
234
+ "model.layers.19.self_attn.attn.impl.matmul_av",
235
+ "model.layers.19.self_attn.attn.impl.batch2block_matmul",
236
+ "model.layers.19.self_attn.attn.impl.block2batch_matmul",
237
+ "model.layers.19.self_attn.attn.impl.k_cache",
238
+ "model.layers.19.self_attn.attn.impl.v_cache",
239
+ "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
240
+ "model.layers.19.mlp.gate_up_proj",
241
+ "model.layers.19.mlp.down_proj",
242
+ "model.layers.20.self_attn.qkv_proj",
243
+ "model.layers.20.self_attn.o_proj",
244
+ "model.layers.20.self_attn.attn.impl.matmul_qk",
245
+ "model.layers.20.self_attn.attn.impl.softmax",
246
+ "model.layers.20.self_attn.attn.impl.matmul_av",
247
+ "model.layers.20.self_attn.attn.impl.batch2block_matmul",
248
+ "model.layers.20.self_attn.attn.impl.block2batch_matmul",
249
+ "model.layers.20.self_attn.attn.impl.k_cache",
250
+ "model.layers.20.self_attn.attn.impl.v_cache",
251
+ "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
252
+ "model.layers.20.mlp.gate_up_proj",
253
+ "model.layers.20.mlp.down_proj",
254
+ "model.layers.21.self_attn.qkv_proj",
255
+ "model.layers.21.self_attn.o_proj",
256
+ "model.layers.21.self_attn.attn.impl.matmul_qk",
257
+ "model.layers.21.self_attn.attn.impl.softmax",
258
+ "model.layers.21.self_attn.attn.impl.matmul_av",
259
+ "model.layers.21.self_attn.attn.impl.batch2block_matmul",
260
+ "model.layers.21.self_attn.attn.impl.block2batch_matmul",
261
+ "model.layers.21.self_attn.attn.impl.k_cache",
262
+ "model.layers.21.self_attn.attn.impl.v_cache",
263
+ "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
264
+ "model.layers.21.mlp.gate_up_proj",
265
+ "model.layers.21.mlp.down_proj",
266
+ "model.layers.22.self_attn.qkv_proj",
267
+ "model.layers.22.self_attn.o_proj",
268
+ "model.layers.22.self_attn.attn.impl.matmul_qk",
269
+ "model.layers.22.self_attn.attn.impl.softmax",
270
+ "model.layers.22.self_attn.attn.impl.matmul_av",
271
+ "model.layers.22.self_attn.attn.impl.batch2block_matmul",
272
+ "model.layers.22.self_attn.attn.impl.block2batch_matmul",
273
+ "model.layers.22.self_attn.attn.impl.k_cache",
274
+ "model.layers.22.self_attn.attn.impl.v_cache",
275
+ "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
276
+ "model.layers.22.mlp.gate_up_proj",
277
+ "model.layers.22.mlp.down_proj",
278
+ "model.layers.23.self_attn.qkv_proj",
279
+ "model.layers.23.self_attn.o_proj",
280
+ "model.layers.23.self_attn.attn.impl.matmul_qk",
281
+ "model.layers.23.self_attn.attn.impl.softmax",
282
+ "model.layers.23.self_attn.attn.impl.matmul_av",
283
+ "model.layers.23.self_attn.attn.impl.batch2block_matmul",
284
+ "model.layers.23.self_attn.attn.impl.block2batch_matmul",
285
+ "model.layers.23.self_attn.attn.impl.k_cache",
286
+ "model.layers.23.self_attn.attn.impl.v_cache",
287
+ "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
288
+ "model.layers.23.mlp.gate_up_proj",
289
+ "model.layers.23.mlp.down_proj",
290
+ "model.layers.24.self_attn.qkv_proj",
291
+ "model.layers.24.self_attn.o_proj",
292
+ "model.layers.24.self_attn.attn.impl.matmul_qk",
293
+ "model.layers.24.self_attn.attn.impl.softmax",
294
+ "model.layers.24.self_attn.attn.impl.matmul_av",
295
+ "model.layers.24.self_attn.attn.impl.batch2block_matmul",
296
+ "model.layers.24.self_attn.attn.impl.block2batch_matmul",
297
+ "model.layers.24.self_attn.attn.impl.k_cache",
298
+ "model.layers.24.self_attn.attn.impl.v_cache",
299
+ "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
300
+ "model.layers.24.mlp.gate_up_proj",
301
+ "model.layers.24.mlp.down_proj",
302
+ "model.layers.25.self_attn.qkv_proj",
303
+ "model.layers.25.self_attn.o_proj",
304
+ "model.layers.25.self_attn.attn.impl.matmul_qk",
305
+ "model.layers.25.self_attn.attn.impl.softmax",
306
+ "model.layers.25.self_attn.attn.impl.matmul_av",
307
+ "model.layers.25.self_attn.attn.impl.batch2block_matmul",
308
+ "model.layers.25.self_attn.attn.impl.block2batch_matmul",
309
+ "model.layers.25.self_attn.attn.impl.k_cache",
310
+ "model.layers.25.self_attn.attn.impl.v_cache",
311
+ "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
312
+ "model.layers.25.mlp.gate_up_proj",
313
+ "model.layers.25.mlp.down_proj",
314
+ "model.layers.26.self_attn.qkv_proj",
315
+ "model.layers.26.self_attn.o_proj",
316
+ "model.layers.26.self_attn.attn.impl.matmul_qk",
317
+ "model.layers.26.self_attn.attn.impl.softmax",
318
+ "model.layers.26.self_attn.attn.impl.matmul_av",
319
+ "model.layers.26.self_attn.attn.impl.batch2block_matmul",
320
+ "model.layers.26.self_attn.attn.impl.block2batch_matmul",
321
+ "model.layers.26.self_attn.attn.impl.k_cache",
322
+ "model.layers.26.self_attn.attn.impl.v_cache",
323
+ "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
324
+ "model.layers.26.mlp.gate_up_proj",
325
+ "model.layers.26.mlp.down_proj",
326
+ "model.layers.27.self_attn.qkv_proj",
327
+ "model.layers.27.self_attn.o_proj",
328
+ "model.layers.27.self_attn.attn.impl.matmul_qk",
329
+ "model.layers.27.self_attn.attn.impl.softmax",
330
+ "model.layers.27.self_attn.attn.impl.matmul_av",
331
+ "model.layers.27.self_attn.attn.impl.batch2block_matmul",
332
+ "model.layers.27.self_attn.attn.impl.block2batch_matmul",
333
+ "model.layers.27.self_attn.attn.impl.k_cache",
334
+ "model.layers.27.self_attn.attn.impl.v_cache",
335
+ "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
336
+ "model.layers.27.mlp.gate_up_proj",
337
+ "model.layers.27.mlp.down_proj",
338
+ "model.layers.28.self_attn.qkv_proj",
339
+ "model.layers.28.self_attn.o_proj",
340
+ "model.layers.28.self_attn.attn.impl.matmul_qk",
341
+ "model.layers.28.self_attn.attn.impl.softmax",
342
+ "model.layers.28.self_attn.attn.impl.matmul_av",
343
+ "model.layers.28.self_attn.attn.impl.batch2block_matmul",
344
+ "model.layers.28.self_attn.attn.impl.block2batch_matmul",
345
+ "model.layers.28.self_attn.attn.impl.k_cache",
346
+ "model.layers.28.self_attn.attn.impl.v_cache",
347
+ "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
348
+ "model.layers.28.mlp.gate_up_proj",
349
+ "model.layers.28.mlp.down_proj",
350
+ "model.layers.29.self_attn.qkv_proj",
351
+ "model.layers.29.self_attn.o_proj",
352
+ "model.layers.29.self_attn.attn.impl.matmul_qk",
353
+ "model.layers.29.self_attn.attn.impl.softmax",
354
+ "model.layers.29.self_attn.attn.impl.matmul_av",
355
+ "model.layers.29.self_attn.attn.impl.batch2block_matmul",
356
+ "model.layers.29.self_attn.attn.impl.block2batch_matmul",
357
+ "model.layers.29.self_attn.attn.impl.k_cache",
358
+ "model.layers.29.self_attn.attn.impl.v_cache",
359
+ "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
360
+ "model.layers.29.mlp.gate_up_proj",
361
+ "model.layers.29.mlp.down_proj",
362
+ "model.layers.30.self_attn.qkv_proj",
363
+ "model.layers.30.self_attn.o_proj",
364
+ "model.layers.30.self_attn.attn.impl.matmul_qk",
365
+ "model.layers.30.self_attn.attn.impl.softmax",
366
+ "model.layers.30.self_attn.attn.impl.matmul_av",
367
+ "model.layers.30.self_attn.attn.impl.batch2block_matmul",
368
+ "model.layers.30.self_attn.attn.impl.block2batch_matmul",
369
+ "model.layers.30.self_attn.attn.impl.k_cache",
370
+ "model.layers.30.self_attn.attn.impl.v_cache",
371
+ "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
372
+ "model.layers.30.mlp.gate_up_proj",
373
+ "model.layers.30.mlp.down_proj",
374
+ "model.layers.31.self_attn.qkv_proj",
375
+ "model.layers.31.self_attn.o_proj",
376
+ "model.layers.31.self_attn.attn.impl.matmul_qk",
377
+ "model.layers.31.self_attn.attn.impl.softmax",
378
+ "model.layers.31.self_attn.attn.impl.matmul_av",
379
+ "model.layers.31.self_attn.attn.impl.batch2block_matmul",
380
+ "model.layers.31.self_attn.attn.impl.block2batch_matmul",
381
+ "model.layers.31.self_attn.attn.impl.k_cache",
382
+ "model.layers.31.self_attn.attn.impl.v_cache",
383
+ "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
384
+ "model.layers.31.mlp.gate_up_proj",
385
+ "model.layers.31.mlp.down_proj",
386
+ "model.layers.32.self_attn.qkv_proj",
387
+ "model.layers.32.self_attn.o_proj",
388
+ "model.layers.32.self_attn.attn.impl.matmul_qk",
389
+ "model.layers.32.self_attn.attn.impl.softmax",
390
+ "model.layers.32.self_attn.attn.impl.matmul_av",
391
+ "model.layers.32.self_attn.attn.impl.batch2block_matmul",
392
+ "model.layers.32.self_attn.attn.impl.block2batch_matmul",
393
+ "model.layers.32.self_attn.attn.impl.k_cache",
394
+ "model.layers.32.self_attn.attn.impl.v_cache",
395
+ "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
396
+ "model.layers.32.mlp.gate_up_proj",
397
+ "model.layers.32.mlp.down_proj",
398
+ "model.layers.33.self_attn.qkv_proj",
399
+ "model.layers.33.self_attn.o_proj",
400
+ "model.layers.33.self_attn.attn.impl.matmul_qk",
401
+ "model.layers.33.self_attn.attn.impl.softmax",
402
+ "model.layers.33.self_attn.attn.impl.matmul_av",
403
+ "model.layers.33.self_attn.attn.impl.batch2block_matmul",
404
+ "model.layers.33.self_attn.attn.impl.block2batch_matmul",
405
+ "model.layers.33.self_attn.attn.impl.k_cache",
406
+ "model.layers.33.self_attn.attn.impl.v_cache",
407
+ "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
408
+ "model.layers.33.mlp.gate_up_proj",
409
+ "model.layers.33.mlp.down_proj",
410
+ "model.layers.34.self_attn.qkv_proj",
411
+ "model.layers.34.self_attn.o_proj",
412
+ "model.layers.34.self_attn.attn.impl.matmul_qk",
413
+ "model.layers.34.self_attn.attn.impl.softmax",
414
+ "model.layers.34.self_attn.attn.impl.matmul_av",
415
+ "model.layers.34.self_attn.attn.impl.batch2block_matmul",
416
+ "model.layers.34.self_attn.attn.impl.block2batch_matmul",
417
+ "model.layers.34.self_attn.attn.impl.k_cache",
418
+ "model.layers.34.self_attn.attn.impl.v_cache",
419
+ "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
420
+ "model.layers.34.mlp.gate_up_proj",
421
+ "model.layers.34.mlp.down_proj",
422
+ "model.layers.35.self_attn.qkv_proj",
423
+ "model.layers.35.self_attn.o_proj",
424
+ "model.layers.35.self_attn.attn.impl.matmul_qk",
425
+ "model.layers.35.self_attn.attn.impl.softmax",
426
+ "model.layers.35.self_attn.attn.impl.matmul_av",
427
+ "model.layers.35.self_attn.attn.impl.batch2block_matmul",
428
+ "model.layers.35.self_attn.attn.impl.block2batch_matmul",
429
+ "model.layers.35.self_attn.attn.impl.k_cache",
430
+ "model.layers.35.self_attn.attn.impl.v_cache",
431
+ "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
432
+ "model.layers.35.mlp.gate_up_proj",
433
+ "model.layers.35.mlp.down_proj",
434
+ "model.layers.36.self_attn.qkv_proj",
435
+ "model.layers.36.self_attn.o_proj",
436
+ "model.layers.36.self_attn.attn.impl.matmul_qk",
437
+ "model.layers.36.self_attn.attn.impl.softmax",
438
+ "model.layers.36.self_attn.attn.impl.matmul_av",
439
+ "model.layers.36.self_attn.attn.impl.batch2block_matmul",
440
+ "model.layers.36.self_attn.attn.impl.block2batch_matmul",
441
+ "model.layers.36.self_attn.attn.impl.k_cache",
442
+ "model.layers.36.self_attn.attn.impl.v_cache",
443
+ "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
444
+ "model.layers.36.mlp.gate_up_proj",
445
+ "model.layers.36.mlp.down_proj",
446
+ "model.layers.37.self_attn.qkv_proj",
447
+ "model.layers.37.self_attn.o_proj",
448
+ "model.layers.37.self_attn.attn.impl.matmul_qk",
449
+ "model.layers.37.self_attn.attn.impl.softmax",
450
+ "model.layers.37.self_attn.attn.impl.matmul_av",
451
+ "model.layers.37.self_attn.attn.impl.batch2block_matmul",
452
+ "model.layers.37.self_attn.attn.impl.block2batch_matmul",
453
+ "model.layers.37.self_attn.attn.impl.k_cache",
454
+ "model.layers.37.self_attn.attn.impl.v_cache",
455
+ "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
456
+ "model.layers.37.mlp.gate_up_proj",
457
+ "model.layers.37.mlp.down_proj",
458
+ "model.layers.38.self_attn.qkv_proj",
459
+ "model.layers.38.self_attn.o_proj",
460
+ "model.layers.38.self_attn.attn.impl.matmul_qk",
461
+ "model.layers.38.self_attn.attn.impl.softmax",
462
+ "model.layers.38.self_attn.attn.impl.matmul_av",
463
+ "model.layers.38.self_attn.attn.impl.batch2block_matmul",
464
+ "model.layers.38.self_attn.attn.impl.block2batch_matmul",
465
+ "model.layers.38.self_attn.attn.impl.k_cache",
466
+ "model.layers.38.self_attn.attn.impl.v_cache",
467
+ "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
468
+ "model.layers.38.mlp.gate_up_proj",
469
+ "model.layers.38.mlp.down_proj",
470
+ "model.layers.39.self_attn.qkv_proj",
471
+ "model.layers.39.self_attn.o_proj",
472
+ "model.layers.39.self_attn.attn.impl.matmul_qk",
473
+ "model.layers.39.self_attn.attn.impl.softmax",
474
+ "model.layers.39.self_attn.attn.impl.matmul_av",
475
+ "model.layers.39.self_attn.attn.impl.batch2block_matmul",
476
+ "model.layers.39.self_attn.attn.impl.block2batch_matmul",
477
+ "model.layers.39.self_attn.attn.impl.k_cache",
478
+ "model.layers.39.self_attn.attn.impl.v_cache",
479
+ "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
480
+ "model.layers.39.mlp.gate_up_proj",
481
+ "model.layers.39.mlp.down_proj",
482
+ "model.layers.40.self_attn.qkv_proj",
483
+ "model.layers.40.self_attn.o_proj",
484
+ "model.layers.40.self_attn.attn.impl.matmul_qk",
485
+ "model.layers.40.self_attn.attn.impl.softmax",
486
+ "model.layers.40.self_attn.attn.impl.matmul_av",
487
+ "model.layers.40.self_attn.attn.impl.batch2block_matmul",
488
+ "model.layers.40.self_attn.attn.impl.block2batch_matmul",
489
+ "model.layers.40.self_attn.attn.impl.k_cache",
490
+ "model.layers.40.self_attn.attn.impl.v_cache",
491
+ "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
492
+ "model.layers.40.mlp.gate_up_proj",
493
+ "model.layers.40.mlp.down_proj",
494
+ "model.layers.41.self_attn.qkv_proj",
495
+ "model.layers.41.self_attn.o_proj",
496
+ "model.layers.41.self_attn.attn.impl.matmul_qk",
497
+ "model.layers.41.self_attn.attn.impl.softmax",
498
+ "model.layers.41.self_attn.attn.impl.matmul_av",
499
+ "model.layers.41.self_attn.attn.impl.batch2block_matmul",
500
+ "model.layers.41.self_attn.attn.impl.block2batch_matmul",
501
+ "model.layers.41.self_attn.attn.impl.k_cache",
502
+ "model.layers.41.self_attn.attn.impl.v_cache",
503
+ "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
504
+ "model.layers.41.mlp.gate_up_proj",
505
+ "model.layers.41.mlp.down_proj",
506
+ "model.layers.42.self_attn.qkv_proj",
507
+ "model.layers.42.self_attn.o_proj",
508
+ "model.layers.42.self_attn.attn.impl.matmul_qk",
509
+ "model.layers.42.self_attn.attn.impl.softmax",
510
+ "model.layers.42.self_attn.attn.impl.matmul_av",
511
+ "model.layers.42.self_attn.attn.impl.batch2block_matmul",
512
+ "model.layers.42.self_attn.attn.impl.block2batch_matmul",
513
+ "model.layers.42.self_attn.attn.impl.k_cache",
514
+ "model.layers.42.self_attn.attn.impl.v_cache",
515
+ "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
516
+ "model.layers.42.mlp.gate_up_proj",
517
+ "model.layers.42.mlp.down_proj",
518
+ "model.layers.43.self_attn.qkv_proj",
519
+ "model.layers.43.self_attn.o_proj",
520
+ "model.layers.43.self_attn.attn.impl.matmul_qk",
521
+ "model.layers.43.self_attn.attn.impl.softmax",
522
+ "model.layers.43.self_attn.attn.impl.matmul_av",
523
+ "model.layers.43.self_attn.attn.impl.batch2block_matmul",
524
+ "model.layers.43.self_attn.attn.impl.block2batch_matmul",
525
+ "model.layers.43.self_attn.attn.impl.k_cache",
526
+ "model.layers.43.self_attn.attn.impl.v_cache",
527
+ "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
528
+ "model.layers.43.mlp.gate_up_proj",
529
+ "model.layers.43.mlp.down_proj",
530
+ "model.layers.44.self_attn.qkv_proj",
531
+ "model.layers.44.self_attn.o_proj",
532
+ "model.layers.44.self_attn.attn.impl.matmul_qk",
533
+ "model.layers.44.self_attn.attn.impl.softmax",
534
+ "model.layers.44.self_attn.attn.impl.matmul_av",
535
+ "model.layers.44.self_attn.attn.impl.batch2block_matmul",
536
+ "model.layers.44.self_attn.attn.impl.block2batch_matmul",
537
+ "model.layers.44.self_attn.attn.impl.k_cache",
538
+ "model.layers.44.self_attn.attn.impl.v_cache",
539
+ "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
540
+ "model.layers.44.mlp.gate_up_proj",
541
+ "model.layers.44.mlp.down_proj",
542
+ "model.layers.45.self_attn.qkv_proj",
543
+ "model.layers.45.self_attn.o_proj",
544
+ "model.layers.45.self_attn.attn.impl.matmul_qk",
545
+ "model.layers.45.self_attn.attn.impl.softmax",
546
+ "model.layers.45.self_attn.attn.impl.matmul_av",
547
+ "model.layers.45.self_attn.attn.impl.batch2block_matmul",
548
+ "model.layers.45.self_attn.attn.impl.block2batch_matmul",
549
+ "model.layers.45.self_attn.attn.impl.k_cache",
550
+ "model.layers.45.self_attn.attn.impl.v_cache",
551
+ "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
552
+ "model.layers.45.mlp.gate_up_proj",
553
+ "model.layers.45.mlp.down_proj",
554
+ "model.layers.46.self_attn.qkv_proj",
555
+ "model.layers.46.self_attn.o_proj",
556
+ "model.layers.46.self_attn.attn.impl.matmul_qk",
557
+ "model.layers.46.self_attn.attn.impl.softmax",
558
+ "model.layers.46.self_attn.attn.impl.matmul_av",
559
+ "model.layers.46.self_attn.attn.impl.batch2block_matmul",
560
+ "model.layers.46.self_attn.attn.impl.block2batch_matmul",
561
+ "model.layers.46.self_attn.attn.impl.k_cache",
562
+ "model.layers.46.self_attn.attn.impl.v_cache",
563
+ "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
564
+ "model.layers.46.mlp.gate_up_proj",
565
+ "model.layers.46.mlp.down_proj",
566
+ "model.layers.47.self_attn.qkv_proj",
567
+ "model.layers.47.self_attn.o_proj",
568
+ "model.layers.47.self_attn.attn.impl.matmul_qk",
569
+ "model.layers.47.self_attn.attn.impl.softmax",
570
+ "model.layers.47.self_attn.attn.impl.matmul_av",
571
+ "model.layers.47.self_attn.attn.impl.batch2block_matmul",
572
+ "model.layers.47.self_attn.attn.impl.block2batch_matmul",
573
+ "model.layers.47.self_attn.attn.impl.k_cache",
574
+ "model.layers.47.self_attn.attn.impl.v_cache",
575
+ "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
576
+ "model.layers.47.mlp.gate_up_proj",
577
+ "model.layers.47.mlp.down_proj",
578
+ "model.layers.48.self_attn.qkv_proj",
579
+ "model.layers.48.self_attn.o_proj",
580
+ "model.layers.48.self_attn.attn.impl.matmul_qk",
581
+ "model.layers.48.self_attn.attn.impl.softmax",
582
+ "model.layers.48.self_attn.attn.impl.matmul_av",
583
+ "model.layers.48.self_attn.attn.impl.batch2block_matmul",
584
+ "model.layers.48.self_attn.attn.impl.block2batch_matmul",
585
+ "model.layers.48.self_attn.attn.impl.k_cache",
586
+ "model.layers.48.self_attn.attn.impl.v_cache",
587
+ "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
588
+ "model.layers.48.mlp.gate_up_proj",
589
+ "model.layers.48.mlp.down_proj",
590
+ "model.layers.49.self_attn.qkv_proj",
591
+ "model.layers.49.self_attn.o_proj",
592
+ "model.layers.49.self_attn.attn.impl.matmul_qk",
593
+ "model.layers.49.self_attn.attn.impl.softmax",
594
+ "model.layers.49.self_attn.attn.impl.matmul_av",
595
+ "model.layers.49.self_attn.attn.impl.batch2block_matmul",
596
+ "model.layers.49.self_attn.attn.impl.block2batch_matmul",
597
+ "model.layers.49.self_attn.attn.impl.k_cache",
598
+ "model.layers.49.self_attn.attn.impl.v_cache",
599
+ "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
600
+ "model.layers.49.mlp.gate_up_proj",
601
+ "model.layers.49.mlp.down_proj",
602
+ "model.layers.50.self_attn.qkv_proj",
603
+ "model.layers.50.self_attn.o_proj",
604
+ "model.layers.50.self_attn.attn.impl.matmul_qk",
605
+ "model.layers.50.self_attn.attn.impl.softmax",
606
+ "model.layers.50.self_attn.attn.impl.matmul_av",
607
+ "model.layers.50.self_attn.attn.impl.batch2block_matmul",
608
+ "model.layers.50.self_attn.attn.impl.block2batch_matmul",
609
+ "model.layers.50.self_attn.attn.impl.k_cache",
610
+ "model.layers.50.self_attn.attn.impl.v_cache",
611
+ "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
612
+ "model.layers.50.mlp.gate_up_proj",
613
+ "model.layers.50.mlp.down_proj",
614
+ "model.layers.51.self_attn.qkv_proj",
615
+ "model.layers.51.self_attn.o_proj",
616
+ "model.layers.51.self_attn.attn.impl.matmul_qk",
617
+ "model.layers.51.self_attn.attn.impl.softmax",
618
+ "model.layers.51.self_attn.attn.impl.matmul_av",
619
+ "model.layers.51.self_attn.attn.impl.batch2block_matmul",
620
+ "model.layers.51.self_attn.attn.impl.block2batch_matmul",
621
+ "model.layers.51.self_attn.attn.impl.k_cache",
622
+ "model.layers.51.self_attn.attn.impl.v_cache",
623
+ "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
624
+ "model.layers.51.mlp.gate_up_proj",
625
+ "model.layers.51.mlp.down_proj",
626
+ "model.layers.52.self_attn.qkv_proj",
627
+ "model.layers.52.self_attn.o_proj",
628
+ "model.layers.52.self_attn.attn.impl.matmul_qk",
629
+ "model.layers.52.self_attn.attn.impl.softmax",
630
+ "model.layers.52.self_attn.attn.impl.matmul_av",
631
+ "model.layers.52.self_attn.attn.impl.batch2block_matmul",
632
+ "model.layers.52.self_attn.attn.impl.block2batch_matmul",
633
+ "model.layers.52.self_attn.attn.impl.k_cache",
634
+ "model.layers.52.self_attn.attn.impl.v_cache",
635
+ "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
636
+ "model.layers.52.mlp.gate_up_proj",
637
+ "model.layers.52.mlp.down_proj",
638
+ "model.layers.53.self_attn.qkv_proj",
639
+ "model.layers.53.self_attn.o_proj",
640
+ "model.layers.53.self_attn.attn.impl.matmul_qk",
641
+ "model.layers.53.self_attn.attn.impl.softmax",
642
+ "model.layers.53.self_attn.attn.impl.matmul_av",
643
+ "model.layers.53.self_attn.attn.impl.batch2block_matmul",
644
+ "model.layers.53.self_attn.attn.impl.block2batch_matmul",
645
+ "model.layers.53.self_attn.attn.impl.k_cache",
646
+ "model.layers.53.self_attn.attn.impl.v_cache",
647
+ "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
648
+ "model.layers.53.mlp.gate_up_proj",
649
+ "model.layers.53.mlp.down_proj",
650
+ "model.layers.54.self_attn.qkv_proj",
651
+ "model.layers.54.self_attn.o_proj",
652
+ "model.layers.54.self_attn.attn.impl.matmul_qk",
653
+ "model.layers.54.self_attn.attn.impl.softmax",
654
+ "model.layers.54.self_attn.attn.impl.matmul_av",
655
+ "model.layers.54.self_attn.attn.impl.batch2block_matmul",
656
+ "model.layers.54.self_attn.attn.impl.block2batch_matmul",
657
+ "model.layers.54.self_attn.attn.impl.k_cache",
658
+ "model.layers.54.self_attn.attn.impl.v_cache",
659
+ "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
660
+ "model.layers.54.mlp.gate_up_proj",
661
+ "model.layers.54.mlp.down_proj",
662
+ "model.layers.55.self_attn.qkv_proj",
663
+ "model.layers.55.self_attn.o_proj",
664
+ "model.layers.55.self_attn.attn.impl.matmul_qk",
665
+ "model.layers.55.self_attn.attn.impl.softmax",
666
+ "model.layers.55.self_attn.attn.impl.matmul_av",
667
+ "model.layers.55.self_attn.attn.impl.batch2block_matmul",
668
+ "model.layers.55.self_attn.attn.impl.block2batch_matmul",
669
+ "model.layers.55.self_attn.attn.impl.k_cache",
670
+ "model.layers.55.self_attn.attn.impl.v_cache",
671
+ "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
672
+ "model.layers.55.mlp.gate_up_proj",
673
+ "model.layers.55.mlp.down_proj",
674
+ "model.layers.56.self_attn.qkv_proj",
675
+ "model.layers.56.self_attn.o_proj",
676
+ "model.layers.56.self_attn.attn.impl.matmul_qk",
677
+ "model.layers.56.self_attn.attn.impl.softmax",
678
+ "model.layers.56.self_attn.attn.impl.matmul_av",
679
+ "model.layers.56.self_attn.attn.impl.batch2block_matmul",
680
+ "model.layers.56.self_attn.attn.impl.block2batch_matmul",
681
+ "model.layers.56.self_attn.attn.impl.k_cache",
682
+ "model.layers.56.self_attn.attn.impl.v_cache",
683
+ "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
684
+ "model.layers.56.mlp.gate_up_proj",
685
+ "model.layers.56.mlp.down_proj",
686
+ "model.layers.57.self_attn.qkv_proj",
687
+ "model.layers.57.self_attn.o_proj",
688
+ "model.layers.57.self_attn.attn.impl.matmul_qk",
689
+ "model.layers.57.self_attn.attn.impl.softmax",
690
+ "model.layers.57.self_attn.attn.impl.matmul_av",
691
+ "model.layers.57.self_attn.attn.impl.batch2block_matmul",
692
+ "model.layers.57.self_attn.attn.impl.block2batch_matmul",
693
+ "model.layers.57.self_attn.attn.impl.k_cache",
694
+ "model.layers.57.self_attn.attn.impl.v_cache",
695
+ "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
696
+ "model.layers.57.mlp.gate_up_proj",
697
+ "model.layers.57.mlp.down_proj",
698
+ "model.layers.58.self_attn.qkv_proj",
699
+ "model.layers.58.self_attn.o_proj",
700
+ "model.layers.58.self_attn.attn.impl.matmul_qk",
701
+ "model.layers.58.self_attn.attn.impl.softmax",
702
+ "model.layers.58.self_attn.attn.impl.matmul_av",
703
+ "model.layers.58.self_attn.attn.impl.batch2block_matmul",
704
+ "model.layers.58.self_attn.attn.impl.block2batch_matmul",
705
+ "model.layers.58.self_attn.attn.impl.k_cache",
706
+ "model.layers.58.self_attn.attn.impl.v_cache",
707
+ "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
708
+ "model.layers.58.mlp.gate_up_proj",
709
+ "model.layers.58.mlp.down_proj",
710
+ "model.layers.59.self_attn.qkv_proj",
711
+ "model.layers.59.self_attn.o_proj",
712
+ "model.layers.59.self_attn.attn.impl.matmul_qk",
713
+ "model.layers.59.self_attn.attn.impl.softmax",
714
+ "model.layers.59.self_attn.attn.impl.matmul_av",
715
+ "model.layers.59.self_attn.attn.impl.batch2block_matmul",
716
+ "model.layers.59.self_attn.attn.impl.block2batch_matmul",
717
+ "model.layers.59.self_attn.attn.impl.k_cache",
718
+ "model.layers.59.self_attn.attn.impl.v_cache",
719
+ "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
720
+ "model.layers.59.mlp.gate_up_proj",
721
+ "model.layers.59.mlp.down_proj",
722
+ "model.layers.60.self_attn.qkv_proj",
723
+ "model.layers.60.self_attn.o_proj",
724
+ "model.layers.60.self_attn.attn.impl.matmul_qk",
725
+ "model.layers.60.self_attn.attn.impl.softmax",
726
+ "model.layers.60.self_attn.attn.impl.matmul_av",
727
+ "model.layers.60.self_attn.attn.impl.batch2block_matmul",
728
+ "model.layers.60.self_attn.attn.impl.block2batch_matmul",
729
+ "model.layers.60.self_attn.attn.impl.k_cache",
730
+ "model.layers.60.self_attn.attn.impl.v_cache",
731
+ "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
732
+ "model.layers.60.mlp.gate_up_proj",
733
+ "model.layers.60.mlp.down_proj",
734
+ "model.layers.61.self_attn.qkv_proj",
735
+ "model.layers.61.self_attn.o_proj",
736
+ "model.layers.61.self_attn.attn.impl.matmul_qk",
737
+ "model.layers.61.self_attn.attn.impl.softmax",
738
+ "model.layers.61.self_attn.attn.impl.matmul_av",
739
+ "model.layers.61.self_attn.attn.impl.batch2block_matmul",
740
+ "model.layers.61.self_attn.attn.impl.block2batch_matmul",
741
+ "model.layers.61.self_attn.attn.impl.k_cache",
742
+ "model.layers.61.self_attn.attn.impl.v_cache",
743
+ "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
744
+ "model.layers.61.mlp.gate_up_proj",
745
+ "model.layers.61.mlp.down_proj",
746
+ "model.layers.62.self_attn.qkv_proj",
747
+ "model.layers.62.self_attn.o_proj",
748
+ "model.layers.62.self_attn.attn.impl.matmul_qk",
749
+ "model.layers.62.self_attn.attn.impl.softmax",
750
+ "model.layers.62.self_attn.attn.impl.matmul_av",
751
+ "model.layers.62.self_attn.attn.impl.batch2block_matmul",
752
+ "model.layers.62.self_attn.attn.impl.block2batch_matmul",
753
+ "model.layers.62.self_attn.attn.impl.k_cache",
754
+ "model.layers.62.self_attn.attn.impl.v_cache",
755
+ "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
756
+ "model.layers.62.mlp.gate_up_proj",
757
+ "model.layers.62.mlp.down_proj",
758
+ "model.layers.63.self_attn.qkv_proj",
759
+ "model.layers.63.self_attn.o_proj",
760
+ "model.layers.63.self_attn.attn.impl.matmul_qk",
761
+ "model.layers.63.self_attn.attn.impl.softmax",
762
+ "model.layers.63.self_attn.attn.impl.matmul_av",
763
+ "model.layers.63.self_attn.attn.impl.batch2block_matmul",
764
+ "model.layers.63.self_attn.attn.impl.block2batch_matmul",
765
+ "model.layers.63.self_attn.attn.impl.k_cache",
766
+ "model.layers.63.self_attn.attn.impl.v_cache",
767
+ "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
768
+ "model.layers.63.mlp.gate_up_proj",
769
+ "model.layers.63.mlp.down_proj",
770
+ "model.layers.64.self_attn.qkv_proj",
771
+ "model.layers.64.self_attn.o_proj",
772
+ "model.layers.64.self_attn.attn.impl.matmul_qk",
773
+ "model.layers.64.self_attn.attn.impl.softmax",
774
+ "model.layers.64.self_attn.attn.impl.matmul_av",
775
+ "model.layers.64.self_attn.attn.impl.batch2block_matmul",
776
+ "model.layers.64.self_attn.attn.impl.block2batch_matmul",
777
+ "model.layers.64.self_attn.attn.impl.k_cache",
778
+ "model.layers.64.self_attn.attn.impl.v_cache",
779
+ "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
780
+ "model.layers.64.mlp.gate_up_proj",
781
+ "model.layers.64.mlp.down_proj",
782
+ "model.layers.65.self_attn.qkv_proj",
783
+ "model.layers.65.self_attn.o_proj",
784
+ "model.layers.65.self_attn.attn.impl.matmul_qk",
785
+ "model.layers.65.self_attn.attn.impl.softmax",
786
+ "model.layers.65.self_attn.attn.impl.matmul_av",
787
+ "model.layers.65.self_attn.attn.impl.batch2block_matmul",
788
+ "model.layers.65.self_attn.attn.impl.block2batch_matmul",
789
+ "model.layers.65.self_attn.attn.impl.k_cache",
790
+ "model.layers.65.self_attn.attn.impl.v_cache",
791
+ "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
792
+ "model.layers.65.mlp.gate_up_proj",
793
+ "model.layers.65.mlp.down_proj",
794
+ "model.layers.66.self_attn.qkv_proj",
795
+ "model.layers.66.self_attn.o_proj",
796
+ "model.layers.66.self_attn.attn.impl.matmul_qk",
797
+ "model.layers.66.self_attn.attn.impl.softmax",
798
+ "model.layers.66.self_attn.attn.impl.matmul_av",
799
+ "model.layers.66.self_attn.attn.impl.batch2block_matmul",
800
+ "model.layers.66.self_attn.attn.impl.block2batch_matmul",
801
+ "model.layers.66.self_attn.attn.impl.k_cache",
802
+ "model.layers.66.self_attn.attn.impl.v_cache",
803
+ "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
804
+ "model.layers.66.mlp.gate_up_proj",
805
+ "model.layers.66.mlp.down_proj",
806
+ "model.layers.67.self_attn.qkv_proj",
807
+ "model.layers.67.self_attn.o_proj",
808
+ "model.layers.67.self_attn.attn.impl.matmul_qk",
809
+ "model.layers.67.self_attn.attn.impl.softmax",
810
+ "model.layers.67.self_attn.attn.impl.matmul_av",
811
+ "model.layers.67.self_attn.attn.impl.batch2block_matmul",
812
+ "model.layers.67.self_attn.attn.impl.block2batch_matmul",
813
+ "model.layers.67.self_attn.attn.impl.k_cache",
814
+ "model.layers.67.self_attn.attn.impl.v_cache",
815
+ "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
816
+ "model.layers.67.mlp.gate_up_proj",
817
+ "model.layers.67.mlp.down_proj",
818
+ "model.layers.68.self_attn.qkv_proj",
819
+ "model.layers.68.self_attn.o_proj",
820
+ "model.layers.68.self_attn.attn.impl.matmul_qk",
821
+ "model.layers.68.self_attn.attn.impl.softmax",
822
+ "model.layers.68.self_attn.attn.impl.matmul_av",
823
+ "model.layers.68.self_attn.attn.impl.batch2block_matmul",
824
+ "model.layers.68.self_attn.attn.impl.block2batch_matmul",
825
+ "model.layers.68.self_attn.attn.impl.k_cache",
826
+ "model.layers.68.self_attn.attn.impl.v_cache",
827
+ "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
828
+ "model.layers.68.mlp.gate_up_proj",
829
+ "model.layers.68.mlp.down_proj",
830
+ "model.layers.69.self_attn.qkv_proj",
831
+ "model.layers.69.self_attn.o_proj",
832
+ "model.layers.69.self_attn.attn.impl.matmul_qk",
833
+ "model.layers.69.self_attn.attn.impl.softmax",
834
+ "model.layers.69.self_attn.attn.impl.matmul_av",
835
+ "model.layers.69.self_attn.attn.impl.batch2block_matmul",
836
+ "model.layers.69.self_attn.attn.impl.block2batch_matmul",
837
+ "model.layers.69.self_attn.attn.impl.k_cache",
838
+ "model.layers.69.self_attn.attn.impl.v_cache",
839
+ "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
840
+ "model.layers.69.mlp.gate_up_proj",
841
+ "model.layers.69.mlp.down_proj",
842
+ "model.layers.70.self_attn.qkv_proj",
843
+ "model.layers.70.self_attn.o_proj",
844
+ "model.layers.70.self_attn.attn.impl.matmul_qk",
845
+ "model.layers.70.self_attn.attn.impl.softmax",
846
+ "model.layers.70.self_attn.attn.impl.matmul_av",
847
+ "model.layers.70.self_attn.attn.impl.batch2block_matmul",
848
+ "model.layers.70.self_attn.attn.impl.block2batch_matmul",
849
+ "model.layers.70.self_attn.attn.impl.k_cache",
850
+ "model.layers.70.self_attn.attn.impl.v_cache",
851
+ "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
852
+ "model.layers.70.mlp.gate_up_proj",
853
+ "model.layers.70.mlp.down_proj",
854
+ "model.layers.71.self_attn.qkv_proj",
855
+ "model.layers.71.self_attn.o_proj",
856
+ "model.layers.71.self_attn.attn.impl.matmul_qk",
857
+ "model.layers.71.self_attn.attn.impl.softmax",
858
+ "model.layers.71.self_attn.attn.impl.matmul_av",
859
+ "model.layers.71.self_attn.attn.impl.batch2block_matmul",
860
+ "model.layers.71.self_attn.attn.impl.block2batch_matmul",
861
+ "model.layers.71.self_attn.attn.impl.k_cache",
862
+ "model.layers.71.self_attn.attn.impl.v_cache",
863
+ "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
864
+ "model.layers.71.mlp.gate_up_proj",
865
+ "model.layers.71.mlp.down_proj",
866
+ "model.layers.72.self_attn.qkv_proj",
867
+ "model.layers.72.self_attn.o_proj",
868
+ "model.layers.72.self_attn.attn.impl.matmul_qk",
869
+ "model.layers.72.self_attn.attn.impl.softmax",
870
+ "model.layers.72.self_attn.attn.impl.matmul_av",
871
+ "model.layers.72.self_attn.attn.impl.batch2block_matmul",
872
+ "model.layers.72.self_attn.attn.impl.block2batch_matmul",
873
+ "model.layers.72.self_attn.attn.impl.k_cache",
874
+ "model.layers.72.self_attn.attn.impl.v_cache",
875
+ "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
876
+ "model.layers.72.mlp.gate_up_proj",
877
+ "model.layers.72.mlp.down_proj",
878
+ "model.layers.73.self_attn.qkv_proj",
879
+ "model.layers.73.self_attn.o_proj",
880
+ "model.layers.73.self_attn.attn.impl.matmul_qk",
881
+ "model.layers.73.self_attn.attn.impl.softmax",
882
+ "model.layers.73.self_attn.attn.impl.matmul_av",
883
+ "model.layers.73.self_attn.attn.impl.batch2block_matmul",
884
+ "model.layers.73.self_attn.attn.impl.block2batch_matmul",
885
+ "model.layers.73.self_attn.attn.impl.k_cache",
886
+ "model.layers.73.self_attn.attn.impl.v_cache",
887
+ "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
888
+ "model.layers.73.mlp.gate_up_proj",
889
+ "model.layers.73.mlp.down_proj",
890
+ "model.layers.74.self_attn.qkv_proj",
891
+ "model.layers.74.self_attn.o_proj",
892
+ "model.layers.74.self_attn.attn.impl.matmul_qk",
893
+ "model.layers.74.self_attn.attn.impl.softmax",
894
+ "model.layers.74.self_attn.attn.impl.matmul_av",
895
+ "model.layers.74.self_attn.attn.impl.batch2block_matmul",
896
+ "model.layers.74.self_attn.attn.impl.block2batch_matmul",
897
+ "model.layers.74.self_attn.attn.impl.k_cache",
898
+ "model.layers.74.self_attn.attn.impl.v_cache",
899
+ "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
900
+ "model.layers.74.mlp.gate_up_proj",
901
+ "model.layers.74.mlp.down_proj",
902
+ "model.layers.75.self_attn.qkv_proj",
903
+ "model.layers.75.self_attn.o_proj",
904
+ "model.layers.75.self_attn.attn.impl.matmul_qk",
905
+ "model.layers.75.self_attn.attn.impl.softmax",
906
+ "model.layers.75.self_attn.attn.impl.matmul_av",
907
+ "model.layers.75.self_attn.attn.impl.batch2block_matmul",
908
+ "model.layers.75.self_attn.attn.impl.block2batch_matmul",
909
+ "model.layers.75.self_attn.attn.impl.k_cache",
910
+ "model.layers.75.self_attn.attn.impl.v_cache",
911
+ "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
912
+ "model.layers.75.mlp.gate_up_proj",
913
+ "model.layers.75.mlp.down_proj",
914
+ "model.layers.76.self_attn.qkv_proj",
915
+ "model.layers.76.self_attn.o_proj",
916
+ "model.layers.76.self_attn.attn.impl.matmul_qk",
917
+ "model.layers.76.self_attn.attn.impl.softmax",
918
+ "model.layers.76.self_attn.attn.impl.matmul_av",
919
+ "model.layers.76.self_attn.attn.impl.batch2block_matmul",
920
+ "model.layers.76.self_attn.attn.impl.block2batch_matmul",
921
+ "model.layers.76.self_attn.attn.impl.k_cache",
922
+ "model.layers.76.self_attn.attn.impl.v_cache",
923
+ "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
924
+ "model.layers.76.mlp.gate_up_proj",
925
+ "model.layers.76.mlp.down_proj",
926
+ "model.layers.77.self_attn.qkv_proj",
927
+ "model.layers.77.self_attn.o_proj",
928
+ "model.layers.77.self_attn.attn.impl.matmul_qk",
929
+ "model.layers.77.self_attn.attn.impl.softmax",
930
+ "model.layers.77.self_attn.attn.impl.matmul_av",
931
+ "model.layers.77.self_attn.attn.impl.batch2block_matmul",
932
+ "model.layers.77.self_attn.attn.impl.block2batch_matmul",
933
+ "model.layers.77.self_attn.attn.impl.k_cache",
934
+ "model.layers.77.self_attn.attn.impl.v_cache",
935
+ "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
936
+ "model.layers.77.mlp.gate_up_proj",
937
+ "model.layers.77.mlp.down_proj",
938
+ "model.layers.78.self_attn.qkv_proj",
939
+ "model.layers.78.self_attn.o_proj",
940
+ "model.layers.78.self_attn.attn.impl.matmul_qk",
941
+ "model.layers.78.self_attn.attn.impl.softmax",
942
+ "model.layers.78.self_attn.attn.impl.matmul_av",
943
+ "model.layers.78.self_attn.attn.impl.batch2block_matmul",
944
+ "model.layers.78.self_attn.attn.impl.block2batch_matmul",
945
+ "model.layers.78.self_attn.attn.impl.k_cache",
946
+ "model.layers.78.self_attn.attn.impl.v_cache",
947
+ "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
948
+ "model.layers.78.mlp.gate_up_proj",
949
+ "model.layers.78.mlp.down_proj",
950
+ "model.layers.79.self_attn.qkv_proj",
951
+ "model.layers.79.self_attn.o_proj",
952
+ "model.layers.79.self_attn.attn.impl.matmul_qk",
953
+ "model.layers.79.self_attn.attn.impl.softmax",
954
+ "model.layers.79.self_attn.attn.impl.matmul_av",
955
+ "model.layers.79.self_attn.attn.impl.batch2block_matmul",
956
+ "model.layers.79.self_attn.attn.impl.block2batch_matmul",
957
+ "model.layers.79.self_attn.attn.impl.k_cache",
958
+ "model.layers.79.self_attn.attn.impl.v_cache",
959
+ "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
960
+ "model.layers.79.mlp.gate_up_proj",
961
+ "model.layers.79.mlp.down_proj",
962
+ "lm_head"
963
+ ]
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.json ADDED
The diff for this file is too large to render. See raw diff
 
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28fa12b482230e0d765930aafc5fba653d6b91b841c13d05f9164ead90cf96c7
3
+ size 212484
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.json ADDED
The diff for this file is too large to render. See raw diff
 
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8167b2ca512756adc9b4e6968ec6f2cdc4c3afc0716a857d454d11164991cff5
3
+ size 212484
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.json ADDED
The diff for this file is too large to render. See raw diff
 
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:898204590d3b3131975f00346d70a2a9dbaee039786bb635a8c76cda9592e38b
3
+ size 212484
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.json ADDED
The diff for this file is too large to render. See raw diff
 
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d9fc1daf3e06aa809f4c006efdbb55f1e36d66f09ab9a635223ad2a27d7a904
3
+ size 212484
quant/maxabs_measure_g3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"method": "HOOKS","mode": "MEASURE","observer": "maxabs","allowlist": {"types": [], "names": []},"blocklist": {"types": [], "names": []},"quantize_weight": false,"dump_stats_path": "/software/ae/fmwork/inc/1.21.0/llama-3.3-70b-instruct/g3/inc_output"}
quant/maxabs_quant_g3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mode": "QUANTIZE","observer": "maxabs","scale_method": "maxabs_hw","allowlist": {"types": [],"names": []},"blocklist": {"types": [],"names": []},"dump_stats_path": "/mnt/models/Llama-3.3-70B/quant/g3/inc_output"}
special_tokens_map.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|begin_of_text|>",
3
+ "eos_token": "<|eot_id|>"
4
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }