Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- LICENSE +49 -0
- README.md +312 -0
- USE_POLICY.md +73 -0
- config.json +39 -0
- generation_config.json +12 -0
- model-00002-of-00030.safetensors +3 -0
- model-00005-of-00030.safetensors +3 -0
- model-00006-of-00030.safetensors +3 -0
- model-00007-of-00030.safetensors +3 -0
- model-00011-of-00030.safetensors +3 -0
- model-00012-of-00030.safetensors +3 -0
- model-00015-of-00030.safetensors +3 -0
- model-00016-of-00030.safetensors +3 -0
- model-00017-of-00030.safetensors +3 -0
- model-00021-of-00030.safetensors +3 -0
- model-00022-of-00030.safetensors +3 -0
- model-00027-of-00030.safetensors +3 -0
- model-00030-of-00030.safetensors +3 -0
- model.safetensors.index.json +730 -0
- original/.gitattributes +35 -0
- original/README.md +11 -0
- original/checklist.chk +10 -0
- original/params.json +12 -0
- original/tokenizer.model +3 -0
- quant/g3/inc_output_hooks_maxabs_0_4.json +1 -0
- quant/g3/inc_output_hooks_maxabs_0_4.npz +3 -0
- quant/g3/inc_output_hooks_maxabs_0_4_mod_list.json +963 -0
- quant/g3/inc_output_hooks_maxabs_1_4.json +1 -0
- quant/g3/inc_output_hooks_maxabs_1_4.npz +3 -0
- quant/g3/inc_output_hooks_maxabs_1_4_mod_list.json +963 -0
- quant/g3/inc_output_hooks_maxabs_2_4.json +1 -0
- quant/g3/inc_output_hooks_maxabs_2_4.npz +3 -0
- quant/g3/inc_output_hooks_maxabs_2_4_mod_list.json +963 -0
- quant/g3/inc_output_hooks_maxabs_3_4.json +1 -0
- quant/g3/inc_output_hooks_maxabs_3_4.npz +3 -0
- quant/g3/inc_output_hooks_maxabs_3_4_mod_list.json +963 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.json +0 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.npz +3 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.json +0 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.npz +3 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.json +0 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.npz +3 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.json +0 -0
- quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.npz +3 -0
- quant/maxabs_measure_g3.json +1 -0
- quant/maxabs_quant_g3.json +1 -0
- special_tokens_map.json +4 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2064 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
**LLAMA 3.3 COMMUNITY LICENSE AGREEMENT**
|
| 2 |
+
|
| 3 |
+
Llama 3.3 Version Release Date: December 6, 2024
|
| 4 |
+
|
| 5 |
+
“**Agreement**” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.
|
| 6 |
+
|
| 7 |
+
“**Documentation**” means the specifications, manuals and documentation accompanying Llama 3.3 distributed by Meta at [https://www.llama.com/docs/overview](https://llama.com/docs/overview).
|
| 8 |
+
|
| 9 |
+
“**Licensee**” or “**you**” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
|
| 10 |
+
|
| 11 |
+
“**Llama 3.3**” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at [https://www.llama.com/llama-downloads](https://www.llama.com/llama-downloads).
|
| 12 |
+
|
| 13 |
+
“**Llama Materials**” means, collectively, Meta’s proprietary Llama 3.3 and Documentation (and any portion thereof) made available under this Agreement.
|
| 14 |
+
|
| 15 |
+
“**Meta**” or “**we**” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
|
| 16 |
+
|
| 17 |
+
By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.
|
| 18 |
+
|
| 19 |
+
1\. **License Rights and Redistribution**.
|
| 20 |
+
|
| 21 |
+
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.
|
| 22 |
+
|
| 23 |
+
b. Redistribution and Use.
|
| 24 |
+
|
| 25 |
+
i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name.
|
| 26 |
+
|
| 27 |
+
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.
|
| 28 |
+
|
| 29 |
+
iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.3 is licensed under the Llama 3.3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”
|
| 30 |
+
|
| 31 |
+
iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at [https://www.llama.com/llama3\_3/use-policy](https://www.llama.com/llama3_3/use-policy)), which is hereby incorporated by reference into this Agreement.
|
| 32 |
+
|
| 33 |
+
2\. **Additional Commercial Terms**. If, on the Llama 3.3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
|
| 34 |
+
|
| 35 |
+
3**. Disclaimer of Warranty**. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
|
| 36 |
+
|
| 37 |
+
4\. **Limitation of Liability**. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
| 38 |
+
|
| 39 |
+
5\. **Intellectual Property**.
|
| 40 |
+
|
| 41 |
+
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at [https://about.meta.com/brand/resources/meta/company-brand/](https://about.meta.com/brand/resources/meta/company-brand/)[)](https://en.facebookbrand.com/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.
|
| 42 |
+
|
| 43 |
+
b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.
|
| 44 |
+
|
| 45 |
+
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.
|
| 46 |
+
|
| 47 |
+
6\. **Term and Termination**. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.
|
| 48 |
+
|
| 49 |
+
7\. **Governing Law and Jurisdiction**. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.
|
README.md
ADDED
|
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- fr
|
| 6 |
+
- it
|
| 7 |
+
- pt
|
| 8 |
+
- hi
|
| 9 |
+
- es
|
| 10 |
+
- th
|
| 11 |
+
- de
|
| 12 |
+
base_model:
|
| 13 |
+
- meta-llama/Llama-3.1-70B
|
| 14 |
+
tags:
|
| 15 |
+
- facebook
|
| 16 |
+
- meta
|
| 17 |
+
- pytorch
|
| 18 |
+
- llama
|
| 19 |
+
- llama-3
|
| 20 |
+
extra_gated_prompt: "### LLAMA 3.3 COMMUNITY LICENSE AGREEMENT\nLlama 3.3 Version Release Date: December 6, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.3 distributed by Meta at [https://www.llama.com/docs/overview](https://llama.com/docs/overview).\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.3\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at [https://www.llama.com/llama-downloads](https://www.llama.com/llama-downloads).\n\"Llama Materials\" means, collectively, Meta’s proprietary Llama 3.3 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\nBy clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\_\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.3 is licensed under the Llama 3.3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy)), which is hereby incorporated by reference into this Agreement. \n2. Additional Commercial Terms. If, on the Llama 3.3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at [https://about.meta.com/brand/resources/meta/company-brand/](https://about.meta.com/brand/resources/meta/company-brand/)[)](https://en.facebookbrand.com/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.3 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.3. If you access or use Llama 3.3, you agree to this Acceptable Use Policy (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy).\nProhibited Uses\nWe want everyone to use Llama 3.3 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.3 to:\n1. Violate the law or others’ rights, including to:\n\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: \n 1. Violence or terrorism \n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material \n 3. Human trafficking, exploitation, and sexual violence \n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. \n 5. Sexual solicitation \n 6. Any other criminal activity\n\n 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\n 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n\n 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n\n 5. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n\n 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n\n 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n\n 8. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\n\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.3 related to the following:\n\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n\n 2. Guns and illegal weapons (including weapon development)\n\n 3. Illegal drugs and regulated/controlled substances\n\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n\n3. Intentionally deceive or mislead others, including use of Llama 3.3 related to the following:\n\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n\n 3. Generating, promoting, or further distributing spam\n\n 4. Impersonating another individual without consent, authorization, or legal right\n\n 5. Representing that the use of Llama 3.3 or outputs are human-generated\n\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n\n4. Fail to appropriately disclose to end users any known dangers of your AI system\n5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.3\nWith respect to any multimodal models included in Llama 3.3, the rights granted under Section 1(a) of the Llama 3.3 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\nPlease report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ) * Reporting risky content generated by the model: [developers.facebook.com/llama\\_output\\_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.3: LlamaUseReport@meta.com "
|
| 21 |
+
extra_gated_fields:
|
| 22 |
+
First Name: text
|
| 23 |
+
Last Name: text
|
| 24 |
+
Date of birth: date_picker
|
| 25 |
+
Country: country
|
| 26 |
+
Affiliation: text
|
| 27 |
+
Job title:
|
| 28 |
+
type: select
|
| 29 |
+
options:
|
| 30 |
+
- Student
|
| 31 |
+
- Research Graduate
|
| 32 |
+
- AI researcher
|
| 33 |
+
- AI developer/engineer
|
| 34 |
+
- Reporter
|
| 35 |
+
- Other
|
| 36 |
+
geo: ip_location
|
| 37 |
+
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
|
| 38 |
+
extra_gated_description: >-
|
| 39 |
+
The information you provide will be collected, stored, processed and shared in
|
| 40 |
+
accordance with the [Meta Privacy
|
| 41 |
+
Policy](https://www.facebook.com/privacy/policy/).
|
| 42 |
+
extra_gated_button_content: Submit
|
| 43 |
+
license: llama3.3
|
| 44 |
+
---
|
| 45 |
+
## Model Information
|
| 46 |
+
|
| 47 |
+
The Meta Llama 3.3 multilingual large language model (LLM) is an instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks.
|
| 48 |
+
|
| 49 |
+
**Model developer**: Meta
|
| 50 |
+
|
| 51 |
+
**Model Architecture:** Llama 3.3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
|
| 52 |
+
|
| 53 |
+
| | Training Data | Params | Input modalities | Output modalities | Context length | GQA | Token count | Knowledge cutoff |
|
| 54 |
+
| :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- |
|
| 55 |
+
| Llama 3.3 (text only) | A new mix of publicly available online data. | 70B | Multilingual Text | Multilingual Text and code | 128k | Yes | 15T+ | December 2023 |
|
| 56 |
+
|
| 57 |
+
**Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
|
| 58 |
+
|
| 59 |
+
**Llama 3.3 model**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
|
| 60 |
+
|
| 61 |
+
**Model Release Date:**
|
| 62 |
+
|
| 63 |
+
* **70B Instruct: December 6, 2024**
|
| 64 |
+
|
| 65 |
+
**Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
|
| 66 |
+
|
| 67 |
+
**License** A custom commercial license, the Llama 3.3 Community License Agreement, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3\_3/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE)
|
| 68 |
+
|
| 69 |
+
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
|
| 70 |
+
|
| 71 |
+
## Intended Use
|
| 72 |
+
|
| 73 |
+
**Intended Use Cases** Llama 3.3 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.3 model also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.3 Community License allows for these use cases.
|
| 74 |
+
|
| 75 |
+
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.3 Community License. Use in languages beyond those explicitly referenced as supported in this model card\*\*.
|
| 76 |
+
|
| 77 |
+
\*\*Note: Llama 3.3 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.3 models for languages beyond the 8 supported languages provided they comply with the Llama 3.3 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.3 in additional languages is done in a safe and responsible manner.
|
| 78 |
+
|
| 79 |
+
## How to use
|
| 80 |
+
|
| 81 |
+
This repository contains two versions of Llama-3.3-70B-Instruct, for use with transformers and with the original `llama` codebase.
|
| 82 |
+
|
| 83 |
+
### Use with transformers
|
| 84 |
+
|
| 85 |
+
Starting with `transformers >= 4.45.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
|
| 86 |
+
|
| 87 |
+
Make sure to update your transformers installation via `pip install --upgrade transformers`.
|
| 88 |
+
|
| 89 |
+
See the snippet below for usage with Transformers:
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
import transformers
|
| 93 |
+
import torch
|
| 94 |
+
|
| 95 |
+
model_id = "meta-llama/Llama-3.3-70B-Instruct"
|
| 96 |
+
|
| 97 |
+
pipeline = transformers.pipeline(
|
| 98 |
+
"text-generation",
|
| 99 |
+
model=model_id,
|
| 100 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 101 |
+
device_map="auto",
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
messages = [
|
| 105 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 106 |
+
{"role": "user", "content": "Who are you?"},
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
outputs = pipeline(
|
| 110 |
+
messages,
|
| 111 |
+
max_new_tokens=256,
|
| 112 |
+
)
|
| 113 |
+
print(outputs[0]["generated_text"][-1])
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Tool use with transformers
|
| 117 |
+
|
| 118 |
+
LLaMA-3.3 supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
|
| 119 |
+
|
| 120 |
+
Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
|
| 121 |
+
Here is a quick example showing a single simple tool:
|
| 122 |
+
|
| 123 |
+
```python
|
| 124 |
+
# First, define a tool
|
| 125 |
+
def get_current_temperature(location: str) -> float:
|
| 126 |
+
"""
|
| 127 |
+
Get the current temperature at a location.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
location: The location to get the temperature for, in the format "City, Country"
|
| 131 |
+
Returns:
|
| 132 |
+
The current temperature at the specified location in the specified units, as a float.
|
| 133 |
+
"""
|
| 134 |
+
return 22. # A real function should probably actually get the temperature!
|
| 135 |
+
|
| 136 |
+
# Next, create a chat and apply the chat template
|
| 137 |
+
messages = [
|
| 138 |
+
{"role": "system", "content": "You are a bot that responds to weather queries."},
|
| 139 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
| 146 |
+
|
| 147 |
+
```python
|
| 148 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
| 149 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
| 153 |
+
|
| 154 |
+
```python
|
| 155 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
|
| 159 |
+
see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
### Use with `bitsandbytes`
|
| 163 |
+
|
| 164 |
+
The model checkpoints can be used in `8-bit` and `4-bit` for further memory optimisations using `bitsandbytes` and `transformers`
|
| 165 |
+
|
| 166 |
+
See the snippet below for usage:
|
| 167 |
+
|
| 168 |
+
```python
|
| 169 |
+
import torch
|
| 170 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 171 |
+
|
| 172 |
+
model_id = "meta-llama/Llama-3.3-70B-Instruct"
|
| 173 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 174 |
+
|
| 175 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(
|
| 176 |
+
model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
|
| 177 |
+
|
| 178 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 179 |
+
input_text = "What are we having for dinner?"
|
| 180 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 181 |
+
|
| 182 |
+
output = quantized_model.generate(**input_ids, max_new_tokens=10)
|
| 183 |
+
|
| 184 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
To load in 4-bit simply pass `load_in_4bit=True`
|
| 188 |
+
|
| 189 |
+
### Use with `llama`
|
| 190 |
+
|
| 191 |
+
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama).
|
| 192 |
+
|
| 193 |
+
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
|
| 194 |
+
|
| 195 |
+
```
|
| 196 |
+
huggingface-cli download meta-llama/Llama-3.3-70B-Instruct --include "original/*" --local-dir Llama-3.3-70B-Instruct
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
## Hardware and Software
|
| 200 |
+
|
| 201 |
+
**Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
|
| 202 |
+
|
| 203 |
+
**Training Energy Use** Training utilized a cumulative of **39.3**M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
|
| 204 |
+
|
| 205 |
+
##
|
| 206 |
+
|
| 207 |
+
## **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
|
| 208 |
+
|
| 209 |
+
| | Training Time (GPU hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) |
|
| 210 |
+
| :---- | :---: | :---: | :---: | :---: |
|
| 211 |
+
| Llama 3.3 70B | 7.0M | 700 | 2,040 | 0 |
|
| 212 |
+
|
| 213 |
+
## The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
|
| 214 |
+
|
| 215 |
+
## Training Data
|
| 216 |
+
|
| 217 |
+
**Overview:** Llama 3.3 was pretrained on \~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
|
| 218 |
+
|
| 219 |
+
**Data Freshness:** The pretraining data has a cutoff of December 2023\.
|
| 220 |
+
|
| 221 |
+
## Benchmarks \- English Text
|
| 222 |
+
|
| 223 |
+
In this section, we report the results for Llama 3.3 relative to our previous models.
|
| 224 |
+
|
| 225 |
+
### Instruction tuned models
|
| 226 |
+
|
| 227 |
+
##
|
| 228 |
+
|
| 229 |
+
| Category | Benchmark | \# Shots | Metric | Llama 3.1 8B Instruct | Llama 3.1 70B Instruct | Llama-3.3 70B Instruct | Llama 3.1 405B Instruct |
|
| 230 |
+
| :---- | :---- | ----- | :---- | ----- | ----- | ----- | ----- |
|
| 231 |
+
| | MMLU (CoT) | 0 | macro\_avg/acc | 73.0 | 86.0 | 86.0 | 88.6 |
|
| 232 |
+
| | MMLU Pro (CoT) | 5 | macro\_avg/acc | 48.3 | 66.4 | 68.9 | 73.3 |
|
| 233 |
+
| Steerability | IFEval | | | 80.4 | 87.5 | 92.1 | 88.6 |
|
| 234 |
+
| Reasoning | GPQA Diamond (CoT) | 0 | acc | 31.8 | 48.0 | 50.5 | 49.0 |
|
| 235 |
+
| Code | HumanEval | 0 | pass@1 | 72.6 | 80.5 | 88.4 | 89.0 |
|
| 236 |
+
| | MBPP EvalPlus (base) | 0 | pass@1 | 72.8 | 86.0 | 87.6 | 88.6 |
|
| 237 |
+
| Math | MATH (CoT) | 0 | sympy\_intersection\_score | 51.9 | 68.0 | 77.0 | 73.8 |
|
| 238 |
+
| Tool Use | BFCL v2 | 0 | overall\_ast\_summary/macro\_avg/valid | 65.4 | 77.5 | 77.3 | 81.1 |
|
| 239 |
+
| Multilingual | MGSM | 0 | em | 68.9 | 86.9 | 91.1 | 91.6 |
|
| 240 |
+
|
| 241 |
+
##
|
| 242 |
+
|
| 243 |
+
## Responsibility & Safety
|
| 244 |
+
|
| 245 |
+
As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
|
| 246 |
+
|
| 247 |
+
* Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
|
| 248 |
+
* Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
|
| 249 |
+
* Provide protections for the community to help prevent the misuse of our models.
|
| 250 |
+
|
| 251 |
+
### Responsible deployment
|
| 252 |
+
|
| 253 |
+
Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.3 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
|
| 254 |
+
|
| 255 |
+
#### Llama 3.3 instruct
|
| 256 |
+
|
| 257 |
+
Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
|
| 258 |
+
|
| 259 |
+
**Fine-tuning data**
|
| 260 |
+
We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
|
| 261 |
+
|
| 262 |
+
**Refusals and Tone**
|
| 263 |
+
Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
|
| 264 |
+
|
| 265 |
+
#### Llama 3.3 systems
|
| 266 |
+
|
| 267 |
+
**Large language models, including Llama 3.3, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
|
| 268 |
+
As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
|
| 269 |
+
|
| 270 |
+
#### Capability specific considerations
|
| 271 |
+
|
| 272 |
+
**Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
|
| 273 |
+
|
| 274 |
+
**Multilinguality**: Llama 3.3 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
|
| 275 |
+
|
| 276 |
+
### Evaluations
|
| 277 |
+
|
| 278 |
+
We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
|
| 279 |
+
Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
|
| 280 |
+
|
| 281 |
+
**Red teaming**
|
| 282 |
+
For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
|
| 283 |
+
We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. .
|
| 284 |
+
|
| 285 |
+
### Critical and other risks
|
| 286 |
+
|
| 287 |
+
### We specifically focused our efforts on mitigating the following critical risk areas:
|
| 288 |
+
|
| 289 |
+
**1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
|
| 290 |
+
To assess risks related to proliferation of chemical and biological weapons of the Llama 3 family of models, we performed uplift testing designed to assess whether use of the Llama 3 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
|
| 291 |
+
|
| 292 |
+
### **2\. Child Safety**
|
| 293 |
+
|
| 294 |
+
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
|
| 295 |
+
|
| 296 |
+
**3\. Cyber attack enablement**
|
| 297 |
+
Our cyber attack uplift study investigated whether the Llama 3 family of LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
|
| 298 |
+
Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
|
| 299 |
+
|
| 300 |
+
### Community
|
| 301 |
+
|
| 302 |
+
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
|
| 303 |
+
|
| 304 |
+
We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
|
| 305 |
+
|
| 306 |
+
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
|
| 307 |
+
|
| 308 |
+
## Ethical Considerations and Limitations
|
| 309 |
+
|
| 310 |
+
The core values of Llama 3.3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
|
| 311 |
+
|
| 312 |
+
But Llama 3.3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.3 model, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
|
USE_POLICY.md
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
**Llama 3.3** **Acceptable Use Policy**
|
| 2 |
+
|
| 3 |
+
Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.3. If you access or use Llama 3.3, you agree to this Acceptable Use Policy (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3\_3/use-policy](https://www.llama.com/llama3_3/use-policy).
|
| 4 |
+
|
| 5 |
+
**Prohibited Uses**
|
| 6 |
+
|
| 7 |
+
We want everyone to use Llama 3.3 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.3 to:
|
| 8 |
+
|
| 9 |
+
1. Violate the law or others’ rights, including to:
|
| 10 |
+
|
| 11 |
+
1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
|
| 12 |
+
1. Violence or terrorism
|
| 13 |
+
2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
|
| 14 |
+
3. Human trafficking, exploitation, and sexual violence
|
| 15 |
+
4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
|
| 16 |
+
5. Sexual solicitation
|
| 17 |
+
6. Any other criminal activity
|
| 18 |
+
|
| 19 |
+
2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
|
| 20 |
+
|
| 21 |
+
3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
|
| 22 |
+
|
| 23 |
+
4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
|
| 24 |
+
|
| 25 |
+
5. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law
|
| 26 |
+
|
| 27 |
+
6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
|
| 28 |
+
|
| 29 |
+
7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
|
| 30 |
+
|
| 31 |
+
8. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta
|
| 32 |
+
|
| 33 |
+
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.3 related to the following:
|
| 34 |
+
|
| 35 |
+
1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997
|
| 36 |
+
|
| 37 |
+
2. Guns and illegal weapons (including weapon development)
|
| 38 |
+
|
| 39 |
+
3. Illegal drugs and regulated/controlled substances
|
| 40 |
+
|
| 41 |
+
4. Operation of critical infrastructure, transportation technologies, or heavy machinery
|
| 42 |
+
|
| 43 |
+
5. Self-harm or harm to others, including suicide, cutting, and eating disorders
|
| 44 |
+
|
| 45 |
+
6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
|
| 46 |
+
|
| 47 |
+
3. Intentionally deceive or mislead others, including use of Llama 3.3 related to the following:
|
| 48 |
+
|
| 49 |
+
1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
|
| 50 |
+
|
| 51 |
+
2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
|
| 52 |
+
|
| 53 |
+
3. Generating, promoting, or further distributing spam
|
| 54 |
+
|
| 55 |
+
4. Impersonating another individual without consent, authorization, or legal right
|
| 56 |
+
|
| 57 |
+
5. Representing that the use of Llama 3.3 or outputs are human-generated
|
| 58 |
+
|
| 59 |
+
6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
|
| 60 |
+
|
| 61 |
+
4. Fail to appropriately disclose to end users any known dangers of your AI system
|
| 62 |
+
|
| 63 |
+
5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.3
|
| 64 |
+
|
| 65 |
+
With respect to any multimodal models included in Llama 3.3, the rights granted under Section 1(a) of the Llama 3.3 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.
|
| 66 |
+
|
| 67 |
+
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
|
| 68 |
+
|
| 69 |
+
* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)
|
| 70 |
+
* Reporting risky content generated by the model: [developers.facebook.com/llama\_output\_feedback](http://developers.facebook.com/llama_output_feedback)
|
| 71 |
+
* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
|
| 72 |
+
* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.3: LlamaUseReport@meta.com
|
| 73 |
+
|
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LlamaForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 128000,
|
| 8 |
+
"eos_token_id": [
|
| 9 |
+
128001,
|
| 10 |
+
128008,
|
| 11 |
+
128009
|
| 12 |
+
],
|
| 13 |
+
"head_dim": 128,
|
| 14 |
+
"hidden_act": "silu",
|
| 15 |
+
"hidden_size": 8192,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 28672,
|
| 18 |
+
"max_position_embeddings": 131072,
|
| 19 |
+
"mlp_bias": false,
|
| 20 |
+
"model_type": "llama",
|
| 21 |
+
"num_attention_heads": 64,
|
| 22 |
+
"num_hidden_layers": 80,
|
| 23 |
+
"num_key_value_heads": 8,
|
| 24 |
+
"pretraining_tp": 1,
|
| 25 |
+
"rms_norm_eps": 1e-05,
|
| 26 |
+
"rope_scaling": {
|
| 27 |
+
"factor": 8.0,
|
| 28 |
+
"high_freq_factor": 4.0,
|
| 29 |
+
"low_freq_factor": 1.0,
|
| 30 |
+
"original_max_position_embeddings": 8192,
|
| 31 |
+
"rope_type": "llama3"
|
| 32 |
+
},
|
| 33 |
+
"rope_theta": 500000.0,
|
| 34 |
+
"tie_word_embeddings": false,
|
| 35 |
+
"torch_dtype": "bfloat16",
|
| 36 |
+
"transformers_version": "4.47.0.dev0",
|
| 37 |
+
"use_cache": true,
|
| 38 |
+
"vocab_size": 128256
|
| 39 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 128000,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
128001,
|
| 6 |
+
128008,
|
| 7 |
+
128009
|
| 8 |
+
],
|
| 9 |
+
"temperature": 0.6,
|
| 10 |
+
"top_p": 0.9,
|
| 11 |
+
"transformers_version": "4.47.0.dev0"
|
| 12 |
+
}
|
model-00002-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcd250bf27cc5c51c2661eeb98f4d2de5525c6d466a0ee690bc80e29a917bcd4
|
| 3 |
+
size 4664167376
|
model-00005-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56e1ceef3622bef0a91b554a8dba1074b93f4f0eb1d28c38df112672fd31cb3f
|
| 3 |
+
size 4664134408
|
model-00006-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7662172fb0dd22f764869236f0a42c6f79fb385e5bced923936292cb8d94bb56
|
| 3 |
+
size 4664167408
|
model-00007-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0c90f7ff73f765286f51799f512a8c1cfeb4f0a46c4f2831fc855dd7ee0a8b1
|
| 3 |
+
size 4664167408
|
model-00011-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:458aeafc39b1c137d7d11df3de45f2d9db3175363230e9290ec08d6531fcdd26
|
| 3 |
+
size 4664167408
|
model-00012-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:962683d58eb1aa7b7efa35451fbf21d605ab8eb718d854766db0cfb6bfca1f5a
|
| 3 |
+
size 4664167408
|
model-00015-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6622c84f6c07c1ca73dabbbc63c7e7842d98ba1a92bbe18d9f485718b12bf757
|
| 3 |
+
size 4664134408
|
model-00016-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87dd8ffa1c6fbefefac8bfd02e7c3001f1c6b31e2afe9859038e912b6712f884
|
| 3 |
+
size 4664167408
|
model-00017-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:302f92d01ba80999d73b93f4e4d90911b260e7e78c8e61605f43a775a77cadf8
|
| 3 |
+
size 4664167408
|
model-00021-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:21097441bb201b3094daf3601a6fc9d98e3b62b9cd76182ff00d39de5c16bf93
|
| 3 |
+
size 4664167408
|
model-00022-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f2e5a40d0f563164874ceacb7f785481a908fc8fb46321217f39a6b9d2bad3f
|
| 3 |
+
size 4664167408
|
model-00027-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddff9ad869a4dd4df1d361cdd0f382937877908ded87da41b8bdf89f17ce64f3
|
| 3 |
+
size 4664167408
|
model-00030-of-00030.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b0436c98c9b4f78e61f6769e588e0853179b970e2a084ae2886e2daebf1ce13d
|
| 3 |
+
size 2101346432
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 141107412992
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00030-of-00030.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00030.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00030.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00030.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00030.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00030.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00030.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00030.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00030.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00030.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00030.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00030.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00005-of-00030.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00005-of-00030.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00005-of-00030.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00005-of-00030.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00006-of-00030.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00005-of-00030.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00005-of-00030.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00005-of-00030.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00005-of-00030.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00005-of-00030.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00005-of-00030.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00006-of-00030.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00006-of-00030.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00006-of-00030.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00006-of-00030.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00006-of-00030.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00007-of-00030.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00006-of-00030.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00006-of-00030.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00006-of-00030.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00006-of-00030.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00006-of-00030.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00007-of-00030.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00007-of-00030.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00007-of-00030.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00007-of-00030.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00007-of-00030.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00007-of-00030.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00008-of-00030.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00007-of-00030.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00007-of-00030.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00007-of-00030.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00007-of-00030.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00008-of-00030.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00030.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00008-of-00030.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00008-of-00030.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00008-of-00030.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00008-of-00030.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00008-of-00030.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00008-of-00030.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00009-of-00030.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00008-of-00030.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00008-of-00030.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00008-of-00030.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00009-of-00030.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00009-of-00030.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00009-of-00030.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00009-of-00030.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00009-of-00030.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00009-of-00030.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00009-of-00030.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00009-of-00030.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00009-of-00030.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00009-of-00030.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00010-of-00030.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00010-of-00030.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00010-of-00030.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00010-of-00030.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00011-of-00030.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00010-of-00030.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00010-of-00030.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00010-of-00030.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00010-of-00030.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00010-of-00030.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00010-of-00030.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00011-of-00030.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00011-of-00030.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00011-of-00030.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00011-of-00030.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00011-of-00030.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00012-of-00030.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00011-of-00030.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00011-of-00030.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00011-of-00030.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00011-of-00030.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00011-of-00030.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00030.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00030.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00030.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00030.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00030.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00012-of-00030.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00012-of-00030.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00012-of-00030.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00012-of-00030.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00012-of-00030.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00012-of-00030.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
|
| 242 |
+
"model.layers.32.input_layernorm.weight": "model-00013-of-00030.safetensors",
|
| 243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
|
| 244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
|
| 245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
|
| 246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
|
| 247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00012-of-00030.safetensors",
|
| 248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00012-of-00030.safetensors",
|
| 249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00012-of-00030.safetensors",
|
| 250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00012-of-00030.safetensors",
|
| 251 |
+
"model.layers.33.input_layernorm.weight": "model-00013-of-00030.safetensors",
|
| 252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
|
| 253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
|
| 254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
|
| 255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
|
| 256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
|
| 257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
|
| 258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
|
| 259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
|
| 260 |
+
"model.layers.34.input_layernorm.weight": "model-00013-of-00030.safetensors",
|
| 261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00013-of-00030.safetensors",
|
| 262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00013-of-00030.safetensors",
|
| 263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00013-of-00030.safetensors",
|
| 264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00013-of-00030.safetensors",
|
| 265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
|
| 266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00013-of-00030.safetensors",
|
| 267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
|
| 268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
|
| 269 |
+
"model.layers.35.input_layernorm.weight": "model-00014-of-00030.safetensors",
|
| 270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
|
| 271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
|
| 272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
|
| 273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
|
| 274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00013-of-00030.safetensors",
|
| 275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
|
| 276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00013-of-00030.safetensors",
|
| 277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00013-of-00030.safetensors",
|
| 278 |
+
"model.layers.36.input_layernorm.weight": "model-00014-of-00030.safetensors",
|
| 279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
|
| 280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
|
| 281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
|
| 282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
|
| 283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
|
| 284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
|
| 285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
|
| 286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
|
| 287 |
+
"model.layers.37.input_layernorm.weight": "model-00014-of-00030.safetensors",
|
| 288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00014-of-00030.safetensors",
|
| 289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00014-of-00030.safetensors",
|
| 290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00014-of-00030.safetensors",
|
| 291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00014-of-00030.safetensors",
|
| 292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00014-of-00030.safetensors",
|
| 293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00014-of-00030.safetensors",
|
| 294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00014-of-00030.safetensors",
|
| 295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00014-of-00030.safetensors",
|
| 296 |
+
"model.layers.38.input_layernorm.weight": "model-00015-of-00030.safetensors",
|
| 297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
|
| 298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
|
| 299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
|
| 300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
|
| 301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
|
| 302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
|
| 303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
|
| 304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
|
| 305 |
+
"model.layers.39.input_layernorm.weight": "model-00015-of-00030.safetensors",
|
| 306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00015-of-00030.safetensors",
|
| 307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
|
| 308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
|
| 309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00015-of-00030.safetensors",
|
| 310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
|
| 311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
|
| 312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
|
| 313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
|
| 314 |
+
"model.layers.4.input_layernorm.weight": "model-00003-of-00030.safetensors",
|
| 315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
|
| 316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
|
| 317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
|
| 318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
|
| 319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00030.safetensors",
|
| 320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00030.safetensors",
|
| 321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00030.safetensors",
|
| 322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00030.safetensors",
|
| 323 |
+
"model.layers.40.input_layernorm.weight": "model-00016-of-00030.safetensors",
|
| 324 |
+
"model.layers.40.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
|
| 325 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00015-of-00030.safetensors",
|
| 326 |
+
"model.layers.40.mlp.up_proj.weight": "model-00015-of-00030.safetensors",
|
| 327 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
|
| 328 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00015-of-00030.safetensors",
|
| 329 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00015-of-00030.safetensors",
|
| 330 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00015-of-00030.safetensors",
|
| 331 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00015-of-00030.safetensors",
|
| 332 |
+
"model.layers.41.input_layernorm.weight": "model-00016-of-00030.safetensors",
|
| 333 |
+
"model.layers.41.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
|
| 334 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
|
| 335 |
+
"model.layers.41.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
|
| 336 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
|
| 337 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
|
| 338 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
|
| 339 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
|
| 340 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
|
| 341 |
+
"model.layers.42.input_layernorm.weight": "model-00016-of-00030.safetensors",
|
| 342 |
+
"model.layers.42.mlp.down_proj.weight": "model-00016-of-00030.safetensors",
|
| 343 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
|
| 344 |
+
"model.layers.42.mlp.up_proj.weight": "model-00016-of-00030.safetensors",
|
| 345 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00016-of-00030.safetensors",
|
| 346 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
|
| 347 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
|
| 348 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
|
| 349 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
|
| 350 |
+
"model.layers.43.input_layernorm.weight": "model-00017-of-00030.safetensors",
|
| 351 |
+
"model.layers.43.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
|
| 352 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00016-of-00030.safetensors",
|
| 353 |
+
"model.layers.43.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
|
| 354 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
|
| 355 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00016-of-00030.safetensors",
|
| 356 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00016-of-00030.safetensors",
|
| 357 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00016-of-00030.safetensors",
|
| 358 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00016-of-00030.safetensors",
|
| 359 |
+
"model.layers.44.input_layernorm.weight": "model-00017-of-00030.safetensors",
|
| 360 |
+
"model.layers.44.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
|
| 361 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
|
| 362 |
+
"model.layers.44.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
|
| 363 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
|
| 364 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
|
| 365 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
|
| 366 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
|
| 367 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
|
| 368 |
+
"model.layers.45.input_layernorm.weight": "model-00017-of-00030.safetensors",
|
| 369 |
+
"model.layers.45.mlp.down_proj.weight": "model-00017-of-00030.safetensors",
|
| 370 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00017-of-00030.safetensors",
|
| 371 |
+
"model.layers.45.mlp.up_proj.weight": "model-00017-of-00030.safetensors",
|
| 372 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00017-of-00030.safetensors",
|
| 373 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
|
| 374 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
|
| 375 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
|
| 376 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
|
| 377 |
+
"model.layers.46.input_layernorm.weight": "model-00018-of-00030.safetensors",
|
| 378 |
+
"model.layers.46.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
|
| 379 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
|
| 380 |
+
"model.layers.46.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
|
| 381 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
|
| 382 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00017-of-00030.safetensors",
|
| 383 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00017-of-00030.safetensors",
|
| 384 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00017-of-00030.safetensors",
|
| 385 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00017-of-00030.safetensors",
|
| 386 |
+
"model.layers.47.input_layernorm.weight": "model-00018-of-00030.safetensors",
|
| 387 |
+
"model.layers.47.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
|
| 388 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
|
| 389 |
+
"model.layers.47.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
|
| 390 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
|
| 391 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
|
| 392 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
|
| 393 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
|
| 394 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
|
| 395 |
+
"model.layers.48.input_layernorm.weight": "model-00018-of-00030.safetensors",
|
| 396 |
+
"model.layers.48.mlp.down_proj.weight": "model-00018-of-00030.safetensors",
|
| 397 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00018-of-00030.safetensors",
|
| 398 |
+
"model.layers.48.mlp.up_proj.weight": "model-00018-of-00030.safetensors",
|
| 399 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00018-of-00030.safetensors",
|
| 400 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
|
| 401 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00018-of-00030.safetensors",
|
| 402 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
|
| 403 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
|
| 404 |
+
"model.layers.49.input_layernorm.weight": "model-00019-of-00030.safetensors",
|
| 405 |
+
"model.layers.49.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
|
| 406 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
|
| 407 |
+
"model.layers.49.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
|
| 408 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
|
| 409 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00018-of-00030.safetensors",
|
| 410 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
|
| 411 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00018-of-00030.safetensors",
|
| 412 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00018-of-00030.safetensors",
|
| 413 |
+
"model.layers.5.input_layernorm.weight": "model-00003-of-00030.safetensors",
|
| 414 |
+
"model.layers.5.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
|
| 415 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
|
| 416 |
+
"model.layers.5.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
|
| 417 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
|
| 418 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
|
| 419 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
|
| 420 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
|
| 421 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
|
| 422 |
+
"model.layers.50.input_layernorm.weight": "model-00019-of-00030.safetensors",
|
| 423 |
+
"model.layers.50.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
|
| 424 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
|
| 425 |
+
"model.layers.50.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
|
| 426 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
|
| 427 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
|
| 428 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
|
| 429 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
|
| 430 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
|
| 431 |
+
"model.layers.51.input_layernorm.weight": "model-00019-of-00030.safetensors",
|
| 432 |
+
"model.layers.51.mlp.down_proj.weight": "model-00019-of-00030.safetensors",
|
| 433 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00019-of-00030.safetensors",
|
| 434 |
+
"model.layers.51.mlp.up_proj.weight": "model-00019-of-00030.safetensors",
|
| 435 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00019-of-00030.safetensors",
|
| 436 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00019-of-00030.safetensors",
|
| 437 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00019-of-00030.safetensors",
|
| 438 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00019-of-00030.safetensors",
|
| 439 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00019-of-00030.safetensors",
|
| 440 |
+
"model.layers.52.input_layernorm.weight": "model-00020-of-00030.safetensors",
|
| 441 |
+
"model.layers.52.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
|
| 442 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
|
| 443 |
+
"model.layers.52.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
|
| 444 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
|
| 445 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
|
| 446 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
|
| 447 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
|
| 448 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
|
| 449 |
+
"model.layers.53.input_layernorm.weight": "model-00020-of-00030.safetensors",
|
| 450 |
+
"model.layers.53.mlp.down_proj.weight": "model-00020-of-00030.safetensors",
|
| 451 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
|
| 452 |
+
"model.layers.53.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
|
| 453 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00020-of-00030.safetensors",
|
| 454 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
|
| 455 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
|
| 456 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
|
| 457 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
|
| 458 |
+
"model.layers.54.input_layernorm.weight": "model-00021-of-00030.safetensors",
|
| 459 |
+
"model.layers.54.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
|
| 460 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00020-of-00030.safetensors",
|
| 461 |
+
"model.layers.54.mlp.up_proj.weight": "model-00020-of-00030.safetensors",
|
| 462 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
|
| 463 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00020-of-00030.safetensors",
|
| 464 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00020-of-00030.safetensors",
|
| 465 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00020-of-00030.safetensors",
|
| 466 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00020-of-00030.safetensors",
|
| 467 |
+
"model.layers.55.input_layernorm.weight": "model-00021-of-00030.safetensors",
|
| 468 |
+
"model.layers.55.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
|
| 469 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
|
| 470 |
+
"model.layers.55.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
|
| 471 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
|
| 472 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
|
| 473 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
|
| 474 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
|
| 475 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
|
| 476 |
+
"model.layers.56.input_layernorm.weight": "model-00021-of-00030.safetensors",
|
| 477 |
+
"model.layers.56.mlp.down_proj.weight": "model-00021-of-00030.safetensors",
|
| 478 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
|
| 479 |
+
"model.layers.56.mlp.up_proj.weight": "model-00021-of-00030.safetensors",
|
| 480 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00021-of-00030.safetensors",
|
| 481 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
|
| 482 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
|
| 483 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
|
| 484 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
|
| 485 |
+
"model.layers.57.input_layernorm.weight": "model-00022-of-00030.safetensors",
|
| 486 |
+
"model.layers.57.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
|
| 487 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00021-of-00030.safetensors",
|
| 488 |
+
"model.layers.57.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
|
| 489 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
|
| 490 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00021-of-00030.safetensors",
|
| 491 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00021-of-00030.safetensors",
|
| 492 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00021-of-00030.safetensors",
|
| 493 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00021-of-00030.safetensors",
|
| 494 |
+
"model.layers.58.input_layernorm.weight": "model-00022-of-00030.safetensors",
|
| 495 |
+
"model.layers.58.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
|
| 496 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
|
| 497 |
+
"model.layers.58.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
|
| 498 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
|
| 499 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
|
| 500 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
|
| 501 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
|
| 502 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
|
| 503 |
+
"model.layers.59.input_layernorm.weight": "model-00022-of-00030.safetensors",
|
| 504 |
+
"model.layers.59.mlp.down_proj.weight": "model-00022-of-00030.safetensors",
|
| 505 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00022-of-00030.safetensors",
|
| 506 |
+
"model.layers.59.mlp.up_proj.weight": "model-00022-of-00030.safetensors",
|
| 507 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00022-of-00030.safetensors",
|
| 508 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
|
| 509 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
|
| 510 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
|
| 511 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
|
| 512 |
+
"model.layers.6.input_layernorm.weight": "model-00003-of-00030.safetensors",
|
| 513 |
+
"model.layers.6.mlp.down_proj.weight": "model-00003-of-00030.safetensors",
|
| 514 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00003-of-00030.safetensors",
|
| 515 |
+
"model.layers.6.mlp.up_proj.weight": "model-00003-of-00030.safetensors",
|
| 516 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00003-of-00030.safetensors",
|
| 517 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
|
| 518 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00003-of-00030.safetensors",
|
| 519 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
|
| 520 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
|
| 521 |
+
"model.layers.60.input_layernorm.weight": "model-00023-of-00030.safetensors",
|
| 522 |
+
"model.layers.60.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
|
| 523 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
|
| 524 |
+
"model.layers.60.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
|
| 525 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
|
| 526 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00022-of-00030.safetensors",
|
| 527 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00022-of-00030.safetensors",
|
| 528 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00022-of-00030.safetensors",
|
| 529 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00022-of-00030.safetensors",
|
| 530 |
+
"model.layers.61.input_layernorm.weight": "model-00023-of-00030.safetensors",
|
| 531 |
+
"model.layers.61.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
|
| 532 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
|
| 533 |
+
"model.layers.61.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
|
| 534 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
|
| 535 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
|
| 536 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
|
| 537 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
|
| 538 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
|
| 539 |
+
"model.layers.62.input_layernorm.weight": "model-00023-of-00030.safetensors",
|
| 540 |
+
"model.layers.62.mlp.down_proj.weight": "model-00023-of-00030.safetensors",
|
| 541 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00023-of-00030.safetensors",
|
| 542 |
+
"model.layers.62.mlp.up_proj.weight": "model-00023-of-00030.safetensors",
|
| 543 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00023-of-00030.safetensors",
|
| 544 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
|
| 545 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00023-of-00030.safetensors",
|
| 546 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
|
| 547 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
|
| 548 |
+
"model.layers.63.input_layernorm.weight": "model-00024-of-00030.safetensors",
|
| 549 |
+
"model.layers.63.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
|
| 550 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
|
| 551 |
+
"model.layers.63.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
|
| 552 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
|
| 553 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00023-of-00030.safetensors",
|
| 554 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
|
| 555 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00023-of-00030.safetensors",
|
| 556 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00023-of-00030.safetensors",
|
| 557 |
+
"model.layers.64.input_layernorm.weight": "model-00024-of-00030.safetensors",
|
| 558 |
+
"model.layers.64.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
|
| 559 |
+
"model.layers.64.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
|
| 560 |
+
"model.layers.64.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
|
| 561 |
+
"model.layers.64.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
|
| 562 |
+
"model.layers.64.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
|
| 563 |
+
"model.layers.64.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
|
| 564 |
+
"model.layers.64.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
|
| 565 |
+
"model.layers.64.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
|
| 566 |
+
"model.layers.65.input_layernorm.weight": "model-00024-of-00030.safetensors",
|
| 567 |
+
"model.layers.65.mlp.down_proj.weight": "model-00024-of-00030.safetensors",
|
| 568 |
+
"model.layers.65.mlp.gate_proj.weight": "model-00024-of-00030.safetensors",
|
| 569 |
+
"model.layers.65.mlp.up_proj.weight": "model-00024-of-00030.safetensors",
|
| 570 |
+
"model.layers.65.post_attention_layernorm.weight": "model-00024-of-00030.safetensors",
|
| 571 |
+
"model.layers.65.self_attn.k_proj.weight": "model-00024-of-00030.safetensors",
|
| 572 |
+
"model.layers.65.self_attn.o_proj.weight": "model-00024-of-00030.safetensors",
|
| 573 |
+
"model.layers.65.self_attn.q_proj.weight": "model-00024-of-00030.safetensors",
|
| 574 |
+
"model.layers.65.self_attn.v_proj.weight": "model-00024-of-00030.safetensors",
|
| 575 |
+
"model.layers.66.input_layernorm.weight": "model-00025-of-00030.safetensors",
|
| 576 |
+
"model.layers.66.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
|
| 577 |
+
"model.layers.66.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
|
| 578 |
+
"model.layers.66.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
|
| 579 |
+
"model.layers.66.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
|
| 580 |
+
"model.layers.66.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
|
| 581 |
+
"model.layers.66.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
|
| 582 |
+
"model.layers.66.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
|
| 583 |
+
"model.layers.66.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
|
| 584 |
+
"model.layers.67.input_layernorm.weight": "model-00025-of-00030.safetensors",
|
| 585 |
+
"model.layers.67.mlp.down_proj.weight": "model-00025-of-00030.safetensors",
|
| 586 |
+
"model.layers.67.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
|
| 587 |
+
"model.layers.67.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
|
| 588 |
+
"model.layers.67.post_attention_layernorm.weight": "model-00025-of-00030.safetensors",
|
| 589 |
+
"model.layers.67.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
|
| 590 |
+
"model.layers.67.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
|
| 591 |
+
"model.layers.67.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
|
| 592 |
+
"model.layers.67.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
|
| 593 |
+
"model.layers.68.input_layernorm.weight": "model-00026-of-00030.safetensors",
|
| 594 |
+
"model.layers.68.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
|
| 595 |
+
"model.layers.68.mlp.gate_proj.weight": "model-00025-of-00030.safetensors",
|
| 596 |
+
"model.layers.68.mlp.up_proj.weight": "model-00025-of-00030.safetensors",
|
| 597 |
+
"model.layers.68.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
|
| 598 |
+
"model.layers.68.self_attn.k_proj.weight": "model-00025-of-00030.safetensors",
|
| 599 |
+
"model.layers.68.self_attn.o_proj.weight": "model-00025-of-00030.safetensors",
|
| 600 |
+
"model.layers.68.self_attn.q_proj.weight": "model-00025-of-00030.safetensors",
|
| 601 |
+
"model.layers.68.self_attn.v_proj.weight": "model-00025-of-00030.safetensors",
|
| 602 |
+
"model.layers.69.input_layernorm.weight": "model-00026-of-00030.safetensors",
|
| 603 |
+
"model.layers.69.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
|
| 604 |
+
"model.layers.69.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
|
| 605 |
+
"model.layers.69.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
|
| 606 |
+
"model.layers.69.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
|
| 607 |
+
"model.layers.69.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
|
| 608 |
+
"model.layers.69.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
|
| 609 |
+
"model.layers.69.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
|
| 610 |
+
"model.layers.69.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
|
| 611 |
+
"model.layers.7.input_layernorm.weight": "model-00004-of-00030.safetensors",
|
| 612 |
+
"model.layers.7.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
|
| 613 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
|
| 614 |
+
"model.layers.7.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
|
| 615 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
|
| 616 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00003-of-00030.safetensors",
|
| 617 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
|
| 618 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00003-of-00030.safetensors",
|
| 619 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00003-of-00030.safetensors",
|
| 620 |
+
"model.layers.70.input_layernorm.weight": "model-00026-of-00030.safetensors",
|
| 621 |
+
"model.layers.70.mlp.down_proj.weight": "model-00026-of-00030.safetensors",
|
| 622 |
+
"model.layers.70.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
|
| 623 |
+
"model.layers.70.mlp.up_proj.weight": "model-00026-of-00030.safetensors",
|
| 624 |
+
"model.layers.70.post_attention_layernorm.weight": "model-00026-of-00030.safetensors",
|
| 625 |
+
"model.layers.70.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
|
| 626 |
+
"model.layers.70.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
|
| 627 |
+
"model.layers.70.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
|
| 628 |
+
"model.layers.70.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
|
| 629 |
+
"model.layers.71.input_layernorm.weight": "model-00027-of-00030.safetensors",
|
| 630 |
+
"model.layers.71.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
|
| 631 |
+
"model.layers.71.mlp.gate_proj.weight": "model-00026-of-00030.safetensors",
|
| 632 |
+
"model.layers.71.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
|
| 633 |
+
"model.layers.71.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
|
| 634 |
+
"model.layers.71.self_attn.k_proj.weight": "model-00026-of-00030.safetensors",
|
| 635 |
+
"model.layers.71.self_attn.o_proj.weight": "model-00026-of-00030.safetensors",
|
| 636 |
+
"model.layers.71.self_attn.q_proj.weight": "model-00026-of-00030.safetensors",
|
| 637 |
+
"model.layers.71.self_attn.v_proj.weight": "model-00026-of-00030.safetensors",
|
| 638 |
+
"model.layers.72.input_layernorm.weight": "model-00027-of-00030.safetensors",
|
| 639 |
+
"model.layers.72.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
|
| 640 |
+
"model.layers.72.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
|
| 641 |
+
"model.layers.72.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
|
| 642 |
+
"model.layers.72.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
|
| 643 |
+
"model.layers.72.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
|
| 644 |
+
"model.layers.72.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
|
| 645 |
+
"model.layers.72.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
|
| 646 |
+
"model.layers.72.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
|
| 647 |
+
"model.layers.73.input_layernorm.weight": "model-00027-of-00030.safetensors",
|
| 648 |
+
"model.layers.73.mlp.down_proj.weight": "model-00027-of-00030.safetensors",
|
| 649 |
+
"model.layers.73.mlp.gate_proj.weight": "model-00027-of-00030.safetensors",
|
| 650 |
+
"model.layers.73.mlp.up_proj.weight": "model-00027-of-00030.safetensors",
|
| 651 |
+
"model.layers.73.post_attention_layernorm.weight": "model-00027-of-00030.safetensors",
|
| 652 |
+
"model.layers.73.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
|
| 653 |
+
"model.layers.73.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
|
| 654 |
+
"model.layers.73.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
|
| 655 |
+
"model.layers.73.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
|
| 656 |
+
"model.layers.74.input_layernorm.weight": "model-00028-of-00030.safetensors",
|
| 657 |
+
"model.layers.74.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
|
| 658 |
+
"model.layers.74.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
|
| 659 |
+
"model.layers.74.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
|
| 660 |
+
"model.layers.74.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
|
| 661 |
+
"model.layers.74.self_attn.k_proj.weight": "model-00027-of-00030.safetensors",
|
| 662 |
+
"model.layers.74.self_attn.o_proj.weight": "model-00027-of-00030.safetensors",
|
| 663 |
+
"model.layers.74.self_attn.q_proj.weight": "model-00027-of-00030.safetensors",
|
| 664 |
+
"model.layers.74.self_attn.v_proj.weight": "model-00027-of-00030.safetensors",
|
| 665 |
+
"model.layers.75.input_layernorm.weight": "model-00028-of-00030.safetensors",
|
| 666 |
+
"model.layers.75.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
|
| 667 |
+
"model.layers.75.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
|
| 668 |
+
"model.layers.75.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
|
| 669 |
+
"model.layers.75.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
|
| 670 |
+
"model.layers.75.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
|
| 671 |
+
"model.layers.75.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
|
| 672 |
+
"model.layers.75.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
|
| 673 |
+
"model.layers.75.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
|
| 674 |
+
"model.layers.76.input_layernorm.weight": "model-00028-of-00030.safetensors",
|
| 675 |
+
"model.layers.76.mlp.down_proj.weight": "model-00028-of-00030.safetensors",
|
| 676 |
+
"model.layers.76.mlp.gate_proj.weight": "model-00028-of-00030.safetensors",
|
| 677 |
+
"model.layers.76.mlp.up_proj.weight": "model-00028-of-00030.safetensors",
|
| 678 |
+
"model.layers.76.post_attention_layernorm.weight": "model-00028-of-00030.safetensors",
|
| 679 |
+
"model.layers.76.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
|
| 680 |
+
"model.layers.76.self_attn.o_proj.weight": "model-00028-of-00030.safetensors",
|
| 681 |
+
"model.layers.76.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
|
| 682 |
+
"model.layers.76.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
|
| 683 |
+
"model.layers.77.input_layernorm.weight": "model-00029-of-00030.safetensors",
|
| 684 |
+
"model.layers.77.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
|
| 685 |
+
"model.layers.77.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
|
| 686 |
+
"model.layers.77.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
|
| 687 |
+
"model.layers.77.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
|
| 688 |
+
"model.layers.77.self_attn.k_proj.weight": "model-00028-of-00030.safetensors",
|
| 689 |
+
"model.layers.77.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
|
| 690 |
+
"model.layers.77.self_attn.q_proj.weight": "model-00028-of-00030.safetensors",
|
| 691 |
+
"model.layers.77.self_attn.v_proj.weight": "model-00028-of-00030.safetensors",
|
| 692 |
+
"model.layers.78.input_layernorm.weight": "model-00029-of-00030.safetensors",
|
| 693 |
+
"model.layers.78.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
|
| 694 |
+
"model.layers.78.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
|
| 695 |
+
"model.layers.78.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
|
| 696 |
+
"model.layers.78.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
|
| 697 |
+
"model.layers.78.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
|
| 698 |
+
"model.layers.78.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
|
| 699 |
+
"model.layers.78.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
|
| 700 |
+
"model.layers.78.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
|
| 701 |
+
"model.layers.79.input_layernorm.weight": "model-00029-of-00030.safetensors",
|
| 702 |
+
"model.layers.79.mlp.down_proj.weight": "model-00029-of-00030.safetensors",
|
| 703 |
+
"model.layers.79.mlp.gate_proj.weight": "model-00029-of-00030.safetensors",
|
| 704 |
+
"model.layers.79.mlp.up_proj.weight": "model-00029-of-00030.safetensors",
|
| 705 |
+
"model.layers.79.post_attention_layernorm.weight": "model-00029-of-00030.safetensors",
|
| 706 |
+
"model.layers.79.self_attn.k_proj.weight": "model-00029-of-00030.safetensors",
|
| 707 |
+
"model.layers.79.self_attn.o_proj.weight": "model-00029-of-00030.safetensors",
|
| 708 |
+
"model.layers.79.self_attn.q_proj.weight": "model-00029-of-00030.safetensors",
|
| 709 |
+
"model.layers.79.self_attn.v_proj.weight": "model-00029-of-00030.safetensors",
|
| 710 |
+
"model.layers.8.input_layernorm.weight": "model-00004-of-00030.safetensors",
|
| 711 |
+
"model.layers.8.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
|
| 712 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
|
| 713 |
+
"model.layers.8.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
|
| 714 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
|
| 715 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
|
| 716 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
|
| 717 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
|
| 718 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
|
| 719 |
+
"model.layers.9.input_layernorm.weight": "model-00004-of-00030.safetensors",
|
| 720 |
+
"model.layers.9.mlp.down_proj.weight": "model-00004-of-00030.safetensors",
|
| 721 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00004-of-00030.safetensors",
|
| 722 |
+
"model.layers.9.mlp.up_proj.weight": "model-00004-of-00030.safetensors",
|
| 723 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00004-of-00030.safetensors",
|
| 724 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00004-of-00030.safetensors",
|
| 725 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00004-of-00030.safetensors",
|
| 726 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00004-of-00030.safetensors",
|
| 727 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00004-of-00030.safetensors",
|
| 728 |
+
"model.norm.weight": "model-00029-of-00030.safetensors"
|
| 729 |
+
}
|
| 730 |
+
}
|
original/.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
original/README.md
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
> [!IMPORTANT]
|
| 3 |
+
> This repository is a early-access checkpoint for Llama 3.1 70B.
|
| 4 |
+
> This repo contains only Meta provided original checkpoints. Hugging Face checkpoints are available here.
|
| 5 |
+
|
| 6 |
+
```bash
|
| 7 |
+
You can invoke them via torchrun by doing the following:
|
| 8 |
+
CHECKPOINT_DIR=~/.llama/checkpoints/Llama3.1-70B-Instruct-2014-12/
|
| 9 |
+
pip install torch fairscale
|
| 10 |
+
torchrun --nproc_per_node 8 `which example_chat_completion` "$CHECKPOINT_DIR"
|
| 11 |
+
```
|
original/checklist.chk
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
5ca57571675ec096c1918c76326e31ab consolidated.00.pth
|
| 2 |
+
2cb56d8cbe9aaf26552061e1602d6dc3 consolidated.01.pth
|
| 3 |
+
90158e90c25112dfe037b94ad4779a8e consolidated.02.pth
|
| 4 |
+
201b59b7fe63f0d7697fdab3de8b5ab3 consolidated.03.pth
|
| 5 |
+
716740eb1c34e0a221192c871529c4f6 consolidated.04.pth
|
| 6 |
+
fa0787c90d69670a8d72084f37c264d0 consolidated.05.pth
|
| 7 |
+
04d0acf24058c22ea13279276fba3a23 consolidated.06.pth
|
| 8 |
+
1c0326797ca6a3c5d91c135e37257cec consolidated.07.pth
|
| 9 |
+
0956af3a2c289b9d3005f4bc559d6bb8 params.json
|
| 10 |
+
08292403f8b173e7524d7fba7bbbd2d3 tokenizer.model
|
original/params.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dim": 8192,
|
| 3 |
+
"n_layers": 80,
|
| 4 |
+
"n_heads": 64,
|
| 5 |
+
"n_kv_heads": 8,
|
| 6 |
+
"vocab_size": 128256,
|
| 7 |
+
"ffn_dim_multiplier": 1.3,
|
| 8 |
+
"multiple_of": 4096,
|
| 9 |
+
"norm_eps": 1e-05,
|
| 10 |
+
"rope_theta": 500000.0,
|
| 11 |
+
"use_scaled_rope": true
|
| 12 |
+
}
|
original/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82e9d31979e92ab929cd544440f129d9ecd797b69e327f80f17e1c50d5551b55
|
| 3 |
+
size 2183982
|
quant/g3/inc_output_hooks_maxabs_0_4.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"GlobalRank": null, "LocalRank": 0, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[73.5]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.1201171875]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.443359375]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.251953125]], [[5.53125]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.1513671875]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[576.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[124.0]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.53125]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.1513671875]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[3.015625]], [[5.53125]], [[0.1513671875]]], "outputs": [[[0.1123046875]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[92.0]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[0.3203125]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[0.83203125]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[10.625]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.376953125]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.52734375]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[12.875]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.431640625]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.0625]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[12.875]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.431640625]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.5625]], [[12.875]], [[0.421875]]], "outputs": [[[0.376953125]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[4.46875]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[3.28125]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.53125]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[1.3828125]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.07470703125]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.189453125]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[11.4375]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.224609375]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.15625]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.328125]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[11.4375]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.224609375]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[11.0625]], [[0.2236328125]]], "outputs": [[[0.059814453125]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[1.21875]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.58984375]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.58984375]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[11.125]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.1015625]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.24609375]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[10.875]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.49609375]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.28125]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.515625]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[10.875]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.49609375]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[10.6875]], [[0.49609375]]], "outputs": [[[0.1015625]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[14.4375]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[50.75]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[1.96875]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.58984375]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.1318359375]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.39453125]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5546875]], [[16.0]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.82421875]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.4375]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[0.82421875]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[15.5]], [[0.82421875]]], "outputs": [[[0.08056640625]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[1.3828125]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.46875]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[0.73046875]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[0.42578125]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.06787109375]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.1748046875]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.671875]], [[10.375]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.609375]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[10.375]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[9.6875]], [[1.2421875]]], "outputs": [[[0.056884765625]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[10.9375]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[0.416015625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[0.412109375]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.58203125]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.16796875]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.138671875]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58203125]], [[16.625]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.7734375]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[16.625]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[0.7734375]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.03125]], [[15.8125]], [[0.70703125]]], "outputs": [[[0.138671875]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[0.435546875]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.322265625]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.5859375]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.1064453125]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.162109375]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58203125]], [[14.0]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3359375]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.125]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[1.3359375]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.1875]], [[1.234375]]], "outputs": [[[0.0703125]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.57421875]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[0.640625]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.341796875]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.33984375]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.1357421875]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.10400390625]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53125]], [[15.875]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.8671875]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.203125]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[15.875]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[0.8671875]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.4375]], [[14.8125]], [[0.734375]]], "outputs": [[[0.0966796875]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[1.8828125]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.8203125]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.275390625]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[0.357421875]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.2158203125]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.20703125]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53515625]], [[13.625]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0546875]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.25]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.0]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[1.0546875]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.25]], [[13.125]], [[0.97265625]]], "outputs": [[[0.11279296875]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[18.25]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[0.58984375]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.361328125]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.259765625]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.2255859375]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.13671875]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[13.125]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.671875]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.8125]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.859375]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[1.671875]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.28125]], [[12.375]], [[1.4921875]]], "outputs": [[[0.2255859375]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.54296875]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[1.2109375]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.373046875]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.52734375]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.171875]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.232421875]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5703125]], [[12.75]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.88671875]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.1875]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.21875]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[0.88671875]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[12.375]], [[0.79296875]]], "outputs": [[[0.150390625]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.859375]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.91796875]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.322265625]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.177734375]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.1865234375]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.57421875]], [[14.25]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.890625]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.21875]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.25]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[0.890625]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.125]], [[13.4375]], [[0.796875]]], "outputs": [[[0.1728515625]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.6875]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[0.61328125]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.2734375]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.220703125]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.291015625]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.169921875]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[17.25]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.109375]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.15625]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.75]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[17.25]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.109375]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[16.875]], [[1.0234375]]], "outputs": [[[0.28125]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.44140625]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[0.55078125]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.2392578125]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.283203125]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.3515625]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.13671875]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[12.25]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0703125]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.75]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.84375]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.0703125]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.15625]], [[11.3125]], [[1.03125]]], "outputs": [[[0.3125]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.60546875]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.26953125]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.2177734375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.302734375]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.162109375]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[10.75]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.921875]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.9375]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.875]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[10.75]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.921875]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.34375]], [[9.5625]], [[1.921875]]], "outputs": [[[0.302734375]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.35546875]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[0.8203125]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.431640625]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.1591796875]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.72265625]], [[15.5625]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.98046875]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.5625]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5625]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[15.5625]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[0.98046875]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.28125]], [[14.125]], [[0.85546875]]], "outputs": [[[0.326171875]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[0.640625]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[1.359375]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.283203125]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.28515625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.734375]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.2265625]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[12.0]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1171875]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.125]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.1171875]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.40625]], [[11.375]], [[1.1171875]]], "outputs": [[[0.478515625]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.388671875]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[1.578125]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.2265625]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.298828125]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.1337890625]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[12.25]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1171875]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.25]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.1171875]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[10.375]], [[0.95703125]]], "outputs": [[[0.447265625]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.3046875]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[2.21875]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[0.81640625]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.2890625]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[1.03125]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.2177734375]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.66796875]], [[15.125]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4609375]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[15.125]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.4609375]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.46875]], [[14.375]], [[1.328125]]], "outputs": [[[0.78515625]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.28125]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[2.421875]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.6015625]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.302734375]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.66796875]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.162109375]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[15.375]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8828125]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.375]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.625]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[15.375]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.8828125]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[15.375]], [[1.8828125]]], "outputs": [[[0.609375]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.7734375]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.453125]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.25390625]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.435546875]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.271484375]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[11.375]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2109375]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.34375]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[11.375]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[1.2109375]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.59375]], [[11.25]], [[1.125]]], "outputs": [[[0.306640625]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.3203125]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[1.8046875]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[0.365234375]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.3515625]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.49609375]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.388671875]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.81640625]], [[15.9375]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.15625]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.5]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[1.15625]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[15.0625]], [[1.0546875]]], "outputs": [[[0.41796875]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.34375]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[1.578125]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.41796875]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.40234375]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[0.439453125]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.93359375]], [[15.1875]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5546875]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.25]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.5]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[1.5546875]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.8125]], [[13.75]], [[1.5546875]]], "outputs": [[[0.439453125]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[2.359375]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.6015625]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.41796875]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.75390625]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.376953125]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.015625]], [[13.75]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.296875]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[26.375]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.375]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[1.296875]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.125]], [[13.75]], [[1.296875]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.69140625]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[2.5625]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.5625]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.314453125]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[1.0859375]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.44921875]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6796875]], [[11.6875]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.59375]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.0]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[11.6875]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[2.59375]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[11.1875]], [[2.59375]]], "outputs": [[[0.365234375]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.62109375]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[3.6875]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[1.125]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.328125]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[0.703125]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.3671875]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[14.25]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.6875]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.3125]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[4.6875]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.34375]], [[14.125]], [[4.6875]]], "outputs": [[[0.455078125]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.390625]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[2.3125]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.58203125]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.265625]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.62109375]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.380859375]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[17.25]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.390625]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[28.625]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.5625]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[17.25]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[1.390625]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.9375]], [[16.5]], [[1.390625]]], "outputs": [[[0.478515625]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.333984375]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[2.453125]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.7890625]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.32421875]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[0.6015625]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.2392578125]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9609375]], [[19.5]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.8125]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.875]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.3125]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[19.5]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[4.8125]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.4375]], [[18.625]], [[4.8125]]], "outputs": [[[0.6015625]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[0.50390625]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.58203125]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.310546875]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[1.1328125]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.9921875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.671875]], [[15.5]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[7.8125]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[48.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[15.5]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[7.8125]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[13.875]], [[7.8125]]], "outputs": [[[1.1328125]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.79296875]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[3.4375]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[1.484375]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.302734375]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.56640625]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.40234375]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[13.8125]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.234375]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.875]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[2.234375]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.4375]], [[13.1875]], [[2.234375]]], "outputs": [[[0.43359375]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.341796875]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[2.484375]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[0.6875]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.25390625]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.74609375]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.4921875]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[14.5]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.890625]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.625]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[14.5]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[1.890625]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.25]], [[14.5]], [[1.890625]]], "outputs": [[[0.63671875]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.349609375]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[2.09375]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.609375]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.2333984375]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[0.88671875]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.23828125]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[13.125]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.3125]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.5]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.1875]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[5.3125]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.59375]], [[12.3125]], [[5.3125]]], "outputs": [[[0.4140625]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[2.40625]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[1.6640625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.3125]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.306640625]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.80078125]], [[20.375]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.03125]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[45.0]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.375]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[20.375]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[2.03125]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[17.875]], [[2.03125]]], "outputs": [[[0.625]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[125.5]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[1.859375]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[0.478515625]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.8359375]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[2.375]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.84375]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[16.75]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.6875]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[50.25]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.375]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[4.6875]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[16.75]], [[4.6875]]], "outputs": [[[2.375]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.349609375]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[3.546875]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[0.515625]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.34375]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.671875]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.484375]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.81640625]], [[17.0]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.0]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[41.5]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.625]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[17.0]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[4.0]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[16.25]], [[4.0]]], "outputs": [[[0.453125]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.37109375]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[2.578125]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[0.59375]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.77734375]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.71484375]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.251953125]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[13.0625]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.375]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.5625]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[1.5]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[13.0]], [[1.1328125]]], "outputs": [[[0.640625]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.498046875]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[3.8125]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[0.84765625]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.62890625]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.9765625]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[0.7265625]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[17.625]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.046875]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.875]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[17.625]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[2.046875]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.9375]], [[16.125]], [[2.046875]]], "outputs": [[[0.57421875]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[2.3125]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[0.423828125]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.416015625]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.439453125]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6328125]], [[13.0625]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.171875]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.25]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.25]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[1.171875]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[12.5]], [[1.171875]]], "outputs": [[[0.3984375]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.4921875]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[3.546875]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.82421875]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.345703125]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[1.0390625]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[16.375]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.40625]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.5]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[1.40625]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.6875]], [[13.5]], [[1.171875]]], "outputs": [[[1.0390625]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.40234375]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[3.46875]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[0.6015625]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.2578125]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.69140625]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.5546875]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[14.4375]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5703125]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.8125]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[1.5703125]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.28125]], [[14.4375]], [[1.46875]]], "outputs": [[[0.48828125]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.380859375]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[7.1875]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[0.890625]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.33984375]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[0.431640625]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.36328125]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[13.6875]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.515625]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0625]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[13.6875]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[3.515625]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.0625]], [[3.515625]]], "outputs": [[[0.431640625]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.388671875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[4.90625]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[0.78515625]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.4140625]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.671875]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.54296875]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[12.4375]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.125]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[12.4375]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[6.125]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[11.75]], [[6.125]]], "outputs": [[[0.27734375]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.490234375]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[2.9375]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[1.5078125]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.56640625]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.91015625]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.3125]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[21.25]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.875]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.125]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[21.25]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[1.875]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[18.75]], [[1.2109375]]], "outputs": [[[0.6640625]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.32421875]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[2.578125]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.6796875]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.3046875]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.73046875]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6796875]], [[11.1875]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.40625]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.0]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[11.1875]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.40625]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0625]], [[10.375]], [[1.40625]]], "outputs": [[[0.431640625]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.421875]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[3.359375]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.5703125]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.408203125]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.9609375]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.34765625]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[15.0]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3671875]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.15625]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[1.3671875]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.71875]], [[14.625]], [[1.1015625]]], "outputs": [[[0.56640625]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.431640625]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[4.0625]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[0.91015625]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.7265625]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.283203125]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.18359375]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[16.5]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.53515625]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.0625]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.25]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[0.53515625]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.4375]], [[16.5]], [[0.53515625]]], "outputs": [[[0.283203125]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.498046875]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[3.4375]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.314453125]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.4765625]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.1767578125]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[12.4375]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.91796875]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[12.4375]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[0.91796875]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.71875]], [[11.0]], [[0.80859375]]], "outputs": [[[0.455078125]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.4296875]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[11.0]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[0.318359375]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.4375]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[1.0390625]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.44921875]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.435546875]], [[14.0625]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.125]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.953125]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[6.34375]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5]], [[14.0625]], [[6.34375]]], "outputs": [[[1.0390625]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.486328125]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[5.96875]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[0.37890625]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.458984375]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.77734375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.36328125]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.671875]], [[16.5]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.75]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[1.5]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.78125]], [[15.875]], [[1.1640625]]], "outputs": [[[0.48046875]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.58203125]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[4.21875]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[1.3046875]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.54296875]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.455078125]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.205078125]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.486328125]], [[13.8125]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.71875]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.3125]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.3125]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[0.71875]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.8125]], [[13.8125]], [[0.65234375]]], "outputs": [[[0.353515625]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.486328125]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[3.359375]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.244140625]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.94140625]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.1689453125]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[15.3125]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.25]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.4375]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.59375]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[1.25]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.375]], [[12.5625]], [[1.3046875]]], "outputs": [[[0.94140625]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.5703125]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[9.75]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[0.404296875]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.392578125]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[1.2265625]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.115234375]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[14.1875]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.125]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.625]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.1875]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[14.1875]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[2.125]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.46875]], [[13.125]], [[1.828125]]], "outputs": [[[0.625]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.484375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[4.625]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[0.59375]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.51953125]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.0986328125]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.97265625]], [[16.125]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.53125]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.3125]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.1875]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[1.53125]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.5]], [[16.125]], [[1.359375]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.94140625]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[4.75]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.53125]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.89453125]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.353515625]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5546875]], [[12.125]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.328125]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.0]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.8125]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[12.125]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[1.328125]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.1875]], [[11.3125]], [[1.1796875]]], "outputs": [[[0.66796875]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.375]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[6.1875]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[0.294921875]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.345703125]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.84765625]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[0.30859375]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[12.0]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.28125]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.1875]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.28125]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.75]], [[10.5]], [[1.21875]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.5703125]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[5.03125]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[0.5625]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.328125]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[1.0625]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.13671875]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0703125]], [[15.3125]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.5]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[2.453125]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.375]], [[13.25]], [[1.8828125]]], "outputs": [[[0.6171875]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.546875]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[8.875]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[0.306640625]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.35546875]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[1.078125]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.376953125]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0546875]], [[14.0]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.03125]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.3125]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[2.03125]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.9375]], [[14.0]], [[1.8515625]]], "outputs": [[[0.58203125]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.359375]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[6.03125]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.421875]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.5546875]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[1.2421875]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.2392578125]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.3828125]], [[13.625]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.84375]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.4375]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.21875]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[1.84375]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[14.625]], [[13.625]], [[1.6796875]]], "outputs": [[[0.921875]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.248046875]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[8.375]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.55078125]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.66796875]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.2578125]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[14.25]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.046875]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.6875]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.625]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[2.046875]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.15625]], [[14.0]], [[2.046875]]], "outputs": [[[0.54296875]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[8.25]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[1.0]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.33984375]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.4140625]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6796875]], [[15.6875]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.71875]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.125]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.6875]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[15.6875]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[1.71875]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[15.6875]], [[1.6328125]]], "outputs": [[[0.484375]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.365234375]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[4.625]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[0.80078125]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.62890625]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[1.2734375]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.3671875]], [[15.5]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.265625]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[28.5]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[15.5]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[3.265625]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.625]], [[14.4375]], [[3.265625]]], "outputs": [[[0.71484375]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.345703125]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[9.25]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.431640625]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.69921875]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.388671875]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.5703125]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.431640625]], [[20.0]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.875]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.3125]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[20.0]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[2.453125]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.53125]], [[20.0]], [[2.453125]]], "outputs": [[[0.388671875]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.40234375]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[8.875]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[0.4296875]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.63671875]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.392578125]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.2578125]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.486328125]], [[13.25]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.7421875]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[13.25]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[1.7421875]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.3125]], [[12.625]], [[1.734375]]], "outputs": [[[0.392578125]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.322265625]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[8.3125]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[0.88671875]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.345703125]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[0.83984375]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.318359375]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[17.75]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5390625]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.40625]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[1.5390625]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[14.0625]], [[1.1171875]]], "outputs": [[[0.59375]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.392578125]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[7.3125]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[1.1484375]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[1.96875]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[0.37109375]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[1.484375]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[10.6875]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.99609375]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.5]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[21.5]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[10.6875]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[0.99609375]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.9375]], [[10.6875]], [[0.7734375]]], "outputs": [[[0.37109375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.47265625]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[6.53125]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.51171875]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.5390625]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.89453125]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.314453125]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[13.5]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.125]], [[12.1875]], [[1.25]]], "outputs": [[[0.71875]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.58203125]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[6.46875]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[0.37890625]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.41796875]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[0.58984375]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.2734375]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53515625]], [[13.875]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2421875]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.46875]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[13.875]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[1.2421875]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[12.125]], [[1.046875]]], "outputs": [[[0.5625]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[8.5625]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.359375]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.384765625]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[0.9921875]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.2138671875]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[16.5]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5234375]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[1.5234375]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[15.25]], [[1.2421875]]], "outputs": [[[0.765625]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.56640625]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[7.625]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[0.302734375]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.412109375]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[0.79296875]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.05908203125]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53125]], [[13.875]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.203125]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.0]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[13.875]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[1.203125]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.40625]], [[12.75]], [[1.203125]]], "outputs": [[[0.58203125]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.419921875]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[8.875]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.412109375]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.32421875]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[2.71875]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.3671875]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[19.375]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.0625]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.0625]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[19.375]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[4.0625]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.375]], [[17.875]], [[4.0625]]], "outputs": [[[2.140625]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.671875]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[6.75]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[0.6484375]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.3515625]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[1.5625]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.3046875]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8359375]], [[18.75]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.484375]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[38.25]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.9375]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[18.75]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[2.484375]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.25]], [[15.8125]], [[2.015625]]], "outputs": [[[1.1171875]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.40625]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[5.90625]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.99609375]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.287109375]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.0859375]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[0.251953125]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[15.4375]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.875]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.625]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[15.4375]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[3.875]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.75]], [[13.625]], [[3.875]]], "outputs": [[[1.015625]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.3828125]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[7.28125]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[0.9375]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.359375]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.6015625]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9453125]], [[16.875]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.234375]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.875]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.3125]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[16.875]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[3.234375]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.25]], [[15.8125]], [[2.46875]]], "outputs": [[[0.9453125]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.5546875]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[11.0625]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[1.09375]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.3359375]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[1.6015625]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.353515625]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[20.875]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.21875]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.75]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[20.875]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[2.21875]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.0625]], [[17.875]], [[2.03125]]], "outputs": [[[1.078125]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.333984375]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[13.875]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[0.37890625]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.310546875]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[3.171875]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.27734375]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9375]], [[21.25]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.1875]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[36.25]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[21.25]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[4.1875]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.875]], [[20.375]], [[3.546875]]], "outputs": [[[1.96875]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.65234375]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[12.9375]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[1.296875]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.404296875]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.7890625]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.5]], [[14.875]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[61.25]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[25.625]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[14.875]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[2.46875]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.0625]], [[15.25]], [[2.0625]]], "outputs": [[[1.34375]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[12.375]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.65234375]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.4375]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[2.4375]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.27734375]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.77734375]], [[14.4375]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.03125]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.4375]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[3.03125]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.625]], [[12.125]], [[2.984375]]], "outputs": [[[1.7578125]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.46875]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[11.0625]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.64453125]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.8125]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[2.125]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.37890625]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[14.75]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.90625]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[63.75]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[27.125]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[14.75]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[2.90625]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.625]], [[13.0]], [[2.75]]], "outputs": [[[1.875]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.80859375]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[11.0]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.484375]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.44140625]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[1.296875]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.546875]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[13.625]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8046875]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[83.5]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[43.5]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[1.8046875]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.28125]], [[12.25]], [[1.2734375]]], "outputs": [[[0.85546875]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.62109375]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[33.0]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.8046875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.2734375]]}}}}
|
quant/g3/inc_output_hooks_maxabs_0_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d64e1115a72cd44b8a9affdb33aa9b404b98af1aafb8e82a5b98a14f5904f8c
|
| 3 |
+
size 206298
|
quant/g3/inc_output_hooks_maxabs_0_4_mod_list.json
ADDED
|
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
"model.layers.0.self_attn.qkv_proj",
|
| 3 |
+
"model.layers.0.self_attn.o_proj",
|
| 4 |
+
"model.layers.0.self_attn.attn.impl.matmul_qk",
|
| 5 |
+
"model.layers.0.self_attn.attn.impl.softmax",
|
| 6 |
+
"model.layers.0.self_attn.attn.impl.matmul_av",
|
| 7 |
+
"model.layers.0.self_attn.attn.impl.batch2block_matmul",
|
| 8 |
+
"model.layers.0.self_attn.attn.impl.block2batch_matmul",
|
| 9 |
+
"model.layers.0.self_attn.attn.impl.k_cache",
|
| 10 |
+
"model.layers.0.self_attn.attn.impl.v_cache",
|
| 11 |
+
"model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 12 |
+
"model.layers.0.mlp.gate_up_proj",
|
| 13 |
+
"model.layers.0.mlp.down_proj",
|
| 14 |
+
"model.layers.1.self_attn.qkv_proj",
|
| 15 |
+
"model.layers.1.self_attn.o_proj",
|
| 16 |
+
"model.layers.1.self_attn.attn.impl.matmul_qk",
|
| 17 |
+
"model.layers.1.self_attn.attn.impl.softmax",
|
| 18 |
+
"model.layers.1.self_attn.attn.impl.matmul_av",
|
| 19 |
+
"model.layers.1.self_attn.attn.impl.batch2block_matmul",
|
| 20 |
+
"model.layers.1.self_attn.attn.impl.block2batch_matmul",
|
| 21 |
+
"model.layers.1.self_attn.attn.impl.k_cache",
|
| 22 |
+
"model.layers.1.self_attn.attn.impl.v_cache",
|
| 23 |
+
"model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 24 |
+
"model.layers.1.mlp.gate_up_proj",
|
| 25 |
+
"model.layers.1.mlp.down_proj",
|
| 26 |
+
"model.layers.2.self_attn.qkv_proj",
|
| 27 |
+
"model.layers.2.self_attn.o_proj",
|
| 28 |
+
"model.layers.2.self_attn.attn.impl.matmul_qk",
|
| 29 |
+
"model.layers.2.self_attn.attn.impl.softmax",
|
| 30 |
+
"model.layers.2.self_attn.attn.impl.matmul_av",
|
| 31 |
+
"model.layers.2.self_attn.attn.impl.batch2block_matmul",
|
| 32 |
+
"model.layers.2.self_attn.attn.impl.block2batch_matmul",
|
| 33 |
+
"model.layers.2.self_attn.attn.impl.k_cache",
|
| 34 |
+
"model.layers.2.self_attn.attn.impl.v_cache",
|
| 35 |
+
"model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 36 |
+
"model.layers.2.mlp.gate_up_proj",
|
| 37 |
+
"model.layers.2.mlp.down_proj",
|
| 38 |
+
"model.layers.3.self_attn.qkv_proj",
|
| 39 |
+
"model.layers.3.self_attn.o_proj",
|
| 40 |
+
"model.layers.3.self_attn.attn.impl.matmul_qk",
|
| 41 |
+
"model.layers.3.self_attn.attn.impl.softmax",
|
| 42 |
+
"model.layers.3.self_attn.attn.impl.matmul_av",
|
| 43 |
+
"model.layers.3.self_attn.attn.impl.batch2block_matmul",
|
| 44 |
+
"model.layers.3.self_attn.attn.impl.block2batch_matmul",
|
| 45 |
+
"model.layers.3.self_attn.attn.impl.k_cache",
|
| 46 |
+
"model.layers.3.self_attn.attn.impl.v_cache",
|
| 47 |
+
"model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 48 |
+
"model.layers.3.mlp.gate_up_proj",
|
| 49 |
+
"model.layers.3.mlp.down_proj",
|
| 50 |
+
"model.layers.4.self_attn.qkv_proj",
|
| 51 |
+
"model.layers.4.self_attn.o_proj",
|
| 52 |
+
"model.layers.4.self_attn.attn.impl.matmul_qk",
|
| 53 |
+
"model.layers.4.self_attn.attn.impl.softmax",
|
| 54 |
+
"model.layers.4.self_attn.attn.impl.matmul_av",
|
| 55 |
+
"model.layers.4.self_attn.attn.impl.batch2block_matmul",
|
| 56 |
+
"model.layers.4.self_attn.attn.impl.block2batch_matmul",
|
| 57 |
+
"model.layers.4.self_attn.attn.impl.k_cache",
|
| 58 |
+
"model.layers.4.self_attn.attn.impl.v_cache",
|
| 59 |
+
"model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 60 |
+
"model.layers.4.mlp.gate_up_proj",
|
| 61 |
+
"model.layers.4.mlp.down_proj",
|
| 62 |
+
"model.layers.5.self_attn.qkv_proj",
|
| 63 |
+
"model.layers.5.self_attn.o_proj",
|
| 64 |
+
"model.layers.5.self_attn.attn.impl.matmul_qk",
|
| 65 |
+
"model.layers.5.self_attn.attn.impl.softmax",
|
| 66 |
+
"model.layers.5.self_attn.attn.impl.matmul_av",
|
| 67 |
+
"model.layers.5.self_attn.attn.impl.batch2block_matmul",
|
| 68 |
+
"model.layers.5.self_attn.attn.impl.block2batch_matmul",
|
| 69 |
+
"model.layers.5.self_attn.attn.impl.k_cache",
|
| 70 |
+
"model.layers.5.self_attn.attn.impl.v_cache",
|
| 71 |
+
"model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 72 |
+
"model.layers.5.mlp.gate_up_proj",
|
| 73 |
+
"model.layers.5.mlp.down_proj",
|
| 74 |
+
"model.layers.6.self_attn.qkv_proj",
|
| 75 |
+
"model.layers.6.self_attn.o_proj",
|
| 76 |
+
"model.layers.6.self_attn.attn.impl.matmul_qk",
|
| 77 |
+
"model.layers.6.self_attn.attn.impl.softmax",
|
| 78 |
+
"model.layers.6.self_attn.attn.impl.matmul_av",
|
| 79 |
+
"model.layers.6.self_attn.attn.impl.batch2block_matmul",
|
| 80 |
+
"model.layers.6.self_attn.attn.impl.block2batch_matmul",
|
| 81 |
+
"model.layers.6.self_attn.attn.impl.k_cache",
|
| 82 |
+
"model.layers.6.self_attn.attn.impl.v_cache",
|
| 83 |
+
"model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 84 |
+
"model.layers.6.mlp.gate_up_proj",
|
| 85 |
+
"model.layers.6.mlp.down_proj",
|
| 86 |
+
"model.layers.7.self_attn.qkv_proj",
|
| 87 |
+
"model.layers.7.self_attn.o_proj",
|
| 88 |
+
"model.layers.7.self_attn.attn.impl.matmul_qk",
|
| 89 |
+
"model.layers.7.self_attn.attn.impl.softmax",
|
| 90 |
+
"model.layers.7.self_attn.attn.impl.matmul_av",
|
| 91 |
+
"model.layers.7.self_attn.attn.impl.batch2block_matmul",
|
| 92 |
+
"model.layers.7.self_attn.attn.impl.block2batch_matmul",
|
| 93 |
+
"model.layers.7.self_attn.attn.impl.k_cache",
|
| 94 |
+
"model.layers.7.self_attn.attn.impl.v_cache",
|
| 95 |
+
"model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 96 |
+
"model.layers.7.mlp.gate_up_proj",
|
| 97 |
+
"model.layers.7.mlp.down_proj",
|
| 98 |
+
"model.layers.8.self_attn.qkv_proj",
|
| 99 |
+
"model.layers.8.self_attn.o_proj",
|
| 100 |
+
"model.layers.8.self_attn.attn.impl.matmul_qk",
|
| 101 |
+
"model.layers.8.self_attn.attn.impl.softmax",
|
| 102 |
+
"model.layers.8.self_attn.attn.impl.matmul_av",
|
| 103 |
+
"model.layers.8.self_attn.attn.impl.batch2block_matmul",
|
| 104 |
+
"model.layers.8.self_attn.attn.impl.block2batch_matmul",
|
| 105 |
+
"model.layers.8.self_attn.attn.impl.k_cache",
|
| 106 |
+
"model.layers.8.self_attn.attn.impl.v_cache",
|
| 107 |
+
"model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 108 |
+
"model.layers.8.mlp.gate_up_proj",
|
| 109 |
+
"model.layers.8.mlp.down_proj",
|
| 110 |
+
"model.layers.9.self_attn.qkv_proj",
|
| 111 |
+
"model.layers.9.self_attn.o_proj",
|
| 112 |
+
"model.layers.9.self_attn.attn.impl.matmul_qk",
|
| 113 |
+
"model.layers.9.self_attn.attn.impl.softmax",
|
| 114 |
+
"model.layers.9.self_attn.attn.impl.matmul_av",
|
| 115 |
+
"model.layers.9.self_attn.attn.impl.batch2block_matmul",
|
| 116 |
+
"model.layers.9.self_attn.attn.impl.block2batch_matmul",
|
| 117 |
+
"model.layers.9.self_attn.attn.impl.k_cache",
|
| 118 |
+
"model.layers.9.self_attn.attn.impl.v_cache",
|
| 119 |
+
"model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 120 |
+
"model.layers.9.mlp.gate_up_proj",
|
| 121 |
+
"model.layers.9.mlp.down_proj",
|
| 122 |
+
"model.layers.10.self_attn.qkv_proj",
|
| 123 |
+
"model.layers.10.self_attn.o_proj",
|
| 124 |
+
"model.layers.10.self_attn.attn.impl.matmul_qk",
|
| 125 |
+
"model.layers.10.self_attn.attn.impl.softmax",
|
| 126 |
+
"model.layers.10.self_attn.attn.impl.matmul_av",
|
| 127 |
+
"model.layers.10.self_attn.attn.impl.batch2block_matmul",
|
| 128 |
+
"model.layers.10.self_attn.attn.impl.block2batch_matmul",
|
| 129 |
+
"model.layers.10.self_attn.attn.impl.k_cache",
|
| 130 |
+
"model.layers.10.self_attn.attn.impl.v_cache",
|
| 131 |
+
"model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 132 |
+
"model.layers.10.mlp.gate_up_proj",
|
| 133 |
+
"model.layers.10.mlp.down_proj",
|
| 134 |
+
"model.layers.11.self_attn.qkv_proj",
|
| 135 |
+
"model.layers.11.self_attn.o_proj",
|
| 136 |
+
"model.layers.11.self_attn.attn.impl.matmul_qk",
|
| 137 |
+
"model.layers.11.self_attn.attn.impl.softmax",
|
| 138 |
+
"model.layers.11.self_attn.attn.impl.matmul_av",
|
| 139 |
+
"model.layers.11.self_attn.attn.impl.batch2block_matmul",
|
| 140 |
+
"model.layers.11.self_attn.attn.impl.block2batch_matmul",
|
| 141 |
+
"model.layers.11.self_attn.attn.impl.k_cache",
|
| 142 |
+
"model.layers.11.self_attn.attn.impl.v_cache",
|
| 143 |
+
"model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 144 |
+
"model.layers.11.mlp.gate_up_proj",
|
| 145 |
+
"model.layers.11.mlp.down_proj",
|
| 146 |
+
"model.layers.12.self_attn.qkv_proj",
|
| 147 |
+
"model.layers.12.self_attn.o_proj",
|
| 148 |
+
"model.layers.12.self_attn.attn.impl.matmul_qk",
|
| 149 |
+
"model.layers.12.self_attn.attn.impl.softmax",
|
| 150 |
+
"model.layers.12.self_attn.attn.impl.matmul_av",
|
| 151 |
+
"model.layers.12.self_attn.attn.impl.batch2block_matmul",
|
| 152 |
+
"model.layers.12.self_attn.attn.impl.block2batch_matmul",
|
| 153 |
+
"model.layers.12.self_attn.attn.impl.k_cache",
|
| 154 |
+
"model.layers.12.self_attn.attn.impl.v_cache",
|
| 155 |
+
"model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 156 |
+
"model.layers.12.mlp.gate_up_proj",
|
| 157 |
+
"model.layers.12.mlp.down_proj",
|
| 158 |
+
"model.layers.13.self_attn.qkv_proj",
|
| 159 |
+
"model.layers.13.self_attn.o_proj",
|
| 160 |
+
"model.layers.13.self_attn.attn.impl.matmul_qk",
|
| 161 |
+
"model.layers.13.self_attn.attn.impl.softmax",
|
| 162 |
+
"model.layers.13.self_attn.attn.impl.matmul_av",
|
| 163 |
+
"model.layers.13.self_attn.attn.impl.batch2block_matmul",
|
| 164 |
+
"model.layers.13.self_attn.attn.impl.block2batch_matmul",
|
| 165 |
+
"model.layers.13.self_attn.attn.impl.k_cache",
|
| 166 |
+
"model.layers.13.self_attn.attn.impl.v_cache",
|
| 167 |
+
"model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 168 |
+
"model.layers.13.mlp.gate_up_proj",
|
| 169 |
+
"model.layers.13.mlp.down_proj",
|
| 170 |
+
"model.layers.14.self_attn.qkv_proj",
|
| 171 |
+
"model.layers.14.self_attn.o_proj",
|
| 172 |
+
"model.layers.14.self_attn.attn.impl.matmul_qk",
|
| 173 |
+
"model.layers.14.self_attn.attn.impl.softmax",
|
| 174 |
+
"model.layers.14.self_attn.attn.impl.matmul_av",
|
| 175 |
+
"model.layers.14.self_attn.attn.impl.batch2block_matmul",
|
| 176 |
+
"model.layers.14.self_attn.attn.impl.block2batch_matmul",
|
| 177 |
+
"model.layers.14.self_attn.attn.impl.k_cache",
|
| 178 |
+
"model.layers.14.self_attn.attn.impl.v_cache",
|
| 179 |
+
"model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 180 |
+
"model.layers.14.mlp.gate_up_proj",
|
| 181 |
+
"model.layers.14.mlp.down_proj",
|
| 182 |
+
"model.layers.15.self_attn.qkv_proj",
|
| 183 |
+
"model.layers.15.self_attn.o_proj",
|
| 184 |
+
"model.layers.15.self_attn.attn.impl.matmul_qk",
|
| 185 |
+
"model.layers.15.self_attn.attn.impl.softmax",
|
| 186 |
+
"model.layers.15.self_attn.attn.impl.matmul_av",
|
| 187 |
+
"model.layers.15.self_attn.attn.impl.batch2block_matmul",
|
| 188 |
+
"model.layers.15.self_attn.attn.impl.block2batch_matmul",
|
| 189 |
+
"model.layers.15.self_attn.attn.impl.k_cache",
|
| 190 |
+
"model.layers.15.self_attn.attn.impl.v_cache",
|
| 191 |
+
"model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 192 |
+
"model.layers.15.mlp.gate_up_proj",
|
| 193 |
+
"model.layers.15.mlp.down_proj",
|
| 194 |
+
"model.layers.16.self_attn.qkv_proj",
|
| 195 |
+
"model.layers.16.self_attn.o_proj",
|
| 196 |
+
"model.layers.16.self_attn.attn.impl.matmul_qk",
|
| 197 |
+
"model.layers.16.self_attn.attn.impl.softmax",
|
| 198 |
+
"model.layers.16.self_attn.attn.impl.matmul_av",
|
| 199 |
+
"model.layers.16.self_attn.attn.impl.batch2block_matmul",
|
| 200 |
+
"model.layers.16.self_attn.attn.impl.block2batch_matmul",
|
| 201 |
+
"model.layers.16.self_attn.attn.impl.k_cache",
|
| 202 |
+
"model.layers.16.self_attn.attn.impl.v_cache",
|
| 203 |
+
"model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 204 |
+
"model.layers.16.mlp.gate_up_proj",
|
| 205 |
+
"model.layers.16.mlp.down_proj",
|
| 206 |
+
"model.layers.17.self_attn.qkv_proj",
|
| 207 |
+
"model.layers.17.self_attn.o_proj",
|
| 208 |
+
"model.layers.17.self_attn.attn.impl.matmul_qk",
|
| 209 |
+
"model.layers.17.self_attn.attn.impl.softmax",
|
| 210 |
+
"model.layers.17.self_attn.attn.impl.matmul_av",
|
| 211 |
+
"model.layers.17.self_attn.attn.impl.batch2block_matmul",
|
| 212 |
+
"model.layers.17.self_attn.attn.impl.block2batch_matmul",
|
| 213 |
+
"model.layers.17.self_attn.attn.impl.k_cache",
|
| 214 |
+
"model.layers.17.self_attn.attn.impl.v_cache",
|
| 215 |
+
"model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 216 |
+
"model.layers.17.mlp.gate_up_proj",
|
| 217 |
+
"model.layers.17.mlp.down_proj",
|
| 218 |
+
"model.layers.18.self_attn.qkv_proj",
|
| 219 |
+
"model.layers.18.self_attn.o_proj",
|
| 220 |
+
"model.layers.18.self_attn.attn.impl.matmul_qk",
|
| 221 |
+
"model.layers.18.self_attn.attn.impl.softmax",
|
| 222 |
+
"model.layers.18.self_attn.attn.impl.matmul_av",
|
| 223 |
+
"model.layers.18.self_attn.attn.impl.batch2block_matmul",
|
| 224 |
+
"model.layers.18.self_attn.attn.impl.block2batch_matmul",
|
| 225 |
+
"model.layers.18.self_attn.attn.impl.k_cache",
|
| 226 |
+
"model.layers.18.self_attn.attn.impl.v_cache",
|
| 227 |
+
"model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 228 |
+
"model.layers.18.mlp.gate_up_proj",
|
| 229 |
+
"model.layers.18.mlp.down_proj",
|
| 230 |
+
"model.layers.19.self_attn.qkv_proj",
|
| 231 |
+
"model.layers.19.self_attn.o_proj",
|
| 232 |
+
"model.layers.19.self_attn.attn.impl.matmul_qk",
|
| 233 |
+
"model.layers.19.self_attn.attn.impl.softmax",
|
| 234 |
+
"model.layers.19.self_attn.attn.impl.matmul_av",
|
| 235 |
+
"model.layers.19.self_attn.attn.impl.batch2block_matmul",
|
| 236 |
+
"model.layers.19.self_attn.attn.impl.block2batch_matmul",
|
| 237 |
+
"model.layers.19.self_attn.attn.impl.k_cache",
|
| 238 |
+
"model.layers.19.self_attn.attn.impl.v_cache",
|
| 239 |
+
"model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 240 |
+
"model.layers.19.mlp.gate_up_proj",
|
| 241 |
+
"model.layers.19.mlp.down_proj",
|
| 242 |
+
"model.layers.20.self_attn.qkv_proj",
|
| 243 |
+
"model.layers.20.self_attn.o_proj",
|
| 244 |
+
"model.layers.20.self_attn.attn.impl.matmul_qk",
|
| 245 |
+
"model.layers.20.self_attn.attn.impl.softmax",
|
| 246 |
+
"model.layers.20.self_attn.attn.impl.matmul_av",
|
| 247 |
+
"model.layers.20.self_attn.attn.impl.batch2block_matmul",
|
| 248 |
+
"model.layers.20.self_attn.attn.impl.block2batch_matmul",
|
| 249 |
+
"model.layers.20.self_attn.attn.impl.k_cache",
|
| 250 |
+
"model.layers.20.self_attn.attn.impl.v_cache",
|
| 251 |
+
"model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 252 |
+
"model.layers.20.mlp.gate_up_proj",
|
| 253 |
+
"model.layers.20.mlp.down_proj",
|
| 254 |
+
"model.layers.21.self_attn.qkv_proj",
|
| 255 |
+
"model.layers.21.self_attn.o_proj",
|
| 256 |
+
"model.layers.21.self_attn.attn.impl.matmul_qk",
|
| 257 |
+
"model.layers.21.self_attn.attn.impl.softmax",
|
| 258 |
+
"model.layers.21.self_attn.attn.impl.matmul_av",
|
| 259 |
+
"model.layers.21.self_attn.attn.impl.batch2block_matmul",
|
| 260 |
+
"model.layers.21.self_attn.attn.impl.block2batch_matmul",
|
| 261 |
+
"model.layers.21.self_attn.attn.impl.k_cache",
|
| 262 |
+
"model.layers.21.self_attn.attn.impl.v_cache",
|
| 263 |
+
"model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 264 |
+
"model.layers.21.mlp.gate_up_proj",
|
| 265 |
+
"model.layers.21.mlp.down_proj",
|
| 266 |
+
"model.layers.22.self_attn.qkv_proj",
|
| 267 |
+
"model.layers.22.self_attn.o_proj",
|
| 268 |
+
"model.layers.22.self_attn.attn.impl.matmul_qk",
|
| 269 |
+
"model.layers.22.self_attn.attn.impl.softmax",
|
| 270 |
+
"model.layers.22.self_attn.attn.impl.matmul_av",
|
| 271 |
+
"model.layers.22.self_attn.attn.impl.batch2block_matmul",
|
| 272 |
+
"model.layers.22.self_attn.attn.impl.block2batch_matmul",
|
| 273 |
+
"model.layers.22.self_attn.attn.impl.k_cache",
|
| 274 |
+
"model.layers.22.self_attn.attn.impl.v_cache",
|
| 275 |
+
"model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 276 |
+
"model.layers.22.mlp.gate_up_proj",
|
| 277 |
+
"model.layers.22.mlp.down_proj",
|
| 278 |
+
"model.layers.23.self_attn.qkv_proj",
|
| 279 |
+
"model.layers.23.self_attn.o_proj",
|
| 280 |
+
"model.layers.23.self_attn.attn.impl.matmul_qk",
|
| 281 |
+
"model.layers.23.self_attn.attn.impl.softmax",
|
| 282 |
+
"model.layers.23.self_attn.attn.impl.matmul_av",
|
| 283 |
+
"model.layers.23.self_attn.attn.impl.batch2block_matmul",
|
| 284 |
+
"model.layers.23.self_attn.attn.impl.block2batch_matmul",
|
| 285 |
+
"model.layers.23.self_attn.attn.impl.k_cache",
|
| 286 |
+
"model.layers.23.self_attn.attn.impl.v_cache",
|
| 287 |
+
"model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 288 |
+
"model.layers.23.mlp.gate_up_proj",
|
| 289 |
+
"model.layers.23.mlp.down_proj",
|
| 290 |
+
"model.layers.24.self_attn.qkv_proj",
|
| 291 |
+
"model.layers.24.self_attn.o_proj",
|
| 292 |
+
"model.layers.24.self_attn.attn.impl.matmul_qk",
|
| 293 |
+
"model.layers.24.self_attn.attn.impl.softmax",
|
| 294 |
+
"model.layers.24.self_attn.attn.impl.matmul_av",
|
| 295 |
+
"model.layers.24.self_attn.attn.impl.batch2block_matmul",
|
| 296 |
+
"model.layers.24.self_attn.attn.impl.block2batch_matmul",
|
| 297 |
+
"model.layers.24.self_attn.attn.impl.k_cache",
|
| 298 |
+
"model.layers.24.self_attn.attn.impl.v_cache",
|
| 299 |
+
"model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 300 |
+
"model.layers.24.mlp.gate_up_proj",
|
| 301 |
+
"model.layers.24.mlp.down_proj",
|
| 302 |
+
"model.layers.25.self_attn.qkv_proj",
|
| 303 |
+
"model.layers.25.self_attn.o_proj",
|
| 304 |
+
"model.layers.25.self_attn.attn.impl.matmul_qk",
|
| 305 |
+
"model.layers.25.self_attn.attn.impl.softmax",
|
| 306 |
+
"model.layers.25.self_attn.attn.impl.matmul_av",
|
| 307 |
+
"model.layers.25.self_attn.attn.impl.batch2block_matmul",
|
| 308 |
+
"model.layers.25.self_attn.attn.impl.block2batch_matmul",
|
| 309 |
+
"model.layers.25.self_attn.attn.impl.k_cache",
|
| 310 |
+
"model.layers.25.self_attn.attn.impl.v_cache",
|
| 311 |
+
"model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 312 |
+
"model.layers.25.mlp.gate_up_proj",
|
| 313 |
+
"model.layers.25.mlp.down_proj",
|
| 314 |
+
"model.layers.26.self_attn.qkv_proj",
|
| 315 |
+
"model.layers.26.self_attn.o_proj",
|
| 316 |
+
"model.layers.26.self_attn.attn.impl.matmul_qk",
|
| 317 |
+
"model.layers.26.self_attn.attn.impl.softmax",
|
| 318 |
+
"model.layers.26.self_attn.attn.impl.matmul_av",
|
| 319 |
+
"model.layers.26.self_attn.attn.impl.batch2block_matmul",
|
| 320 |
+
"model.layers.26.self_attn.attn.impl.block2batch_matmul",
|
| 321 |
+
"model.layers.26.self_attn.attn.impl.k_cache",
|
| 322 |
+
"model.layers.26.self_attn.attn.impl.v_cache",
|
| 323 |
+
"model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 324 |
+
"model.layers.26.mlp.gate_up_proj",
|
| 325 |
+
"model.layers.26.mlp.down_proj",
|
| 326 |
+
"model.layers.27.self_attn.qkv_proj",
|
| 327 |
+
"model.layers.27.self_attn.o_proj",
|
| 328 |
+
"model.layers.27.self_attn.attn.impl.matmul_qk",
|
| 329 |
+
"model.layers.27.self_attn.attn.impl.softmax",
|
| 330 |
+
"model.layers.27.self_attn.attn.impl.matmul_av",
|
| 331 |
+
"model.layers.27.self_attn.attn.impl.batch2block_matmul",
|
| 332 |
+
"model.layers.27.self_attn.attn.impl.block2batch_matmul",
|
| 333 |
+
"model.layers.27.self_attn.attn.impl.k_cache",
|
| 334 |
+
"model.layers.27.self_attn.attn.impl.v_cache",
|
| 335 |
+
"model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 336 |
+
"model.layers.27.mlp.gate_up_proj",
|
| 337 |
+
"model.layers.27.mlp.down_proj",
|
| 338 |
+
"model.layers.28.self_attn.qkv_proj",
|
| 339 |
+
"model.layers.28.self_attn.o_proj",
|
| 340 |
+
"model.layers.28.self_attn.attn.impl.matmul_qk",
|
| 341 |
+
"model.layers.28.self_attn.attn.impl.softmax",
|
| 342 |
+
"model.layers.28.self_attn.attn.impl.matmul_av",
|
| 343 |
+
"model.layers.28.self_attn.attn.impl.batch2block_matmul",
|
| 344 |
+
"model.layers.28.self_attn.attn.impl.block2batch_matmul",
|
| 345 |
+
"model.layers.28.self_attn.attn.impl.k_cache",
|
| 346 |
+
"model.layers.28.self_attn.attn.impl.v_cache",
|
| 347 |
+
"model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 348 |
+
"model.layers.28.mlp.gate_up_proj",
|
| 349 |
+
"model.layers.28.mlp.down_proj",
|
| 350 |
+
"model.layers.29.self_attn.qkv_proj",
|
| 351 |
+
"model.layers.29.self_attn.o_proj",
|
| 352 |
+
"model.layers.29.self_attn.attn.impl.matmul_qk",
|
| 353 |
+
"model.layers.29.self_attn.attn.impl.softmax",
|
| 354 |
+
"model.layers.29.self_attn.attn.impl.matmul_av",
|
| 355 |
+
"model.layers.29.self_attn.attn.impl.batch2block_matmul",
|
| 356 |
+
"model.layers.29.self_attn.attn.impl.block2batch_matmul",
|
| 357 |
+
"model.layers.29.self_attn.attn.impl.k_cache",
|
| 358 |
+
"model.layers.29.self_attn.attn.impl.v_cache",
|
| 359 |
+
"model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 360 |
+
"model.layers.29.mlp.gate_up_proj",
|
| 361 |
+
"model.layers.29.mlp.down_proj",
|
| 362 |
+
"model.layers.30.self_attn.qkv_proj",
|
| 363 |
+
"model.layers.30.self_attn.o_proj",
|
| 364 |
+
"model.layers.30.self_attn.attn.impl.matmul_qk",
|
| 365 |
+
"model.layers.30.self_attn.attn.impl.softmax",
|
| 366 |
+
"model.layers.30.self_attn.attn.impl.matmul_av",
|
| 367 |
+
"model.layers.30.self_attn.attn.impl.batch2block_matmul",
|
| 368 |
+
"model.layers.30.self_attn.attn.impl.block2batch_matmul",
|
| 369 |
+
"model.layers.30.self_attn.attn.impl.k_cache",
|
| 370 |
+
"model.layers.30.self_attn.attn.impl.v_cache",
|
| 371 |
+
"model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 372 |
+
"model.layers.30.mlp.gate_up_proj",
|
| 373 |
+
"model.layers.30.mlp.down_proj",
|
| 374 |
+
"model.layers.31.self_attn.qkv_proj",
|
| 375 |
+
"model.layers.31.self_attn.o_proj",
|
| 376 |
+
"model.layers.31.self_attn.attn.impl.matmul_qk",
|
| 377 |
+
"model.layers.31.self_attn.attn.impl.softmax",
|
| 378 |
+
"model.layers.31.self_attn.attn.impl.matmul_av",
|
| 379 |
+
"model.layers.31.self_attn.attn.impl.batch2block_matmul",
|
| 380 |
+
"model.layers.31.self_attn.attn.impl.block2batch_matmul",
|
| 381 |
+
"model.layers.31.self_attn.attn.impl.k_cache",
|
| 382 |
+
"model.layers.31.self_attn.attn.impl.v_cache",
|
| 383 |
+
"model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 384 |
+
"model.layers.31.mlp.gate_up_proj",
|
| 385 |
+
"model.layers.31.mlp.down_proj",
|
| 386 |
+
"model.layers.32.self_attn.qkv_proj",
|
| 387 |
+
"model.layers.32.self_attn.o_proj",
|
| 388 |
+
"model.layers.32.self_attn.attn.impl.matmul_qk",
|
| 389 |
+
"model.layers.32.self_attn.attn.impl.softmax",
|
| 390 |
+
"model.layers.32.self_attn.attn.impl.matmul_av",
|
| 391 |
+
"model.layers.32.self_attn.attn.impl.batch2block_matmul",
|
| 392 |
+
"model.layers.32.self_attn.attn.impl.block2batch_matmul",
|
| 393 |
+
"model.layers.32.self_attn.attn.impl.k_cache",
|
| 394 |
+
"model.layers.32.self_attn.attn.impl.v_cache",
|
| 395 |
+
"model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 396 |
+
"model.layers.32.mlp.gate_up_proj",
|
| 397 |
+
"model.layers.32.mlp.down_proj",
|
| 398 |
+
"model.layers.33.self_attn.qkv_proj",
|
| 399 |
+
"model.layers.33.self_attn.o_proj",
|
| 400 |
+
"model.layers.33.self_attn.attn.impl.matmul_qk",
|
| 401 |
+
"model.layers.33.self_attn.attn.impl.softmax",
|
| 402 |
+
"model.layers.33.self_attn.attn.impl.matmul_av",
|
| 403 |
+
"model.layers.33.self_attn.attn.impl.batch2block_matmul",
|
| 404 |
+
"model.layers.33.self_attn.attn.impl.block2batch_matmul",
|
| 405 |
+
"model.layers.33.self_attn.attn.impl.k_cache",
|
| 406 |
+
"model.layers.33.self_attn.attn.impl.v_cache",
|
| 407 |
+
"model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 408 |
+
"model.layers.33.mlp.gate_up_proj",
|
| 409 |
+
"model.layers.33.mlp.down_proj",
|
| 410 |
+
"model.layers.34.self_attn.qkv_proj",
|
| 411 |
+
"model.layers.34.self_attn.o_proj",
|
| 412 |
+
"model.layers.34.self_attn.attn.impl.matmul_qk",
|
| 413 |
+
"model.layers.34.self_attn.attn.impl.softmax",
|
| 414 |
+
"model.layers.34.self_attn.attn.impl.matmul_av",
|
| 415 |
+
"model.layers.34.self_attn.attn.impl.batch2block_matmul",
|
| 416 |
+
"model.layers.34.self_attn.attn.impl.block2batch_matmul",
|
| 417 |
+
"model.layers.34.self_attn.attn.impl.k_cache",
|
| 418 |
+
"model.layers.34.self_attn.attn.impl.v_cache",
|
| 419 |
+
"model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 420 |
+
"model.layers.34.mlp.gate_up_proj",
|
| 421 |
+
"model.layers.34.mlp.down_proj",
|
| 422 |
+
"model.layers.35.self_attn.qkv_proj",
|
| 423 |
+
"model.layers.35.self_attn.o_proj",
|
| 424 |
+
"model.layers.35.self_attn.attn.impl.matmul_qk",
|
| 425 |
+
"model.layers.35.self_attn.attn.impl.softmax",
|
| 426 |
+
"model.layers.35.self_attn.attn.impl.matmul_av",
|
| 427 |
+
"model.layers.35.self_attn.attn.impl.batch2block_matmul",
|
| 428 |
+
"model.layers.35.self_attn.attn.impl.block2batch_matmul",
|
| 429 |
+
"model.layers.35.self_attn.attn.impl.k_cache",
|
| 430 |
+
"model.layers.35.self_attn.attn.impl.v_cache",
|
| 431 |
+
"model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 432 |
+
"model.layers.35.mlp.gate_up_proj",
|
| 433 |
+
"model.layers.35.mlp.down_proj",
|
| 434 |
+
"model.layers.36.self_attn.qkv_proj",
|
| 435 |
+
"model.layers.36.self_attn.o_proj",
|
| 436 |
+
"model.layers.36.self_attn.attn.impl.matmul_qk",
|
| 437 |
+
"model.layers.36.self_attn.attn.impl.softmax",
|
| 438 |
+
"model.layers.36.self_attn.attn.impl.matmul_av",
|
| 439 |
+
"model.layers.36.self_attn.attn.impl.batch2block_matmul",
|
| 440 |
+
"model.layers.36.self_attn.attn.impl.block2batch_matmul",
|
| 441 |
+
"model.layers.36.self_attn.attn.impl.k_cache",
|
| 442 |
+
"model.layers.36.self_attn.attn.impl.v_cache",
|
| 443 |
+
"model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 444 |
+
"model.layers.36.mlp.gate_up_proj",
|
| 445 |
+
"model.layers.36.mlp.down_proj",
|
| 446 |
+
"model.layers.37.self_attn.qkv_proj",
|
| 447 |
+
"model.layers.37.self_attn.o_proj",
|
| 448 |
+
"model.layers.37.self_attn.attn.impl.matmul_qk",
|
| 449 |
+
"model.layers.37.self_attn.attn.impl.softmax",
|
| 450 |
+
"model.layers.37.self_attn.attn.impl.matmul_av",
|
| 451 |
+
"model.layers.37.self_attn.attn.impl.batch2block_matmul",
|
| 452 |
+
"model.layers.37.self_attn.attn.impl.block2batch_matmul",
|
| 453 |
+
"model.layers.37.self_attn.attn.impl.k_cache",
|
| 454 |
+
"model.layers.37.self_attn.attn.impl.v_cache",
|
| 455 |
+
"model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 456 |
+
"model.layers.37.mlp.gate_up_proj",
|
| 457 |
+
"model.layers.37.mlp.down_proj",
|
| 458 |
+
"model.layers.38.self_attn.qkv_proj",
|
| 459 |
+
"model.layers.38.self_attn.o_proj",
|
| 460 |
+
"model.layers.38.self_attn.attn.impl.matmul_qk",
|
| 461 |
+
"model.layers.38.self_attn.attn.impl.softmax",
|
| 462 |
+
"model.layers.38.self_attn.attn.impl.matmul_av",
|
| 463 |
+
"model.layers.38.self_attn.attn.impl.batch2block_matmul",
|
| 464 |
+
"model.layers.38.self_attn.attn.impl.block2batch_matmul",
|
| 465 |
+
"model.layers.38.self_attn.attn.impl.k_cache",
|
| 466 |
+
"model.layers.38.self_attn.attn.impl.v_cache",
|
| 467 |
+
"model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 468 |
+
"model.layers.38.mlp.gate_up_proj",
|
| 469 |
+
"model.layers.38.mlp.down_proj",
|
| 470 |
+
"model.layers.39.self_attn.qkv_proj",
|
| 471 |
+
"model.layers.39.self_attn.o_proj",
|
| 472 |
+
"model.layers.39.self_attn.attn.impl.matmul_qk",
|
| 473 |
+
"model.layers.39.self_attn.attn.impl.softmax",
|
| 474 |
+
"model.layers.39.self_attn.attn.impl.matmul_av",
|
| 475 |
+
"model.layers.39.self_attn.attn.impl.batch2block_matmul",
|
| 476 |
+
"model.layers.39.self_attn.attn.impl.block2batch_matmul",
|
| 477 |
+
"model.layers.39.self_attn.attn.impl.k_cache",
|
| 478 |
+
"model.layers.39.self_attn.attn.impl.v_cache",
|
| 479 |
+
"model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 480 |
+
"model.layers.39.mlp.gate_up_proj",
|
| 481 |
+
"model.layers.39.mlp.down_proj",
|
| 482 |
+
"model.layers.40.self_attn.qkv_proj",
|
| 483 |
+
"model.layers.40.self_attn.o_proj",
|
| 484 |
+
"model.layers.40.self_attn.attn.impl.matmul_qk",
|
| 485 |
+
"model.layers.40.self_attn.attn.impl.softmax",
|
| 486 |
+
"model.layers.40.self_attn.attn.impl.matmul_av",
|
| 487 |
+
"model.layers.40.self_attn.attn.impl.batch2block_matmul",
|
| 488 |
+
"model.layers.40.self_attn.attn.impl.block2batch_matmul",
|
| 489 |
+
"model.layers.40.self_attn.attn.impl.k_cache",
|
| 490 |
+
"model.layers.40.self_attn.attn.impl.v_cache",
|
| 491 |
+
"model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 492 |
+
"model.layers.40.mlp.gate_up_proj",
|
| 493 |
+
"model.layers.40.mlp.down_proj",
|
| 494 |
+
"model.layers.41.self_attn.qkv_proj",
|
| 495 |
+
"model.layers.41.self_attn.o_proj",
|
| 496 |
+
"model.layers.41.self_attn.attn.impl.matmul_qk",
|
| 497 |
+
"model.layers.41.self_attn.attn.impl.softmax",
|
| 498 |
+
"model.layers.41.self_attn.attn.impl.matmul_av",
|
| 499 |
+
"model.layers.41.self_attn.attn.impl.batch2block_matmul",
|
| 500 |
+
"model.layers.41.self_attn.attn.impl.block2batch_matmul",
|
| 501 |
+
"model.layers.41.self_attn.attn.impl.k_cache",
|
| 502 |
+
"model.layers.41.self_attn.attn.impl.v_cache",
|
| 503 |
+
"model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 504 |
+
"model.layers.41.mlp.gate_up_proj",
|
| 505 |
+
"model.layers.41.mlp.down_proj",
|
| 506 |
+
"model.layers.42.self_attn.qkv_proj",
|
| 507 |
+
"model.layers.42.self_attn.o_proj",
|
| 508 |
+
"model.layers.42.self_attn.attn.impl.matmul_qk",
|
| 509 |
+
"model.layers.42.self_attn.attn.impl.softmax",
|
| 510 |
+
"model.layers.42.self_attn.attn.impl.matmul_av",
|
| 511 |
+
"model.layers.42.self_attn.attn.impl.batch2block_matmul",
|
| 512 |
+
"model.layers.42.self_attn.attn.impl.block2batch_matmul",
|
| 513 |
+
"model.layers.42.self_attn.attn.impl.k_cache",
|
| 514 |
+
"model.layers.42.self_attn.attn.impl.v_cache",
|
| 515 |
+
"model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 516 |
+
"model.layers.42.mlp.gate_up_proj",
|
| 517 |
+
"model.layers.42.mlp.down_proj",
|
| 518 |
+
"model.layers.43.self_attn.qkv_proj",
|
| 519 |
+
"model.layers.43.self_attn.o_proj",
|
| 520 |
+
"model.layers.43.self_attn.attn.impl.matmul_qk",
|
| 521 |
+
"model.layers.43.self_attn.attn.impl.softmax",
|
| 522 |
+
"model.layers.43.self_attn.attn.impl.matmul_av",
|
| 523 |
+
"model.layers.43.self_attn.attn.impl.batch2block_matmul",
|
| 524 |
+
"model.layers.43.self_attn.attn.impl.block2batch_matmul",
|
| 525 |
+
"model.layers.43.self_attn.attn.impl.k_cache",
|
| 526 |
+
"model.layers.43.self_attn.attn.impl.v_cache",
|
| 527 |
+
"model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 528 |
+
"model.layers.43.mlp.gate_up_proj",
|
| 529 |
+
"model.layers.43.mlp.down_proj",
|
| 530 |
+
"model.layers.44.self_attn.qkv_proj",
|
| 531 |
+
"model.layers.44.self_attn.o_proj",
|
| 532 |
+
"model.layers.44.self_attn.attn.impl.matmul_qk",
|
| 533 |
+
"model.layers.44.self_attn.attn.impl.softmax",
|
| 534 |
+
"model.layers.44.self_attn.attn.impl.matmul_av",
|
| 535 |
+
"model.layers.44.self_attn.attn.impl.batch2block_matmul",
|
| 536 |
+
"model.layers.44.self_attn.attn.impl.block2batch_matmul",
|
| 537 |
+
"model.layers.44.self_attn.attn.impl.k_cache",
|
| 538 |
+
"model.layers.44.self_attn.attn.impl.v_cache",
|
| 539 |
+
"model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 540 |
+
"model.layers.44.mlp.gate_up_proj",
|
| 541 |
+
"model.layers.44.mlp.down_proj",
|
| 542 |
+
"model.layers.45.self_attn.qkv_proj",
|
| 543 |
+
"model.layers.45.self_attn.o_proj",
|
| 544 |
+
"model.layers.45.self_attn.attn.impl.matmul_qk",
|
| 545 |
+
"model.layers.45.self_attn.attn.impl.softmax",
|
| 546 |
+
"model.layers.45.self_attn.attn.impl.matmul_av",
|
| 547 |
+
"model.layers.45.self_attn.attn.impl.batch2block_matmul",
|
| 548 |
+
"model.layers.45.self_attn.attn.impl.block2batch_matmul",
|
| 549 |
+
"model.layers.45.self_attn.attn.impl.k_cache",
|
| 550 |
+
"model.layers.45.self_attn.attn.impl.v_cache",
|
| 551 |
+
"model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 552 |
+
"model.layers.45.mlp.gate_up_proj",
|
| 553 |
+
"model.layers.45.mlp.down_proj",
|
| 554 |
+
"model.layers.46.self_attn.qkv_proj",
|
| 555 |
+
"model.layers.46.self_attn.o_proj",
|
| 556 |
+
"model.layers.46.self_attn.attn.impl.matmul_qk",
|
| 557 |
+
"model.layers.46.self_attn.attn.impl.softmax",
|
| 558 |
+
"model.layers.46.self_attn.attn.impl.matmul_av",
|
| 559 |
+
"model.layers.46.self_attn.attn.impl.batch2block_matmul",
|
| 560 |
+
"model.layers.46.self_attn.attn.impl.block2batch_matmul",
|
| 561 |
+
"model.layers.46.self_attn.attn.impl.k_cache",
|
| 562 |
+
"model.layers.46.self_attn.attn.impl.v_cache",
|
| 563 |
+
"model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 564 |
+
"model.layers.46.mlp.gate_up_proj",
|
| 565 |
+
"model.layers.46.mlp.down_proj",
|
| 566 |
+
"model.layers.47.self_attn.qkv_proj",
|
| 567 |
+
"model.layers.47.self_attn.o_proj",
|
| 568 |
+
"model.layers.47.self_attn.attn.impl.matmul_qk",
|
| 569 |
+
"model.layers.47.self_attn.attn.impl.softmax",
|
| 570 |
+
"model.layers.47.self_attn.attn.impl.matmul_av",
|
| 571 |
+
"model.layers.47.self_attn.attn.impl.batch2block_matmul",
|
| 572 |
+
"model.layers.47.self_attn.attn.impl.block2batch_matmul",
|
| 573 |
+
"model.layers.47.self_attn.attn.impl.k_cache",
|
| 574 |
+
"model.layers.47.self_attn.attn.impl.v_cache",
|
| 575 |
+
"model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 576 |
+
"model.layers.47.mlp.gate_up_proj",
|
| 577 |
+
"model.layers.47.mlp.down_proj",
|
| 578 |
+
"model.layers.48.self_attn.qkv_proj",
|
| 579 |
+
"model.layers.48.self_attn.o_proj",
|
| 580 |
+
"model.layers.48.self_attn.attn.impl.matmul_qk",
|
| 581 |
+
"model.layers.48.self_attn.attn.impl.softmax",
|
| 582 |
+
"model.layers.48.self_attn.attn.impl.matmul_av",
|
| 583 |
+
"model.layers.48.self_attn.attn.impl.batch2block_matmul",
|
| 584 |
+
"model.layers.48.self_attn.attn.impl.block2batch_matmul",
|
| 585 |
+
"model.layers.48.self_attn.attn.impl.k_cache",
|
| 586 |
+
"model.layers.48.self_attn.attn.impl.v_cache",
|
| 587 |
+
"model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 588 |
+
"model.layers.48.mlp.gate_up_proj",
|
| 589 |
+
"model.layers.48.mlp.down_proj",
|
| 590 |
+
"model.layers.49.self_attn.qkv_proj",
|
| 591 |
+
"model.layers.49.self_attn.o_proj",
|
| 592 |
+
"model.layers.49.self_attn.attn.impl.matmul_qk",
|
| 593 |
+
"model.layers.49.self_attn.attn.impl.softmax",
|
| 594 |
+
"model.layers.49.self_attn.attn.impl.matmul_av",
|
| 595 |
+
"model.layers.49.self_attn.attn.impl.batch2block_matmul",
|
| 596 |
+
"model.layers.49.self_attn.attn.impl.block2batch_matmul",
|
| 597 |
+
"model.layers.49.self_attn.attn.impl.k_cache",
|
| 598 |
+
"model.layers.49.self_attn.attn.impl.v_cache",
|
| 599 |
+
"model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 600 |
+
"model.layers.49.mlp.gate_up_proj",
|
| 601 |
+
"model.layers.49.mlp.down_proj",
|
| 602 |
+
"model.layers.50.self_attn.qkv_proj",
|
| 603 |
+
"model.layers.50.self_attn.o_proj",
|
| 604 |
+
"model.layers.50.self_attn.attn.impl.matmul_qk",
|
| 605 |
+
"model.layers.50.self_attn.attn.impl.softmax",
|
| 606 |
+
"model.layers.50.self_attn.attn.impl.matmul_av",
|
| 607 |
+
"model.layers.50.self_attn.attn.impl.batch2block_matmul",
|
| 608 |
+
"model.layers.50.self_attn.attn.impl.block2batch_matmul",
|
| 609 |
+
"model.layers.50.self_attn.attn.impl.k_cache",
|
| 610 |
+
"model.layers.50.self_attn.attn.impl.v_cache",
|
| 611 |
+
"model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 612 |
+
"model.layers.50.mlp.gate_up_proj",
|
| 613 |
+
"model.layers.50.mlp.down_proj",
|
| 614 |
+
"model.layers.51.self_attn.qkv_proj",
|
| 615 |
+
"model.layers.51.self_attn.o_proj",
|
| 616 |
+
"model.layers.51.self_attn.attn.impl.matmul_qk",
|
| 617 |
+
"model.layers.51.self_attn.attn.impl.softmax",
|
| 618 |
+
"model.layers.51.self_attn.attn.impl.matmul_av",
|
| 619 |
+
"model.layers.51.self_attn.attn.impl.batch2block_matmul",
|
| 620 |
+
"model.layers.51.self_attn.attn.impl.block2batch_matmul",
|
| 621 |
+
"model.layers.51.self_attn.attn.impl.k_cache",
|
| 622 |
+
"model.layers.51.self_attn.attn.impl.v_cache",
|
| 623 |
+
"model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 624 |
+
"model.layers.51.mlp.gate_up_proj",
|
| 625 |
+
"model.layers.51.mlp.down_proj",
|
| 626 |
+
"model.layers.52.self_attn.qkv_proj",
|
| 627 |
+
"model.layers.52.self_attn.o_proj",
|
| 628 |
+
"model.layers.52.self_attn.attn.impl.matmul_qk",
|
| 629 |
+
"model.layers.52.self_attn.attn.impl.softmax",
|
| 630 |
+
"model.layers.52.self_attn.attn.impl.matmul_av",
|
| 631 |
+
"model.layers.52.self_attn.attn.impl.batch2block_matmul",
|
| 632 |
+
"model.layers.52.self_attn.attn.impl.block2batch_matmul",
|
| 633 |
+
"model.layers.52.self_attn.attn.impl.k_cache",
|
| 634 |
+
"model.layers.52.self_attn.attn.impl.v_cache",
|
| 635 |
+
"model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 636 |
+
"model.layers.52.mlp.gate_up_proj",
|
| 637 |
+
"model.layers.52.mlp.down_proj",
|
| 638 |
+
"model.layers.53.self_attn.qkv_proj",
|
| 639 |
+
"model.layers.53.self_attn.o_proj",
|
| 640 |
+
"model.layers.53.self_attn.attn.impl.matmul_qk",
|
| 641 |
+
"model.layers.53.self_attn.attn.impl.softmax",
|
| 642 |
+
"model.layers.53.self_attn.attn.impl.matmul_av",
|
| 643 |
+
"model.layers.53.self_attn.attn.impl.batch2block_matmul",
|
| 644 |
+
"model.layers.53.self_attn.attn.impl.block2batch_matmul",
|
| 645 |
+
"model.layers.53.self_attn.attn.impl.k_cache",
|
| 646 |
+
"model.layers.53.self_attn.attn.impl.v_cache",
|
| 647 |
+
"model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 648 |
+
"model.layers.53.mlp.gate_up_proj",
|
| 649 |
+
"model.layers.53.mlp.down_proj",
|
| 650 |
+
"model.layers.54.self_attn.qkv_proj",
|
| 651 |
+
"model.layers.54.self_attn.o_proj",
|
| 652 |
+
"model.layers.54.self_attn.attn.impl.matmul_qk",
|
| 653 |
+
"model.layers.54.self_attn.attn.impl.softmax",
|
| 654 |
+
"model.layers.54.self_attn.attn.impl.matmul_av",
|
| 655 |
+
"model.layers.54.self_attn.attn.impl.batch2block_matmul",
|
| 656 |
+
"model.layers.54.self_attn.attn.impl.block2batch_matmul",
|
| 657 |
+
"model.layers.54.self_attn.attn.impl.k_cache",
|
| 658 |
+
"model.layers.54.self_attn.attn.impl.v_cache",
|
| 659 |
+
"model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 660 |
+
"model.layers.54.mlp.gate_up_proj",
|
| 661 |
+
"model.layers.54.mlp.down_proj",
|
| 662 |
+
"model.layers.55.self_attn.qkv_proj",
|
| 663 |
+
"model.layers.55.self_attn.o_proj",
|
| 664 |
+
"model.layers.55.self_attn.attn.impl.matmul_qk",
|
| 665 |
+
"model.layers.55.self_attn.attn.impl.softmax",
|
| 666 |
+
"model.layers.55.self_attn.attn.impl.matmul_av",
|
| 667 |
+
"model.layers.55.self_attn.attn.impl.batch2block_matmul",
|
| 668 |
+
"model.layers.55.self_attn.attn.impl.block2batch_matmul",
|
| 669 |
+
"model.layers.55.self_attn.attn.impl.k_cache",
|
| 670 |
+
"model.layers.55.self_attn.attn.impl.v_cache",
|
| 671 |
+
"model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 672 |
+
"model.layers.55.mlp.gate_up_proj",
|
| 673 |
+
"model.layers.55.mlp.down_proj",
|
| 674 |
+
"model.layers.56.self_attn.qkv_proj",
|
| 675 |
+
"model.layers.56.self_attn.o_proj",
|
| 676 |
+
"model.layers.56.self_attn.attn.impl.matmul_qk",
|
| 677 |
+
"model.layers.56.self_attn.attn.impl.softmax",
|
| 678 |
+
"model.layers.56.self_attn.attn.impl.matmul_av",
|
| 679 |
+
"model.layers.56.self_attn.attn.impl.batch2block_matmul",
|
| 680 |
+
"model.layers.56.self_attn.attn.impl.block2batch_matmul",
|
| 681 |
+
"model.layers.56.self_attn.attn.impl.k_cache",
|
| 682 |
+
"model.layers.56.self_attn.attn.impl.v_cache",
|
| 683 |
+
"model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 684 |
+
"model.layers.56.mlp.gate_up_proj",
|
| 685 |
+
"model.layers.56.mlp.down_proj",
|
| 686 |
+
"model.layers.57.self_attn.qkv_proj",
|
| 687 |
+
"model.layers.57.self_attn.o_proj",
|
| 688 |
+
"model.layers.57.self_attn.attn.impl.matmul_qk",
|
| 689 |
+
"model.layers.57.self_attn.attn.impl.softmax",
|
| 690 |
+
"model.layers.57.self_attn.attn.impl.matmul_av",
|
| 691 |
+
"model.layers.57.self_attn.attn.impl.batch2block_matmul",
|
| 692 |
+
"model.layers.57.self_attn.attn.impl.block2batch_matmul",
|
| 693 |
+
"model.layers.57.self_attn.attn.impl.k_cache",
|
| 694 |
+
"model.layers.57.self_attn.attn.impl.v_cache",
|
| 695 |
+
"model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 696 |
+
"model.layers.57.mlp.gate_up_proj",
|
| 697 |
+
"model.layers.57.mlp.down_proj",
|
| 698 |
+
"model.layers.58.self_attn.qkv_proj",
|
| 699 |
+
"model.layers.58.self_attn.o_proj",
|
| 700 |
+
"model.layers.58.self_attn.attn.impl.matmul_qk",
|
| 701 |
+
"model.layers.58.self_attn.attn.impl.softmax",
|
| 702 |
+
"model.layers.58.self_attn.attn.impl.matmul_av",
|
| 703 |
+
"model.layers.58.self_attn.attn.impl.batch2block_matmul",
|
| 704 |
+
"model.layers.58.self_attn.attn.impl.block2batch_matmul",
|
| 705 |
+
"model.layers.58.self_attn.attn.impl.k_cache",
|
| 706 |
+
"model.layers.58.self_attn.attn.impl.v_cache",
|
| 707 |
+
"model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 708 |
+
"model.layers.58.mlp.gate_up_proj",
|
| 709 |
+
"model.layers.58.mlp.down_proj",
|
| 710 |
+
"model.layers.59.self_attn.qkv_proj",
|
| 711 |
+
"model.layers.59.self_attn.o_proj",
|
| 712 |
+
"model.layers.59.self_attn.attn.impl.matmul_qk",
|
| 713 |
+
"model.layers.59.self_attn.attn.impl.softmax",
|
| 714 |
+
"model.layers.59.self_attn.attn.impl.matmul_av",
|
| 715 |
+
"model.layers.59.self_attn.attn.impl.batch2block_matmul",
|
| 716 |
+
"model.layers.59.self_attn.attn.impl.block2batch_matmul",
|
| 717 |
+
"model.layers.59.self_attn.attn.impl.k_cache",
|
| 718 |
+
"model.layers.59.self_attn.attn.impl.v_cache",
|
| 719 |
+
"model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 720 |
+
"model.layers.59.mlp.gate_up_proj",
|
| 721 |
+
"model.layers.59.mlp.down_proj",
|
| 722 |
+
"model.layers.60.self_attn.qkv_proj",
|
| 723 |
+
"model.layers.60.self_attn.o_proj",
|
| 724 |
+
"model.layers.60.self_attn.attn.impl.matmul_qk",
|
| 725 |
+
"model.layers.60.self_attn.attn.impl.softmax",
|
| 726 |
+
"model.layers.60.self_attn.attn.impl.matmul_av",
|
| 727 |
+
"model.layers.60.self_attn.attn.impl.batch2block_matmul",
|
| 728 |
+
"model.layers.60.self_attn.attn.impl.block2batch_matmul",
|
| 729 |
+
"model.layers.60.self_attn.attn.impl.k_cache",
|
| 730 |
+
"model.layers.60.self_attn.attn.impl.v_cache",
|
| 731 |
+
"model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 732 |
+
"model.layers.60.mlp.gate_up_proj",
|
| 733 |
+
"model.layers.60.mlp.down_proj",
|
| 734 |
+
"model.layers.61.self_attn.qkv_proj",
|
| 735 |
+
"model.layers.61.self_attn.o_proj",
|
| 736 |
+
"model.layers.61.self_attn.attn.impl.matmul_qk",
|
| 737 |
+
"model.layers.61.self_attn.attn.impl.softmax",
|
| 738 |
+
"model.layers.61.self_attn.attn.impl.matmul_av",
|
| 739 |
+
"model.layers.61.self_attn.attn.impl.batch2block_matmul",
|
| 740 |
+
"model.layers.61.self_attn.attn.impl.block2batch_matmul",
|
| 741 |
+
"model.layers.61.self_attn.attn.impl.k_cache",
|
| 742 |
+
"model.layers.61.self_attn.attn.impl.v_cache",
|
| 743 |
+
"model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 744 |
+
"model.layers.61.mlp.gate_up_proj",
|
| 745 |
+
"model.layers.61.mlp.down_proj",
|
| 746 |
+
"model.layers.62.self_attn.qkv_proj",
|
| 747 |
+
"model.layers.62.self_attn.o_proj",
|
| 748 |
+
"model.layers.62.self_attn.attn.impl.matmul_qk",
|
| 749 |
+
"model.layers.62.self_attn.attn.impl.softmax",
|
| 750 |
+
"model.layers.62.self_attn.attn.impl.matmul_av",
|
| 751 |
+
"model.layers.62.self_attn.attn.impl.batch2block_matmul",
|
| 752 |
+
"model.layers.62.self_attn.attn.impl.block2batch_matmul",
|
| 753 |
+
"model.layers.62.self_attn.attn.impl.k_cache",
|
| 754 |
+
"model.layers.62.self_attn.attn.impl.v_cache",
|
| 755 |
+
"model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 756 |
+
"model.layers.62.mlp.gate_up_proj",
|
| 757 |
+
"model.layers.62.mlp.down_proj",
|
| 758 |
+
"model.layers.63.self_attn.qkv_proj",
|
| 759 |
+
"model.layers.63.self_attn.o_proj",
|
| 760 |
+
"model.layers.63.self_attn.attn.impl.matmul_qk",
|
| 761 |
+
"model.layers.63.self_attn.attn.impl.softmax",
|
| 762 |
+
"model.layers.63.self_attn.attn.impl.matmul_av",
|
| 763 |
+
"model.layers.63.self_attn.attn.impl.batch2block_matmul",
|
| 764 |
+
"model.layers.63.self_attn.attn.impl.block2batch_matmul",
|
| 765 |
+
"model.layers.63.self_attn.attn.impl.k_cache",
|
| 766 |
+
"model.layers.63.self_attn.attn.impl.v_cache",
|
| 767 |
+
"model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 768 |
+
"model.layers.63.mlp.gate_up_proj",
|
| 769 |
+
"model.layers.63.mlp.down_proj",
|
| 770 |
+
"model.layers.64.self_attn.qkv_proj",
|
| 771 |
+
"model.layers.64.self_attn.o_proj",
|
| 772 |
+
"model.layers.64.self_attn.attn.impl.matmul_qk",
|
| 773 |
+
"model.layers.64.self_attn.attn.impl.softmax",
|
| 774 |
+
"model.layers.64.self_attn.attn.impl.matmul_av",
|
| 775 |
+
"model.layers.64.self_attn.attn.impl.batch2block_matmul",
|
| 776 |
+
"model.layers.64.self_attn.attn.impl.block2batch_matmul",
|
| 777 |
+
"model.layers.64.self_attn.attn.impl.k_cache",
|
| 778 |
+
"model.layers.64.self_attn.attn.impl.v_cache",
|
| 779 |
+
"model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 780 |
+
"model.layers.64.mlp.gate_up_proj",
|
| 781 |
+
"model.layers.64.mlp.down_proj",
|
| 782 |
+
"model.layers.65.self_attn.qkv_proj",
|
| 783 |
+
"model.layers.65.self_attn.o_proj",
|
| 784 |
+
"model.layers.65.self_attn.attn.impl.matmul_qk",
|
| 785 |
+
"model.layers.65.self_attn.attn.impl.softmax",
|
| 786 |
+
"model.layers.65.self_attn.attn.impl.matmul_av",
|
| 787 |
+
"model.layers.65.self_attn.attn.impl.batch2block_matmul",
|
| 788 |
+
"model.layers.65.self_attn.attn.impl.block2batch_matmul",
|
| 789 |
+
"model.layers.65.self_attn.attn.impl.k_cache",
|
| 790 |
+
"model.layers.65.self_attn.attn.impl.v_cache",
|
| 791 |
+
"model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 792 |
+
"model.layers.65.mlp.gate_up_proj",
|
| 793 |
+
"model.layers.65.mlp.down_proj",
|
| 794 |
+
"model.layers.66.self_attn.qkv_proj",
|
| 795 |
+
"model.layers.66.self_attn.o_proj",
|
| 796 |
+
"model.layers.66.self_attn.attn.impl.matmul_qk",
|
| 797 |
+
"model.layers.66.self_attn.attn.impl.softmax",
|
| 798 |
+
"model.layers.66.self_attn.attn.impl.matmul_av",
|
| 799 |
+
"model.layers.66.self_attn.attn.impl.batch2block_matmul",
|
| 800 |
+
"model.layers.66.self_attn.attn.impl.block2batch_matmul",
|
| 801 |
+
"model.layers.66.self_attn.attn.impl.k_cache",
|
| 802 |
+
"model.layers.66.self_attn.attn.impl.v_cache",
|
| 803 |
+
"model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 804 |
+
"model.layers.66.mlp.gate_up_proj",
|
| 805 |
+
"model.layers.66.mlp.down_proj",
|
| 806 |
+
"model.layers.67.self_attn.qkv_proj",
|
| 807 |
+
"model.layers.67.self_attn.o_proj",
|
| 808 |
+
"model.layers.67.self_attn.attn.impl.matmul_qk",
|
| 809 |
+
"model.layers.67.self_attn.attn.impl.softmax",
|
| 810 |
+
"model.layers.67.self_attn.attn.impl.matmul_av",
|
| 811 |
+
"model.layers.67.self_attn.attn.impl.batch2block_matmul",
|
| 812 |
+
"model.layers.67.self_attn.attn.impl.block2batch_matmul",
|
| 813 |
+
"model.layers.67.self_attn.attn.impl.k_cache",
|
| 814 |
+
"model.layers.67.self_attn.attn.impl.v_cache",
|
| 815 |
+
"model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 816 |
+
"model.layers.67.mlp.gate_up_proj",
|
| 817 |
+
"model.layers.67.mlp.down_proj",
|
| 818 |
+
"model.layers.68.self_attn.qkv_proj",
|
| 819 |
+
"model.layers.68.self_attn.o_proj",
|
| 820 |
+
"model.layers.68.self_attn.attn.impl.matmul_qk",
|
| 821 |
+
"model.layers.68.self_attn.attn.impl.softmax",
|
| 822 |
+
"model.layers.68.self_attn.attn.impl.matmul_av",
|
| 823 |
+
"model.layers.68.self_attn.attn.impl.batch2block_matmul",
|
| 824 |
+
"model.layers.68.self_attn.attn.impl.block2batch_matmul",
|
| 825 |
+
"model.layers.68.self_attn.attn.impl.k_cache",
|
| 826 |
+
"model.layers.68.self_attn.attn.impl.v_cache",
|
| 827 |
+
"model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 828 |
+
"model.layers.68.mlp.gate_up_proj",
|
| 829 |
+
"model.layers.68.mlp.down_proj",
|
| 830 |
+
"model.layers.69.self_attn.qkv_proj",
|
| 831 |
+
"model.layers.69.self_attn.o_proj",
|
| 832 |
+
"model.layers.69.self_attn.attn.impl.matmul_qk",
|
| 833 |
+
"model.layers.69.self_attn.attn.impl.softmax",
|
| 834 |
+
"model.layers.69.self_attn.attn.impl.matmul_av",
|
| 835 |
+
"model.layers.69.self_attn.attn.impl.batch2block_matmul",
|
| 836 |
+
"model.layers.69.self_attn.attn.impl.block2batch_matmul",
|
| 837 |
+
"model.layers.69.self_attn.attn.impl.k_cache",
|
| 838 |
+
"model.layers.69.self_attn.attn.impl.v_cache",
|
| 839 |
+
"model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 840 |
+
"model.layers.69.mlp.gate_up_proj",
|
| 841 |
+
"model.layers.69.mlp.down_proj",
|
| 842 |
+
"model.layers.70.self_attn.qkv_proj",
|
| 843 |
+
"model.layers.70.self_attn.o_proj",
|
| 844 |
+
"model.layers.70.self_attn.attn.impl.matmul_qk",
|
| 845 |
+
"model.layers.70.self_attn.attn.impl.softmax",
|
| 846 |
+
"model.layers.70.self_attn.attn.impl.matmul_av",
|
| 847 |
+
"model.layers.70.self_attn.attn.impl.batch2block_matmul",
|
| 848 |
+
"model.layers.70.self_attn.attn.impl.block2batch_matmul",
|
| 849 |
+
"model.layers.70.self_attn.attn.impl.k_cache",
|
| 850 |
+
"model.layers.70.self_attn.attn.impl.v_cache",
|
| 851 |
+
"model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 852 |
+
"model.layers.70.mlp.gate_up_proj",
|
| 853 |
+
"model.layers.70.mlp.down_proj",
|
| 854 |
+
"model.layers.71.self_attn.qkv_proj",
|
| 855 |
+
"model.layers.71.self_attn.o_proj",
|
| 856 |
+
"model.layers.71.self_attn.attn.impl.matmul_qk",
|
| 857 |
+
"model.layers.71.self_attn.attn.impl.softmax",
|
| 858 |
+
"model.layers.71.self_attn.attn.impl.matmul_av",
|
| 859 |
+
"model.layers.71.self_attn.attn.impl.batch2block_matmul",
|
| 860 |
+
"model.layers.71.self_attn.attn.impl.block2batch_matmul",
|
| 861 |
+
"model.layers.71.self_attn.attn.impl.k_cache",
|
| 862 |
+
"model.layers.71.self_attn.attn.impl.v_cache",
|
| 863 |
+
"model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 864 |
+
"model.layers.71.mlp.gate_up_proj",
|
| 865 |
+
"model.layers.71.mlp.down_proj",
|
| 866 |
+
"model.layers.72.self_attn.qkv_proj",
|
| 867 |
+
"model.layers.72.self_attn.o_proj",
|
| 868 |
+
"model.layers.72.self_attn.attn.impl.matmul_qk",
|
| 869 |
+
"model.layers.72.self_attn.attn.impl.softmax",
|
| 870 |
+
"model.layers.72.self_attn.attn.impl.matmul_av",
|
| 871 |
+
"model.layers.72.self_attn.attn.impl.batch2block_matmul",
|
| 872 |
+
"model.layers.72.self_attn.attn.impl.block2batch_matmul",
|
| 873 |
+
"model.layers.72.self_attn.attn.impl.k_cache",
|
| 874 |
+
"model.layers.72.self_attn.attn.impl.v_cache",
|
| 875 |
+
"model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 876 |
+
"model.layers.72.mlp.gate_up_proj",
|
| 877 |
+
"model.layers.72.mlp.down_proj",
|
| 878 |
+
"model.layers.73.self_attn.qkv_proj",
|
| 879 |
+
"model.layers.73.self_attn.o_proj",
|
| 880 |
+
"model.layers.73.self_attn.attn.impl.matmul_qk",
|
| 881 |
+
"model.layers.73.self_attn.attn.impl.softmax",
|
| 882 |
+
"model.layers.73.self_attn.attn.impl.matmul_av",
|
| 883 |
+
"model.layers.73.self_attn.attn.impl.batch2block_matmul",
|
| 884 |
+
"model.layers.73.self_attn.attn.impl.block2batch_matmul",
|
| 885 |
+
"model.layers.73.self_attn.attn.impl.k_cache",
|
| 886 |
+
"model.layers.73.self_attn.attn.impl.v_cache",
|
| 887 |
+
"model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 888 |
+
"model.layers.73.mlp.gate_up_proj",
|
| 889 |
+
"model.layers.73.mlp.down_proj",
|
| 890 |
+
"model.layers.74.self_attn.qkv_proj",
|
| 891 |
+
"model.layers.74.self_attn.o_proj",
|
| 892 |
+
"model.layers.74.self_attn.attn.impl.matmul_qk",
|
| 893 |
+
"model.layers.74.self_attn.attn.impl.softmax",
|
| 894 |
+
"model.layers.74.self_attn.attn.impl.matmul_av",
|
| 895 |
+
"model.layers.74.self_attn.attn.impl.batch2block_matmul",
|
| 896 |
+
"model.layers.74.self_attn.attn.impl.block2batch_matmul",
|
| 897 |
+
"model.layers.74.self_attn.attn.impl.k_cache",
|
| 898 |
+
"model.layers.74.self_attn.attn.impl.v_cache",
|
| 899 |
+
"model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 900 |
+
"model.layers.74.mlp.gate_up_proj",
|
| 901 |
+
"model.layers.74.mlp.down_proj",
|
| 902 |
+
"model.layers.75.self_attn.qkv_proj",
|
| 903 |
+
"model.layers.75.self_attn.o_proj",
|
| 904 |
+
"model.layers.75.self_attn.attn.impl.matmul_qk",
|
| 905 |
+
"model.layers.75.self_attn.attn.impl.softmax",
|
| 906 |
+
"model.layers.75.self_attn.attn.impl.matmul_av",
|
| 907 |
+
"model.layers.75.self_attn.attn.impl.batch2block_matmul",
|
| 908 |
+
"model.layers.75.self_attn.attn.impl.block2batch_matmul",
|
| 909 |
+
"model.layers.75.self_attn.attn.impl.k_cache",
|
| 910 |
+
"model.layers.75.self_attn.attn.impl.v_cache",
|
| 911 |
+
"model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 912 |
+
"model.layers.75.mlp.gate_up_proj",
|
| 913 |
+
"model.layers.75.mlp.down_proj",
|
| 914 |
+
"model.layers.76.self_attn.qkv_proj",
|
| 915 |
+
"model.layers.76.self_attn.o_proj",
|
| 916 |
+
"model.layers.76.self_attn.attn.impl.matmul_qk",
|
| 917 |
+
"model.layers.76.self_attn.attn.impl.softmax",
|
| 918 |
+
"model.layers.76.self_attn.attn.impl.matmul_av",
|
| 919 |
+
"model.layers.76.self_attn.attn.impl.batch2block_matmul",
|
| 920 |
+
"model.layers.76.self_attn.attn.impl.block2batch_matmul",
|
| 921 |
+
"model.layers.76.self_attn.attn.impl.k_cache",
|
| 922 |
+
"model.layers.76.self_attn.attn.impl.v_cache",
|
| 923 |
+
"model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 924 |
+
"model.layers.76.mlp.gate_up_proj",
|
| 925 |
+
"model.layers.76.mlp.down_proj",
|
| 926 |
+
"model.layers.77.self_attn.qkv_proj",
|
| 927 |
+
"model.layers.77.self_attn.o_proj",
|
| 928 |
+
"model.layers.77.self_attn.attn.impl.matmul_qk",
|
| 929 |
+
"model.layers.77.self_attn.attn.impl.softmax",
|
| 930 |
+
"model.layers.77.self_attn.attn.impl.matmul_av",
|
| 931 |
+
"model.layers.77.self_attn.attn.impl.batch2block_matmul",
|
| 932 |
+
"model.layers.77.self_attn.attn.impl.block2batch_matmul",
|
| 933 |
+
"model.layers.77.self_attn.attn.impl.k_cache",
|
| 934 |
+
"model.layers.77.self_attn.attn.impl.v_cache",
|
| 935 |
+
"model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 936 |
+
"model.layers.77.mlp.gate_up_proj",
|
| 937 |
+
"model.layers.77.mlp.down_proj",
|
| 938 |
+
"model.layers.78.self_attn.qkv_proj",
|
| 939 |
+
"model.layers.78.self_attn.o_proj",
|
| 940 |
+
"model.layers.78.self_attn.attn.impl.matmul_qk",
|
| 941 |
+
"model.layers.78.self_attn.attn.impl.softmax",
|
| 942 |
+
"model.layers.78.self_attn.attn.impl.matmul_av",
|
| 943 |
+
"model.layers.78.self_attn.attn.impl.batch2block_matmul",
|
| 944 |
+
"model.layers.78.self_attn.attn.impl.block2batch_matmul",
|
| 945 |
+
"model.layers.78.self_attn.attn.impl.k_cache",
|
| 946 |
+
"model.layers.78.self_attn.attn.impl.v_cache",
|
| 947 |
+
"model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 948 |
+
"model.layers.78.mlp.gate_up_proj",
|
| 949 |
+
"model.layers.78.mlp.down_proj",
|
| 950 |
+
"model.layers.79.self_attn.qkv_proj",
|
| 951 |
+
"model.layers.79.self_attn.o_proj",
|
| 952 |
+
"model.layers.79.self_attn.attn.impl.matmul_qk",
|
| 953 |
+
"model.layers.79.self_attn.attn.impl.softmax",
|
| 954 |
+
"model.layers.79.self_attn.attn.impl.matmul_av",
|
| 955 |
+
"model.layers.79.self_attn.attn.impl.batch2block_matmul",
|
| 956 |
+
"model.layers.79.self_attn.attn.impl.block2batch_matmul",
|
| 957 |
+
"model.layers.79.self_attn.attn.impl.k_cache",
|
| 958 |
+
"model.layers.79.self_attn.attn.impl.v_cache",
|
| 959 |
+
"model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 960 |
+
"model.layers.79.mlp.gate_up_proj",
|
| 961 |
+
"model.layers.79.mlp.down_proj",
|
| 962 |
+
"lm_head"
|
| 963 |
+
]
|
quant/g3/inc_output_hooks_maxabs_1_4.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"GlobalRank": null, "LocalRank": 1, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[92.0]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.115234375]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.259765625]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[5.53125]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.2734375]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[452.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[120.0]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.53125]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.2734375]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.8125]], [[5.46875]], [[0.2734375]]], "outputs": [[[0.1103515625]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[31.625]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[22.125]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[2.375]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[9.375]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.072265625]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.1728515625]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.95703125]], [[11.6875]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.306640625]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.453125]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.78125]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[11.6875]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.306640625]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.0]], [[11.6875]], [[0.306640625]]], "outputs": [[[0.0703125]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[5.15625]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.74609375]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[4.8125]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.06884765625]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.283203125]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[13.875]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.62109375]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.125]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.203125]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[13.875]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.62109375]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.75]], [[13.4375]], [[0.546875]]], "outputs": [[[0.05126953125]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[2.03125]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.32421875]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.34375]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[4.65625]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.10888671875]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.1298828125]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[16.25]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.625]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.96875]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.78125]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[16.25]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.625]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.28125]], [[16.125]], [[0.56640625]]], "outputs": [[[0.10888671875]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[8.5]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[1.75]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[1.53125]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.55859375]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.111328125]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.7109375]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[20.125]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.74609375]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.03125]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.34375]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[20.125]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[0.74609375]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[19.5]], [[0.6484375]]], "outputs": [[[0.111328125]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[6.9375]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.427734375]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[0.734375]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[3.8125]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.09521484375]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.2578125]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[16.0]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.91796875]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.0]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[0.91796875]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.53125]], [[14.8125]], [[0.89453125]]], "outputs": [[[0.08837890625]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[8.3125]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[4.625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[1.5546875]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.294921875]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.0888671875]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.12060546875]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[14.125]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.078125]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.875]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.53125]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[14.125]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[1.078125]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.15625]], [[13.3125]], [[0.91796875]]], "outputs": [[[0.0888671875]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[0.90625]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.43359375]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.26171875]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.423828125]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.1708984375]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.181640625]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[12.0]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6328125]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.71875]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.59375]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[1.6328125]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[11.125]], [[1.6328125]]], "outputs": [[[0.13671875]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.40234375]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[0.62109375]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.248046875]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.5234375]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.09716796875]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.34765625]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.640625]], [[21.375]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.703125]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.78125]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.484375]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[21.375]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[1.703125]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.25]], [[20.625]], [[1.4140625]]], "outputs": [[[0.08056640625]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[4.0625]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.265625]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[1.3515625]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.1259765625]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.16796875]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58984375]], [[20.75]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.98046875]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[2.875]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.5625]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[20.75]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[0.98046875]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0]], [[20.375]], [[0.98046875]]], "outputs": [[[0.1259765625]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[5.15625]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[1.8671875]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.494140625]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.234375]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.22265625]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.166015625]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[10.25]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.46875]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[10.25]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.75]], [[9.375]], [[1.6875]]], "outputs": [[[0.22265625]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.302734375]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.271484375]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.98828125]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.302734375]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.22265625]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69921875]], [[17.125]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1796875]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.125]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[1.1796875]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.21875]], [[16.375]], [[1.1796875]]], "outputs": [[[0.302734375]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.4609375]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.37890625]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.265625]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.1572265625]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.19921875]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[19.125]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0859375]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.5]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.5]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[19.125]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[1.0859375]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.1875]], [[18.875]], [[1.0859375]]], "outputs": [[[0.103515625]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.3125]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[2.15625]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.267578125]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.267578125]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.1943359375]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.734375]], [[13.1875]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.21875]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.03125]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[13.1875]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.21875]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.71875]], [[13.0625]], [[1.21875]]], "outputs": [[[0.30078125]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.423828125]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[0.87109375]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.2890625]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.287109375]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.921875]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.15625]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[15.9375]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1953125]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.5]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.1953125]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[15.4375]], [[1.1015625]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.21875]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.890625]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.2353515625]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.30859375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.57421875]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.20703125]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55078125]], [[10.0]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1328125]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[32.75]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.875]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[10.0]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.1328125]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.96875]], [[9.4375]], [[0.9921875]]], "outputs": [[[0.310546875]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.7265625]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[0.91015625]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.455078125]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.263671875]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.4453125]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.189453125]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[15.6875]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.25]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.25]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.25]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[15.6875]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[1.25]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.1875]], [[14.8125]], [[1.015625]]], "outputs": [[[0.2470703125]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[1.0703125]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.490234375]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.306640625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.53515625]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.1884765625]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[12.75]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0234375]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.875]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.0234375]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[11.125]], [[1.0234375]]], "outputs": [[[0.515625]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.283203125]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[1.5234375]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.78125]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.2431640625]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.2353515625]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[12.25]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.5]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.125]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[11.125]], [[1.1640625]]], "outputs": [[[0.296875]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.3203125]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[1.96875]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[0.6015625]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[0.435546875]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.373046875]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[13.5]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.140625]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.0]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.875]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.140625]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.375]], [[12.375]], [[1.140625]]], "outputs": [[[0.373046875]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[2.234375]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.39453125]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.251953125]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.400390625]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.42578125]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[11.25]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.40625]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[11.25]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[10.5625]], [[1.640625]]], "outputs": [[[0.400390625]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.3359375]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.625]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.478515625]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.30859375]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.1357421875]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.77734375]], [[15.4375]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[32.25]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.25]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[15.4375]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[2.65625]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[15.1875]], [[2.65625]]], "outputs": [[[0.66796875]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[1.90625]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[0.88671875]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.3125]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.41796875]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.388671875]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6328125]], [[15.25]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.03125]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.125]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.625]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[15.25]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[1.03125]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.46875]], [[13.6875]], [[0.9140625]]], "outputs": [[[0.41796875]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.400390625]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[4.46875]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.578125]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.27734375]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[1.0703125]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.447265625]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[13.0]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.125]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[6.125]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[13.0]], [[6.125]]], "outputs": [[[1.0703125]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.59375]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[2.5625]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.275390625]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.45703125]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.37890625]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.267578125]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[14.3125]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.625]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.4375]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.9375]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[14.3125]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[3.625]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.25]], [[12.0]], [[3.625]]], "outputs": [[[0.240234375]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.546875]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[1.8125]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.640625]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.26953125]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.451171875]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[12.625]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.3125]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.59375]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.4375]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[12.625]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[2.3125]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0]], [[12.3125]], [[2.3125]]], "outputs": [[[0.62109375]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.40625]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[2.609375]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[0.53125]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.388671875]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[1.2109375]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.546875]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9296875]], [[17.375]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.15625]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[38.5]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.1875]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[5.15625]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.90625]], [[15.5]], [[5.15625]]], "outputs": [[[0.91015625]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.287109375]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[1.6171875]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.7109375]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.328125]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.734375]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.4140625]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[18.375]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.28125]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[47.0]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.0]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[18.375]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[1.28125]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.78125]], [[18.125]], [[1.28125]]], "outputs": [[[0.47265625]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.447265625]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[2.3125]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.9609375]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.267578125]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[0.55078125]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.396484375]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[19.0]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.28125]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.625]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[19.0]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[3.28125]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[17.375]], [[3.28125]]], "outputs": [[[0.55078125]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[0.341796875]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[1.765625]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.62109375]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.3515625]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[0.546875]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.23046875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[19.625]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.046875]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[45.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[19.625]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[3.046875]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[16.25]], [[3.046875]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[1.515625]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[0.71875]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.35546875]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.6015625]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.57421875]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[16.5]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[8.0625]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.375]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.0]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[8.0625]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[15.375]], [[8.0625]]], "outputs": [[[0.6015625]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.34375]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[2.640625]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[0.74609375]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.2373046875]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.96484375]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.224609375]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87890625]], [[13.9375]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[32.75]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[13.9375]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[1.5]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[13.25]], [[1.3984375]]], "outputs": [[[0.53125]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.455078125]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[2.4375]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.69140625]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.296875]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[0.546875]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.5859375]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.80078125]], [[17.375]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6796875]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[40.5]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[1.6796875]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[16.75]], [[1.6796875]]], "outputs": [[[0.373046875]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.36328125]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[4.375]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[0.640625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.357421875]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[1.03125]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.453125]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[18.25]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8359375]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.25]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.9375]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[18.25]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[1.8359375]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.625]], [[15.1875]], [[1.8359375]]], "outputs": [[[0.734375]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[3.421875]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[1.8828125]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[0.6796875]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.365234375]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[0.59765625]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.271484375]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8515625]], [[16.0]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.71875]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.125]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.75]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[2.71875]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.5625]], [[14.75]], [[2.71875]]], "outputs": [[[0.54296875]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.373046875]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[1.3359375]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.3203125]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.69140625]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.19921875]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[16.375]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.125]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[52.25]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[1.125]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[15.375]], [[1.1015625]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.427734375]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[5.1875]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[1.2734375]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.330078125]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.578125]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.265625]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[14.0]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6328125]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.5]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[1.6328125]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[13.6875]], [[1.6328125]]], "outputs": [[[0.578125]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.703125]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[0.67578125]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.373046875]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.62109375]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[0.1337890625]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7578125]], [[16.5]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.015625]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[45.0]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[1.015625]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.375]], [[16.125]], [[1.015625]]], "outputs": [[[0.56640625]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.359375]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[3.421875]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[0.400390625]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.38671875]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.166015625]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.828125]], [[16.125]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1796875]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.0]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[1.1796875]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[14.6875]], [[1.1796875]]], "outputs": [[[0.53515625]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.53125]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[2.53125]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.921875]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.58984375]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.9609375]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[13.4375]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.59375]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[13.4375]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[4.59375]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[12.6875]], [[4.59375]]], "outputs": [[[0.416015625]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.412109375]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[4.03125]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[1.6484375]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.33203125]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.82421875]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.56640625]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.60546875]], [[11.125]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.4375]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.90625]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.84375]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[11.125]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[4.4375]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[10.4375]], [[4.4375]]], "outputs": [[[0.51171875]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.62890625]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[1.921875]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[0.283203125]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.33203125]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[1.1484375]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.328125]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8046875]], [[16.25]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5625]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.25]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.0]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[16.25]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[1.5625]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[15.0625]], [[1.0390625]]], "outputs": [[[0.765625]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.32421875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[4.15625]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[1.375]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.455078125]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.6953125]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.3359375]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[16.875]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.390625]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[39.0]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.1875]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[16.875]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[1.390625]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[15.1875]], [[1.2578125]]], "outputs": [[[0.6953125]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.392578125]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[3.078125]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[0.271484375]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.44921875]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.61328125]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[17.25]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.375]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.375]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.875]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[17.25]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[6.375]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.78125]], [[15.125]], [[6.375]]], "outputs": [[[0.76953125]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.353515625]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[3.921875]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.494140625]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.6796875]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.162109375]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.640625]], [[14.0625]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.640625]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.28125]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.75]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.640625]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[13.75]], [[1.640625]]], "outputs": [[[0.5390625]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.5078125]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[3.875]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.90234375]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.462890625]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.6171875]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.375]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[12.75]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.71875]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.0]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[4.71875]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[11.5625]], [[4.71875]]], "outputs": [[[0.357421875]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.58984375]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[3.78125]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.69921875]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.451171875]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.306640625]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[15.5625]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.21875]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.84375]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[15.5625]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[3.21875]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.9375]], [[15.5625]], [[3.21875]]], "outputs": [[[0.349609375]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.52734375]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[3.125]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.21875]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.4296875]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.89453125]], [[14.0625]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.359375]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.3125]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[1.359375]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[14.0625]], [[1.359375]]], "outputs": [[[0.7265625]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.478515625]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[2.8125]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[0.275390625]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.421875]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[0.65625]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.275390625]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.42578125]], [[12.8125]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.359375]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.375]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.59375]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[12.8125]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[1.359375]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.59375]], [[12.8125]], [[1.140625]]], "outputs": [[[0.40625]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.435546875]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[3.078125]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[0.373046875]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.44921875]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.4609375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.181640625]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[12.3125]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.94921875]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.9375]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.40625]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[0.94921875]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[12.3125]], [[0.80078125]]], "outputs": [[[0.421875]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.341796875]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[3.15625]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[1.515625]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.63671875]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.41796875]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.326171875]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.47265625]], [[12.25]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.5625]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.84375]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.6875]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[12.25]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[4.5625]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.875]], [[12.25]], [[4.5625]]], "outputs": [[[0.326171875]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.4296875]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[7.9375]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.31640625]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.61328125]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.35546875]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[12.8125]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.578125]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.875]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.9375]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[12.8125]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[1.578125]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.125]], [[10.75]], [[1.3671875]]], "outputs": [[[0.61328125]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.470703125]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[3.875]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[1.0234375]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.408203125]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[1.421875]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[14.3125]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6015625]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.125]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[14.3125]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[1.6015625]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[13.5625]], [[1.6015625]]], "outputs": [[[1.421875]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.984375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[8.8125]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[1.171875]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.40625]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.7734375]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.287109375]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.65625]], [[11.9375]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4453125]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.125]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.96875]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[1.4453125]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.6875]], [[11.0625]], [[1.4453125]]], "outputs": [[[0.66015625]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.41015625]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[11.375]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[1.4921875]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.703125]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.59765625]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.1884765625]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[18.75]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0390625]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[18.75]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[1.0390625]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.125]], [[18.75]], [[0.859375]]], "outputs": [[[0.48828125]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.283203125]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[7.8125]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[0.408203125]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.4140625]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.70703125]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[0.2236328125]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[11.3125]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.609375]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.25]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.3125]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[11.3125]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.609375]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.28125]], [[9.375]], [[1.2890625]]], "outputs": [[[0.61328125]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.330078125]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[6.5625]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[1.453125]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.37109375]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[1.21875]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.10693359375]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.3515625]], [[13.5]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9140625]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.75]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.8125]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[1.9140625]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.75]], [[13.5]], [[1.7578125]]], "outputs": [[[1.1171875]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.404296875]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[4.0625]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[0.388671875]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.421875]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[0.62890625]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.3671875]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[15.9375]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.78125]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.375]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.90625]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[3.78125]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[13.75]], [[3.78125]]], "outputs": [[[0.62890625]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.353515625]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[7.09375]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.52734375]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.494140625]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.55078125]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.474609375]], [[13.0]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.75]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.5625]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.59375]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[4.75]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.25]], [[12.0]], [[4.75]]], "outputs": [[[0.53515625]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.427734375]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[7.21875]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.7734375]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.52734375]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.251953125]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.37890625]], [[11.9375]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.9453125]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.4375]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.0625]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[0.9453125]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[3.875]], [[10.5625]], [[0.9453125]]], "outputs": [[[0.7421875]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.44140625]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[7.5625]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[0.302734375]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.3359375]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[1.0703125]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.123046875]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.28125]], [[10.9375]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.4375]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.375]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[10.9375]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[2.4375]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.625]], [[10.9375]], [[2.21875]]], "outputs": [[[0.87109375]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.5546875]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[7.875]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[0.6640625]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.52734375]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[0.46484375]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.2119140625]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5]], [[15.1875]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.140625]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.3125]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.3125]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[1.140625]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.125]], [[15.1875]], [[1.1640625]]], "outputs": [[[0.314453125]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.435546875]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[5.21875]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.8515625]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.67578125]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.59375]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.447265625]], [[13.5]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8671875]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.375]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.9375]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[13.5]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[1.8671875]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.9375]], [[13.5]], [[1.8671875]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.36328125]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[7.34375]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[0.3828125]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.63671875]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.546875]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.1455078125]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.40625]], [[14.4375]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.40625]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[20.75]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.875]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[2.40625]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5]], [[14.4375]], [[2.40625]]], "outputs": [[[0.427734375]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.5546875]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[5.4375]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[1.0390625]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.4140625]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[1.234375]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.158203125]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[14.75]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.296875]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[20.5]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.1875]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[14.75]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[2.296875]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[14.625]], [[1.875]]], "outputs": [[[0.8125]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.68359375]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[6.03125]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[0.37890625]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[0.77734375]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[0.453125]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[0.1103515625]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[14.8125]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.79296875]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.6875]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.625]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[0.79296875]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[14.75]], [[0.64453125]]], "outputs": [[[0.3984375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.67578125]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[9.25]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.4921875]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.8125]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.64453125]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[9.875]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.5625]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[9.875]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[4.5625]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.40625]], [[9.875]], [[4.5625]]], "outputs": [[[0.4765625]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[10.125]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[0.45703125]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.314453125]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[1.1484375]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.373046875]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6875]], [[15.375]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.078125]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.625]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[15.375]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[2.078125]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.9375]], [[13.9375]], [[2.078125]]], "outputs": [[[0.671875]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.439453125]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[7.59375]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.255859375]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.359375]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[0.84375]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.2373046875]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.28125]], [[18.125]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.34375]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.375]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[2.34375]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.625]], [[17.125]], [[2.40625]]], "outputs": [[[0.8203125]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.56640625]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[8.9375]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[0.390625]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.419921875]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[0.85546875]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.482421875]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.578125]], [[13.25]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.4375]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.96875]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.625]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[13.25]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[6.4375]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.78125]], [[12.5625]], [[6.4375]]], "outputs": [[[0.76171875]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.2578125]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[8.625]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.21484375]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.5703125]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[1.1015625]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.2236328125]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[14.8125]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.625]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.0]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.5625]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[3.625]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.625]], [[14.8125]], [[3.625]]], "outputs": [[[0.765625]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.439453125]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[6.125]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[0.478515625]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.2578125]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[1.0]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[14.4375]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[13.875]], [[1.9609375]]], "outputs": [[[0.96875]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.48046875]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[7.625]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.328125]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.232421875]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.6953125]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[0.205078125]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.796875]], [[16.5]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.890625]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.875]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[2.890625]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.5625]], [[16.0]], [[1.8359375]]], "outputs": [[[0.8828125]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.365234375]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[9.125]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[0.484375]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.255859375]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.40625]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.4453125]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9375]], [[17.5]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.4375]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.9375]], [[16.375]], [[2.84375]]], "outputs": [[[1.234375]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.53515625]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[13.8125]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[0.6796875]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.4375]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[1.765625]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.369140625]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.890625]], [[16.5]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.03125]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[52.25]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.875]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[16.5]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[3.03125]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.8125]], [[15.6875]], [[2.640625]]], "outputs": [[[1.765625]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.439453125]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[7.5]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[1.1015625]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.384765625]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[1.6015625]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.30078125]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.1328125]], [[16.25]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.109375]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.0]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.875]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[16.25]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[2.109375]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[14.125]], [[15.4375]], [[1.8671875]]], "outputs": [[[1.2578125]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.291015625]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[12.625]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[0.953125]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.318359375]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.7109375]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.3671875]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[14.4375]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.40625]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[60.0]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[28.0]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[2.40625]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.625]], [[12.375]], [[2.375]]], "outputs": [[[1.0078125]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.48046875]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[17.25]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.70703125]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[1.9765625]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.404296875]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87890625]], [[13.375]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[58.5]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[13.375]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[2.65625]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.3125]], [[13.0]], [[1.4375]]], "outputs": [[[1.2421875]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.40234375]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[11.5]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.435546875]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[1.46875]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.2255859375]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[11.8125]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.328125]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.75]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.625]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[11.8125]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[2.328125]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.875]], [[11.3125]], [[1.9765625]]], "outputs": [[[1.15625]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.3828125]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[18.25]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.408203125]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.70703125]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[1.7109375]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.33203125]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6953125]], [[12.0625]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.859375]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[50.25]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.75]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[12.0625]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[1.859375]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[9.8125]], [[1.5234375]]], "outputs": [[[1.46875]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.40234375]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[66.0]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.54296875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.279296875]]}}}}
|
quant/g3/inc_output_hooks_maxabs_1_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b37e1e61f3612dd47663627ae969cf1037eb0656e27dcc2cc99d4764f8de0bc
|
| 3 |
+
size 206298
|
quant/g3/inc_output_hooks_maxabs_1_4_mod_list.json
ADDED
|
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
"model.layers.0.self_attn.qkv_proj",
|
| 3 |
+
"model.layers.0.self_attn.o_proj",
|
| 4 |
+
"model.layers.0.self_attn.attn.impl.matmul_qk",
|
| 5 |
+
"model.layers.0.self_attn.attn.impl.softmax",
|
| 6 |
+
"model.layers.0.self_attn.attn.impl.matmul_av",
|
| 7 |
+
"model.layers.0.self_attn.attn.impl.batch2block_matmul",
|
| 8 |
+
"model.layers.0.self_attn.attn.impl.block2batch_matmul",
|
| 9 |
+
"model.layers.0.self_attn.attn.impl.k_cache",
|
| 10 |
+
"model.layers.0.self_attn.attn.impl.v_cache",
|
| 11 |
+
"model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 12 |
+
"model.layers.0.mlp.gate_up_proj",
|
| 13 |
+
"model.layers.0.mlp.down_proj",
|
| 14 |
+
"model.layers.1.self_attn.qkv_proj",
|
| 15 |
+
"model.layers.1.self_attn.o_proj",
|
| 16 |
+
"model.layers.1.self_attn.attn.impl.matmul_qk",
|
| 17 |
+
"model.layers.1.self_attn.attn.impl.softmax",
|
| 18 |
+
"model.layers.1.self_attn.attn.impl.matmul_av",
|
| 19 |
+
"model.layers.1.self_attn.attn.impl.batch2block_matmul",
|
| 20 |
+
"model.layers.1.self_attn.attn.impl.block2batch_matmul",
|
| 21 |
+
"model.layers.1.self_attn.attn.impl.k_cache",
|
| 22 |
+
"model.layers.1.self_attn.attn.impl.v_cache",
|
| 23 |
+
"model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 24 |
+
"model.layers.1.mlp.gate_up_proj",
|
| 25 |
+
"model.layers.1.mlp.down_proj",
|
| 26 |
+
"model.layers.2.self_attn.qkv_proj",
|
| 27 |
+
"model.layers.2.self_attn.o_proj",
|
| 28 |
+
"model.layers.2.self_attn.attn.impl.matmul_qk",
|
| 29 |
+
"model.layers.2.self_attn.attn.impl.softmax",
|
| 30 |
+
"model.layers.2.self_attn.attn.impl.matmul_av",
|
| 31 |
+
"model.layers.2.self_attn.attn.impl.batch2block_matmul",
|
| 32 |
+
"model.layers.2.self_attn.attn.impl.block2batch_matmul",
|
| 33 |
+
"model.layers.2.self_attn.attn.impl.k_cache",
|
| 34 |
+
"model.layers.2.self_attn.attn.impl.v_cache",
|
| 35 |
+
"model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 36 |
+
"model.layers.2.mlp.gate_up_proj",
|
| 37 |
+
"model.layers.2.mlp.down_proj",
|
| 38 |
+
"model.layers.3.self_attn.qkv_proj",
|
| 39 |
+
"model.layers.3.self_attn.o_proj",
|
| 40 |
+
"model.layers.3.self_attn.attn.impl.matmul_qk",
|
| 41 |
+
"model.layers.3.self_attn.attn.impl.softmax",
|
| 42 |
+
"model.layers.3.self_attn.attn.impl.matmul_av",
|
| 43 |
+
"model.layers.3.self_attn.attn.impl.batch2block_matmul",
|
| 44 |
+
"model.layers.3.self_attn.attn.impl.block2batch_matmul",
|
| 45 |
+
"model.layers.3.self_attn.attn.impl.k_cache",
|
| 46 |
+
"model.layers.3.self_attn.attn.impl.v_cache",
|
| 47 |
+
"model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 48 |
+
"model.layers.3.mlp.gate_up_proj",
|
| 49 |
+
"model.layers.3.mlp.down_proj",
|
| 50 |
+
"model.layers.4.self_attn.qkv_proj",
|
| 51 |
+
"model.layers.4.self_attn.o_proj",
|
| 52 |
+
"model.layers.4.self_attn.attn.impl.matmul_qk",
|
| 53 |
+
"model.layers.4.self_attn.attn.impl.softmax",
|
| 54 |
+
"model.layers.4.self_attn.attn.impl.matmul_av",
|
| 55 |
+
"model.layers.4.self_attn.attn.impl.batch2block_matmul",
|
| 56 |
+
"model.layers.4.self_attn.attn.impl.block2batch_matmul",
|
| 57 |
+
"model.layers.4.self_attn.attn.impl.k_cache",
|
| 58 |
+
"model.layers.4.self_attn.attn.impl.v_cache",
|
| 59 |
+
"model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 60 |
+
"model.layers.4.mlp.gate_up_proj",
|
| 61 |
+
"model.layers.4.mlp.down_proj",
|
| 62 |
+
"model.layers.5.self_attn.qkv_proj",
|
| 63 |
+
"model.layers.5.self_attn.o_proj",
|
| 64 |
+
"model.layers.5.self_attn.attn.impl.matmul_qk",
|
| 65 |
+
"model.layers.5.self_attn.attn.impl.softmax",
|
| 66 |
+
"model.layers.5.self_attn.attn.impl.matmul_av",
|
| 67 |
+
"model.layers.5.self_attn.attn.impl.batch2block_matmul",
|
| 68 |
+
"model.layers.5.self_attn.attn.impl.block2batch_matmul",
|
| 69 |
+
"model.layers.5.self_attn.attn.impl.k_cache",
|
| 70 |
+
"model.layers.5.self_attn.attn.impl.v_cache",
|
| 71 |
+
"model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 72 |
+
"model.layers.5.mlp.gate_up_proj",
|
| 73 |
+
"model.layers.5.mlp.down_proj",
|
| 74 |
+
"model.layers.6.self_attn.qkv_proj",
|
| 75 |
+
"model.layers.6.self_attn.o_proj",
|
| 76 |
+
"model.layers.6.self_attn.attn.impl.matmul_qk",
|
| 77 |
+
"model.layers.6.self_attn.attn.impl.softmax",
|
| 78 |
+
"model.layers.6.self_attn.attn.impl.matmul_av",
|
| 79 |
+
"model.layers.6.self_attn.attn.impl.batch2block_matmul",
|
| 80 |
+
"model.layers.6.self_attn.attn.impl.block2batch_matmul",
|
| 81 |
+
"model.layers.6.self_attn.attn.impl.k_cache",
|
| 82 |
+
"model.layers.6.self_attn.attn.impl.v_cache",
|
| 83 |
+
"model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 84 |
+
"model.layers.6.mlp.gate_up_proj",
|
| 85 |
+
"model.layers.6.mlp.down_proj",
|
| 86 |
+
"model.layers.7.self_attn.qkv_proj",
|
| 87 |
+
"model.layers.7.self_attn.o_proj",
|
| 88 |
+
"model.layers.7.self_attn.attn.impl.matmul_qk",
|
| 89 |
+
"model.layers.7.self_attn.attn.impl.softmax",
|
| 90 |
+
"model.layers.7.self_attn.attn.impl.matmul_av",
|
| 91 |
+
"model.layers.7.self_attn.attn.impl.batch2block_matmul",
|
| 92 |
+
"model.layers.7.self_attn.attn.impl.block2batch_matmul",
|
| 93 |
+
"model.layers.7.self_attn.attn.impl.k_cache",
|
| 94 |
+
"model.layers.7.self_attn.attn.impl.v_cache",
|
| 95 |
+
"model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 96 |
+
"model.layers.7.mlp.gate_up_proj",
|
| 97 |
+
"model.layers.7.mlp.down_proj",
|
| 98 |
+
"model.layers.8.self_attn.qkv_proj",
|
| 99 |
+
"model.layers.8.self_attn.o_proj",
|
| 100 |
+
"model.layers.8.self_attn.attn.impl.matmul_qk",
|
| 101 |
+
"model.layers.8.self_attn.attn.impl.softmax",
|
| 102 |
+
"model.layers.8.self_attn.attn.impl.matmul_av",
|
| 103 |
+
"model.layers.8.self_attn.attn.impl.batch2block_matmul",
|
| 104 |
+
"model.layers.8.self_attn.attn.impl.block2batch_matmul",
|
| 105 |
+
"model.layers.8.self_attn.attn.impl.k_cache",
|
| 106 |
+
"model.layers.8.self_attn.attn.impl.v_cache",
|
| 107 |
+
"model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 108 |
+
"model.layers.8.mlp.gate_up_proj",
|
| 109 |
+
"model.layers.8.mlp.down_proj",
|
| 110 |
+
"model.layers.9.self_attn.qkv_proj",
|
| 111 |
+
"model.layers.9.self_attn.o_proj",
|
| 112 |
+
"model.layers.9.self_attn.attn.impl.matmul_qk",
|
| 113 |
+
"model.layers.9.self_attn.attn.impl.softmax",
|
| 114 |
+
"model.layers.9.self_attn.attn.impl.matmul_av",
|
| 115 |
+
"model.layers.9.self_attn.attn.impl.batch2block_matmul",
|
| 116 |
+
"model.layers.9.self_attn.attn.impl.block2batch_matmul",
|
| 117 |
+
"model.layers.9.self_attn.attn.impl.k_cache",
|
| 118 |
+
"model.layers.9.self_attn.attn.impl.v_cache",
|
| 119 |
+
"model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 120 |
+
"model.layers.9.mlp.gate_up_proj",
|
| 121 |
+
"model.layers.9.mlp.down_proj",
|
| 122 |
+
"model.layers.10.self_attn.qkv_proj",
|
| 123 |
+
"model.layers.10.self_attn.o_proj",
|
| 124 |
+
"model.layers.10.self_attn.attn.impl.matmul_qk",
|
| 125 |
+
"model.layers.10.self_attn.attn.impl.softmax",
|
| 126 |
+
"model.layers.10.self_attn.attn.impl.matmul_av",
|
| 127 |
+
"model.layers.10.self_attn.attn.impl.batch2block_matmul",
|
| 128 |
+
"model.layers.10.self_attn.attn.impl.block2batch_matmul",
|
| 129 |
+
"model.layers.10.self_attn.attn.impl.k_cache",
|
| 130 |
+
"model.layers.10.self_attn.attn.impl.v_cache",
|
| 131 |
+
"model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 132 |
+
"model.layers.10.mlp.gate_up_proj",
|
| 133 |
+
"model.layers.10.mlp.down_proj",
|
| 134 |
+
"model.layers.11.self_attn.qkv_proj",
|
| 135 |
+
"model.layers.11.self_attn.o_proj",
|
| 136 |
+
"model.layers.11.self_attn.attn.impl.matmul_qk",
|
| 137 |
+
"model.layers.11.self_attn.attn.impl.softmax",
|
| 138 |
+
"model.layers.11.self_attn.attn.impl.matmul_av",
|
| 139 |
+
"model.layers.11.self_attn.attn.impl.batch2block_matmul",
|
| 140 |
+
"model.layers.11.self_attn.attn.impl.block2batch_matmul",
|
| 141 |
+
"model.layers.11.self_attn.attn.impl.k_cache",
|
| 142 |
+
"model.layers.11.self_attn.attn.impl.v_cache",
|
| 143 |
+
"model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 144 |
+
"model.layers.11.mlp.gate_up_proj",
|
| 145 |
+
"model.layers.11.mlp.down_proj",
|
| 146 |
+
"model.layers.12.self_attn.qkv_proj",
|
| 147 |
+
"model.layers.12.self_attn.o_proj",
|
| 148 |
+
"model.layers.12.self_attn.attn.impl.matmul_qk",
|
| 149 |
+
"model.layers.12.self_attn.attn.impl.softmax",
|
| 150 |
+
"model.layers.12.self_attn.attn.impl.matmul_av",
|
| 151 |
+
"model.layers.12.self_attn.attn.impl.batch2block_matmul",
|
| 152 |
+
"model.layers.12.self_attn.attn.impl.block2batch_matmul",
|
| 153 |
+
"model.layers.12.self_attn.attn.impl.k_cache",
|
| 154 |
+
"model.layers.12.self_attn.attn.impl.v_cache",
|
| 155 |
+
"model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 156 |
+
"model.layers.12.mlp.gate_up_proj",
|
| 157 |
+
"model.layers.12.mlp.down_proj",
|
| 158 |
+
"model.layers.13.self_attn.qkv_proj",
|
| 159 |
+
"model.layers.13.self_attn.o_proj",
|
| 160 |
+
"model.layers.13.self_attn.attn.impl.matmul_qk",
|
| 161 |
+
"model.layers.13.self_attn.attn.impl.softmax",
|
| 162 |
+
"model.layers.13.self_attn.attn.impl.matmul_av",
|
| 163 |
+
"model.layers.13.self_attn.attn.impl.batch2block_matmul",
|
| 164 |
+
"model.layers.13.self_attn.attn.impl.block2batch_matmul",
|
| 165 |
+
"model.layers.13.self_attn.attn.impl.k_cache",
|
| 166 |
+
"model.layers.13.self_attn.attn.impl.v_cache",
|
| 167 |
+
"model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 168 |
+
"model.layers.13.mlp.gate_up_proj",
|
| 169 |
+
"model.layers.13.mlp.down_proj",
|
| 170 |
+
"model.layers.14.self_attn.qkv_proj",
|
| 171 |
+
"model.layers.14.self_attn.o_proj",
|
| 172 |
+
"model.layers.14.self_attn.attn.impl.matmul_qk",
|
| 173 |
+
"model.layers.14.self_attn.attn.impl.softmax",
|
| 174 |
+
"model.layers.14.self_attn.attn.impl.matmul_av",
|
| 175 |
+
"model.layers.14.self_attn.attn.impl.batch2block_matmul",
|
| 176 |
+
"model.layers.14.self_attn.attn.impl.block2batch_matmul",
|
| 177 |
+
"model.layers.14.self_attn.attn.impl.k_cache",
|
| 178 |
+
"model.layers.14.self_attn.attn.impl.v_cache",
|
| 179 |
+
"model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 180 |
+
"model.layers.14.mlp.gate_up_proj",
|
| 181 |
+
"model.layers.14.mlp.down_proj",
|
| 182 |
+
"model.layers.15.self_attn.qkv_proj",
|
| 183 |
+
"model.layers.15.self_attn.o_proj",
|
| 184 |
+
"model.layers.15.self_attn.attn.impl.matmul_qk",
|
| 185 |
+
"model.layers.15.self_attn.attn.impl.softmax",
|
| 186 |
+
"model.layers.15.self_attn.attn.impl.matmul_av",
|
| 187 |
+
"model.layers.15.self_attn.attn.impl.batch2block_matmul",
|
| 188 |
+
"model.layers.15.self_attn.attn.impl.block2batch_matmul",
|
| 189 |
+
"model.layers.15.self_attn.attn.impl.k_cache",
|
| 190 |
+
"model.layers.15.self_attn.attn.impl.v_cache",
|
| 191 |
+
"model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 192 |
+
"model.layers.15.mlp.gate_up_proj",
|
| 193 |
+
"model.layers.15.mlp.down_proj",
|
| 194 |
+
"model.layers.16.self_attn.qkv_proj",
|
| 195 |
+
"model.layers.16.self_attn.o_proj",
|
| 196 |
+
"model.layers.16.self_attn.attn.impl.matmul_qk",
|
| 197 |
+
"model.layers.16.self_attn.attn.impl.softmax",
|
| 198 |
+
"model.layers.16.self_attn.attn.impl.matmul_av",
|
| 199 |
+
"model.layers.16.self_attn.attn.impl.batch2block_matmul",
|
| 200 |
+
"model.layers.16.self_attn.attn.impl.block2batch_matmul",
|
| 201 |
+
"model.layers.16.self_attn.attn.impl.k_cache",
|
| 202 |
+
"model.layers.16.self_attn.attn.impl.v_cache",
|
| 203 |
+
"model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 204 |
+
"model.layers.16.mlp.gate_up_proj",
|
| 205 |
+
"model.layers.16.mlp.down_proj",
|
| 206 |
+
"model.layers.17.self_attn.qkv_proj",
|
| 207 |
+
"model.layers.17.self_attn.o_proj",
|
| 208 |
+
"model.layers.17.self_attn.attn.impl.matmul_qk",
|
| 209 |
+
"model.layers.17.self_attn.attn.impl.softmax",
|
| 210 |
+
"model.layers.17.self_attn.attn.impl.matmul_av",
|
| 211 |
+
"model.layers.17.self_attn.attn.impl.batch2block_matmul",
|
| 212 |
+
"model.layers.17.self_attn.attn.impl.block2batch_matmul",
|
| 213 |
+
"model.layers.17.self_attn.attn.impl.k_cache",
|
| 214 |
+
"model.layers.17.self_attn.attn.impl.v_cache",
|
| 215 |
+
"model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 216 |
+
"model.layers.17.mlp.gate_up_proj",
|
| 217 |
+
"model.layers.17.mlp.down_proj",
|
| 218 |
+
"model.layers.18.self_attn.qkv_proj",
|
| 219 |
+
"model.layers.18.self_attn.o_proj",
|
| 220 |
+
"model.layers.18.self_attn.attn.impl.matmul_qk",
|
| 221 |
+
"model.layers.18.self_attn.attn.impl.softmax",
|
| 222 |
+
"model.layers.18.self_attn.attn.impl.matmul_av",
|
| 223 |
+
"model.layers.18.self_attn.attn.impl.batch2block_matmul",
|
| 224 |
+
"model.layers.18.self_attn.attn.impl.block2batch_matmul",
|
| 225 |
+
"model.layers.18.self_attn.attn.impl.k_cache",
|
| 226 |
+
"model.layers.18.self_attn.attn.impl.v_cache",
|
| 227 |
+
"model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 228 |
+
"model.layers.18.mlp.gate_up_proj",
|
| 229 |
+
"model.layers.18.mlp.down_proj",
|
| 230 |
+
"model.layers.19.self_attn.qkv_proj",
|
| 231 |
+
"model.layers.19.self_attn.o_proj",
|
| 232 |
+
"model.layers.19.self_attn.attn.impl.matmul_qk",
|
| 233 |
+
"model.layers.19.self_attn.attn.impl.softmax",
|
| 234 |
+
"model.layers.19.self_attn.attn.impl.matmul_av",
|
| 235 |
+
"model.layers.19.self_attn.attn.impl.batch2block_matmul",
|
| 236 |
+
"model.layers.19.self_attn.attn.impl.block2batch_matmul",
|
| 237 |
+
"model.layers.19.self_attn.attn.impl.k_cache",
|
| 238 |
+
"model.layers.19.self_attn.attn.impl.v_cache",
|
| 239 |
+
"model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 240 |
+
"model.layers.19.mlp.gate_up_proj",
|
| 241 |
+
"model.layers.19.mlp.down_proj",
|
| 242 |
+
"model.layers.20.self_attn.qkv_proj",
|
| 243 |
+
"model.layers.20.self_attn.o_proj",
|
| 244 |
+
"model.layers.20.self_attn.attn.impl.matmul_qk",
|
| 245 |
+
"model.layers.20.self_attn.attn.impl.softmax",
|
| 246 |
+
"model.layers.20.self_attn.attn.impl.matmul_av",
|
| 247 |
+
"model.layers.20.self_attn.attn.impl.batch2block_matmul",
|
| 248 |
+
"model.layers.20.self_attn.attn.impl.block2batch_matmul",
|
| 249 |
+
"model.layers.20.self_attn.attn.impl.k_cache",
|
| 250 |
+
"model.layers.20.self_attn.attn.impl.v_cache",
|
| 251 |
+
"model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 252 |
+
"model.layers.20.mlp.gate_up_proj",
|
| 253 |
+
"model.layers.20.mlp.down_proj",
|
| 254 |
+
"model.layers.21.self_attn.qkv_proj",
|
| 255 |
+
"model.layers.21.self_attn.o_proj",
|
| 256 |
+
"model.layers.21.self_attn.attn.impl.matmul_qk",
|
| 257 |
+
"model.layers.21.self_attn.attn.impl.softmax",
|
| 258 |
+
"model.layers.21.self_attn.attn.impl.matmul_av",
|
| 259 |
+
"model.layers.21.self_attn.attn.impl.batch2block_matmul",
|
| 260 |
+
"model.layers.21.self_attn.attn.impl.block2batch_matmul",
|
| 261 |
+
"model.layers.21.self_attn.attn.impl.k_cache",
|
| 262 |
+
"model.layers.21.self_attn.attn.impl.v_cache",
|
| 263 |
+
"model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 264 |
+
"model.layers.21.mlp.gate_up_proj",
|
| 265 |
+
"model.layers.21.mlp.down_proj",
|
| 266 |
+
"model.layers.22.self_attn.qkv_proj",
|
| 267 |
+
"model.layers.22.self_attn.o_proj",
|
| 268 |
+
"model.layers.22.self_attn.attn.impl.matmul_qk",
|
| 269 |
+
"model.layers.22.self_attn.attn.impl.softmax",
|
| 270 |
+
"model.layers.22.self_attn.attn.impl.matmul_av",
|
| 271 |
+
"model.layers.22.self_attn.attn.impl.batch2block_matmul",
|
| 272 |
+
"model.layers.22.self_attn.attn.impl.block2batch_matmul",
|
| 273 |
+
"model.layers.22.self_attn.attn.impl.k_cache",
|
| 274 |
+
"model.layers.22.self_attn.attn.impl.v_cache",
|
| 275 |
+
"model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 276 |
+
"model.layers.22.mlp.gate_up_proj",
|
| 277 |
+
"model.layers.22.mlp.down_proj",
|
| 278 |
+
"model.layers.23.self_attn.qkv_proj",
|
| 279 |
+
"model.layers.23.self_attn.o_proj",
|
| 280 |
+
"model.layers.23.self_attn.attn.impl.matmul_qk",
|
| 281 |
+
"model.layers.23.self_attn.attn.impl.softmax",
|
| 282 |
+
"model.layers.23.self_attn.attn.impl.matmul_av",
|
| 283 |
+
"model.layers.23.self_attn.attn.impl.batch2block_matmul",
|
| 284 |
+
"model.layers.23.self_attn.attn.impl.block2batch_matmul",
|
| 285 |
+
"model.layers.23.self_attn.attn.impl.k_cache",
|
| 286 |
+
"model.layers.23.self_attn.attn.impl.v_cache",
|
| 287 |
+
"model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 288 |
+
"model.layers.23.mlp.gate_up_proj",
|
| 289 |
+
"model.layers.23.mlp.down_proj",
|
| 290 |
+
"model.layers.24.self_attn.qkv_proj",
|
| 291 |
+
"model.layers.24.self_attn.o_proj",
|
| 292 |
+
"model.layers.24.self_attn.attn.impl.matmul_qk",
|
| 293 |
+
"model.layers.24.self_attn.attn.impl.softmax",
|
| 294 |
+
"model.layers.24.self_attn.attn.impl.matmul_av",
|
| 295 |
+
"model.layers.24.self_attn.attn.impl.batch2block_matmul",
|
| 296 |
+
"model.layers.24.self_attn.attn.impl.block2batch_matmul",
|
| 297 |
+
"model.layers.24.self_attn.attn.impl.k_cache",
|
| 298 |
+
"model.layers.24.self_attn.attn.impl.v_cache",
|
| 299 |
+
"model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 300 |
+
"model.layers.24.mlp.gate_up_proj",
|
| 301 |
+
"model.layers.24.mlp.down_proj",
|
| 302 |
+
"model.layers.25.self_attn.qkv_proj",
|
| 303 |
+
"model.layers.25.self_attn.o_proj",
|
| 304 |
+
"model.layers.25.self_attn.attn.impl.matmul_qk",
|
| 305 |
+
"model.layers.25.self_attn.attn.impl.softmax",
|
| 306 |
+
"model.layers.25.self_attn.attn.impl.matmul_av",
|
| 307 |
+
"model.layers.25.self_attn.attn.impl.batch2block_matmul",
|
| 308 |
+
"model.layers.25.self_attn.attn.impl.block2batch_matmul",
|
| 309 |
+
"model.layers.25.self_attn.attn.impl.k_cache",
|
| 310 |
+
"model.layers.25.self_attn.attn.impl.v_cache",
|
| 311 |
+
"model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 312 |
+
"model.layers.25.mlp.gate_up_proj",
|
| 313 |
+
"model.layers.25.mlp.down_proj",
|
| 314 |
+
"model.layers.26.self_attn.qkv_proj",
|
| 315 |
+
"model.layers.26.self_attn.o_proj",
|
| 316 |
+
"model.layers.26.self_attn.attn.impl.matmul_qk",
|
| 317 |
+
"model.layers.26.self_attn.attn.impl.softmax",
|
| 318 |
+
"model.layers.26.self_attn.attn.impl.matmul_av",
|
| 319 |
+
"model.layers.26.self_attn.attn.impl.batch2block_matmul",
|
| 320 |
+
"model.layers.26.self_attn.attn.impl.block2batch_matmul",
|
| 321 |
+
"model.layers.26.self_attn.attn.impl.k_cache",
|
| 322 |
+
"model.layers.26.self_attn.attn.impl.v_cache",
|
| 323 |
+
"model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 324 |
+
"model.layers.26.mlp.gate_up_proj",
|
| 325 |
+
"model.layers.26.mlp.down_proj",
|
| 326 |
+
"model.layers.27.self_attn.qkv_proj",
|
| 327 |
+
"model.layers.27.self_attn.o_proj",
|
| 328 |
+
"model.layers.27.self_attn.attn.impl.matmul_qk",
|
| 329 |
+
"model.layers.27.self_attn.attn.impl.softmax",
|
| 330 |
+
"model.layers.27.self_attn.attn.impl.matmul_av",
|
| 331 |
+
"model.layers.27.self_attn.attn.impl.batch2block_matmul",
|
| 332 |
+
"model.layers.27.self_attn.attn.impl.block2batch_matmul",
|
| 333 |
+
"model.layers.27.self_attn.attn.impl.k_cache",
|
| 334 |
+
"model.layers.27.self_attn.attn.impl.v_cache",
|
| 335 |
+
"model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 336 |
+
"model.layers.27.mlp.gate_up_proj",
|
| 337 |
+
"model.layers.27.mlp.down_proj",
|
| 338 |
+
"model.layers.28.self_attn.qkv_proj",
|
| 339 |
+
"model.layers.28.self_attn.o_proj",
|
| 340 |
+
"model.layers.28.self_attn.attn.impl.matmul_qk",
|
| 341 |
+
"model.layers.28.self_attn.attn.impl.softmax",
|
| 342 |
+
"model.layers.28.self_attn.attn.impl.matmul_av",
|
| 343 |
+
"model.layers.28.self_attn.attn.impl.batch2block_matmul",
|
| 344 |
+
"model.layers.28.self_attn.attn.impl.block2batch_matmul",
|
| 345 |
+
"model.layers.28.self_attn.attn.impl.k_cache",
|
| 346 |
+
"model.layers.28.self_attn.attn.impl.v_cache",
|
| 347 |
+
"model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 348 |
+
"model.layers.28.mlp.gate_up_proj",
|
| 349 |
+
"model.layers.28.mlp.down_proj",
|
| 350 |
+
"model.layers.29.self_attn.qkv_proj",
|
| 351 |
+
"model.layers.29.self_attn.o_proj",
|
| 352 |
+
"model.layers.29.self_attn.attn.impl.matmul_qk",
|
| 353 |
+
"model.layers.29.self_attn.attn.impl.softmax",
|
| 354 |
+
"model.layers.29.self_attn.attn.impl.matmul_av",
|
| 355 |
+
"model.layers.29.self_attn.attn.impl.batch2block_matmul",
|
| 356 |
+
"model.layers.29.self_attn.attn.impl.block2batch_matmul",
|
| 357 |
+
"model.layers.29.self_attn.attn.impl.k_cache",
|
| 358 |
+
"model.layers.29.self_attn.attn.impl.v_cache",
|
| 359 |
+
"model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 360 |
+
"model.layers.29.mlp.gate_up_proj",
|
| 361 |
+
"model.layers.29.mlp.down_proj",
|
| 362 |
+
"model.layers.30.self_attn.qkv_proj",
|
| 363 |
+
"model.layers.30.self_attn.o_proj",
|
| 364 |
+
"model.layers.30.self_attn.attn.impl.matmul_qk",
|
| 365 |
+
"model.layers.30.self_attn.attn.impl.softmax",
|
| 366 |
+
"model.layers.30.self_attn.attn.impl.matmul_av",
|
| 367 |
+
"model.layers.30.self_attn.attn.impl.batch2block_matmul",
|
| 368 |
+
"model.layers.30.self_attn.attn.impl.block2batch_matmul",
|
| 369 |
+
"model.layers.30.self_attn.attn.impl.k_cache",
|
| 370 |
+
"model.layers.30.self_attn.attn.impl.v_cache",
|
| 371 |
+
"model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 372 |
+
"model.layers.30.mlp.gate_up_proj",
|
| 373 |
+
"model.layers.30.mlp.down_proj",
|
| 374 |
+
"model.layers.31.self_attn.qkv_proj",
|
| 375 |
+
"model.layers.31.self_attn.o_proj",
|
| 376 |
+
"model.layers.31.self_attn.attn.impl.matmul_qk",
|
| 377 |
+
"model.layers.31.self_attn.attn.impl.softmax",
|
| 378 |
+
"model.layers.31.self_attn.attn.impl.matmul_av",
|
| 379 |
+
"model.layers.31.self_attn.attn.impl.batch2block_matmul",
|
| 380 |
+
"model.layers.31.self_attn.attn.impl.block2batch_matmul",
|
| 381 |
+
"model.layers.31.self_attn.attn.impl.k_cache",
|
| 382 |
+
"model.layers.31.self_attn.attn.impl.v_cache",
|
| 383 |
+
"model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 384 |
+
"model.layers.31.mlp.gate_up_proj",
|
| 385 |
+
"model.layers.31.mlp.down_proj",
|
| 386 |
+
"model.layers.32.self_attn.qkv_proj",
|
| 387 |
+
"model.layers.32.self_attn.o_proj",
|
| 388 |
+
"model.layers.32.self_attn.attn.impl.matmul_qk",
|
| 389 |
+
"model.layers.32.self_attn.attn.impl.softmax",
|
| 390 |
+
"model.layers.32.self_attn.attn.impl.matmul_av",
|
| 391 |
+
"model.layers.32.self_attn.attn.impl.batch2block_matmul",
|
| 392 |
+
"model.layers.32.self_attn.attn.impl.block2batch_matmul",
|
| 393 |
+
"model.layers.32.self_attn.attn.impl.k_cache",
|
| 394 |
+
"model.layers.32.self_attn.attn.impl.v_cache",
|
| 395 |
+
"model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 396 |
+
"model.layers.32.mlp.gate_up_proj",
|
| 397 |
+
"model.layers.32.mlp.down_proj",
|
| 398 |
+
"model.layers.33.self_attn.qkv_proj",
|
| 399 |
+
"model.layers.33.self_attn.o_proj",
|
| 400 |
+
"model.layers.33.self_attn.attn.impl.matmul_qk",
|
| 401 |
+
"model.layers.33.self_attn.attn.impl.softmax",
|
| 402 |
+
"model.layers.33.self_attn.attn.impl.matmul_av",
|
| 403 |
+
"model.layers.33.self_attn.attn.impl.batch2block_matmul",
|
| 404 |
+
"model.layers.33.self_attn.attn.impl.block2batch_matmul",
|
| 405 |
+
"model.layers.33.self_attn.attn.impl.k_cache",
|
| 406 |
+
"model.layers.33.self_attn.attn.impl.v_cache",
|
| 407 |
+
"model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 408 |
+
"model.layers.33.mlp.gate_up_proj",
|
| 409 |
+
"model.layers.33.mlp.down_proj",
|
| 410 |
+
"model.layers.34.self_attn.qkv_proj",
|
| 411 |
+
"model.layers.34.self_attn.o_proj",
|
| 412 |
+
"model.layers.34.self_attn.attn.impl.matmul_qk",
|
| 413 |
+
"model.layers.34.self_attn.attn.impl.softmax",
|
| 414 |
+
"model.layers.34.self_attn.attn.impl.matmul_av",
|
| 415 |
+
"model.layers.34.self_attn.attn.impl.batch2block_matmul",
|
| 416 |
+
"model.layers.34.self_attn.attn.impl.block2batch_matmul",
|
| 417 |
+
"model.layers.34.self_attn.attn.impl.k_cache",
|
| 418 |
+
"model.layers.34.self_attn.attn.impl.v_cache",
|
| 419 |
+
"model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 420 |
+
"model.layers.34.mlp.gate_up_proj",
|
| 421 |
+
"model.layers.34.mlp.down_proj",
|
| 422 |
+
"model.layers.35.self_attn.qkv_proj",
|
| 423 |
+
"model.layers.35.self_attn.o_proj",
|
| 424 |
+
"model.layers.35.self_attn.attn.impl.matmul_qk",
|
| 425 |
+
"model.layers.35.self_attn.attn.impl.softmax",
|
| 426 |
+
"model.layers.35.self_attn.attn.impl.matmul_av",
|
| 427 |
+
"model.layers.35.self_attn.attn.impl.batch2block_matmul",
|
| 428 |
+
"model.layers.35.self_attn.attn.impl.block2batch_matmul",
|
| 429 |
+
"model.layers.35.self_attn.attn.impl.k_cache",
|
| 430 |
+
"model.layers.35.self_attn.attn.impl.v_cache",
|
| 431 |
+
"model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 432 |
+
"model.layers.35.mlp.gate_up_proj",
|
| 433 |
+
"model.layers.35.mlp.down_proj",
|
| 434 |
+
"model.layers.36.self_attn.qkv_proj",
|
| 435 |
+
"model.layers.36.self_attn.o_proj",
|
| 436 |
+
"model.layers.36.self_attn.attn.impl.matmul_qk",
|
| 437 |
+
"model.layers.36.self_attn.attn.impl.softmax",
|
| 438 |
+
"model.layers.36.self_attn.attn.impl.matmul_av",
|
| 439 |
+
"model.layers.36.self_attn.attn.impl.batch2block_matmul",
|
| 440 |
+
"model.layers.36.self_attn.attn.impl.block2batch_matmul",
|
| 441 |
+
"model.layers.36.self_attn.attn.impl.k_cache",
|
| 442 |
+
"model.layers.36.self_attn.attn.impl.v_cache",
|
| 443 |
+
"model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 444 |
+
"model.layers.36.mlp.gate_up_proj",
|
| 445 |
+
"model.layers.36.mlp.down_proj",
|
| 446 |
+
"model.layers.37.self_attn.qkv_proj",
|
| 447 |
+
"model.layers.37.self_attn.o_proj",
|
| 448 |
+
"model.layers.37.self_attn.attn.impl.matmul_qk",
|
| 449 |
+
"model.layers.37.self_attn.attn.impl.softmax",
|
| 450 |
+
"model.layers.37.self_attn.attn.impl.matmul_av",
|
| 451 |
+
"model.layers.37.self_attn.attn.impl.batch2block_matmul",
|
| 452 |
+
"model.layers.37.self_attn.attn.impl.block2batch_matmul",
|
| 453 |
+
"model.layers.37.self_attn.attn.impl.k_cache",
|
| 454 |
+
"model.layers.37.self_attn.attn.impl.v_cache",
|
| 455 |
+
"model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 456 |
+
"model.layers.37.mlp.gate_up_proj",
|
| 457 |
+
"model.layers.37.mlp.down_proj",
|
| 458 |
+
"model.layers.38.self_attn.qkv_proj",
|
| 459 |
+
"model.layers.38.self_attn.o_proj",
|
| 460 |
+
"model.layers.38.self_attn.attn.impl.matmul_qk",
|
| 461 |
+
"model.layers.38.self_attn.attn.impl.softmax",
|
| 462 |
+
"model.layers.38.self_attn.attn.impl.matmul_av",
|
| 463 |
+
"model.layers.38.self_attn.attn.impl.batch2block_matmul",
|
| 464 |
+
"model.layers.38.self_attn.attn.impl.block2batch_matmul",
|
| 465 |
+
"model.layers.38.self_attn.attn.impl.k_cache",
|
| 466 |
+
"model.layers.38.self_attn.attn.impl.v_cache",
|
| 467 |
+
"model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 468 |
+
"model.layers.38.mlp.gate_up_proj",
|
| 469 |
+
"model.layers.38.mlp.down_proj",
|
| 470 |
+
"model.layers.39.self_attn.qkv_proj",
|
| 471 |
+
"model.layers.39.self_attn.o_proj",
|
| 472 |
+
"model.layers.39.self_attn.attn.impl.matmul_qk",
|
| 473 |
+
"model.layers.39.self_attn.attn.impl.softmax",
|
| 474 |
+
"model.layers.39.self_attn.attn.impl.matmul_av",
|
| 475 |
+
"model.layers.39.self_attn.attn.impl.batch2block_matmul",
|
| 476 |
+
"model.layers.39.self_attn.attn.impl.block2batch_matmul",
|
| 477 |
+
"model.layers.39.self_attn.attn.impl.k_cache",
|
| 478 |
+
"model.layers.39.self_attn.attn.impl.v_cache",
|
| 479 |
+
"model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 480 |
+
"model.layers.39.mlp.gate_up_proj",
|
| 481 |
+
"model.layers.39.mlp.down_proj",
|
| 482 |
+
"model.layers.40.self_attn.qkv_proj",
|
| 483 |
+
"model.layers.40.self_attn.o_proj",
|
| 484 |
+
"model.layers.40.self_attn.attn.impl.matmul_qk",
|
| 485 |
+
"model.layers.40.self_attn.attn.impl.softmax",
|
| 486 |
+
"model.layers.40.self_attn.attn.impl.matmul_av",
|
| 487 |
+
"model.layers.40.self_attn.attn.impl.batch2block_matmul",
|
| 488 |
+
"model.layers.40.self_attn.attn.impl.block2batch_matmul",
|
| 489 |
+
"model.layers.40.self_attn.attn.impl.k_cache",
|
| 490 |
+
"model.layers.40.self_attn.attn.impl.v_cache",
|
| 491 |
+
"model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 492 |
+
"model.layers.40.mlp.gate_up_proj",
|
| 493 |
+
"model.layers.40.mlp.down_proj",
|
| 494 |
+
"model.layers.41.self_attn.qkv_proj",
|
| 495 |
+
"model.layers.41.self_attn.o_proj",
|
| 496 |
+
"model.layers.41.self_attn.attn.impl.matmul_qk",
|
| 497 |
+
"model.layers.41.self_attn.attn.impl.softmax",
|
| 498 |
+
"model.layers.41.self_attn.attn.impl.matmul_av",
|
| 499 |
+
"model.layers.41.self_attn.attn.impl.batch2block_matmul",
|
| 500 |
+
"model.layers.41.self_attn.attn.impl.block2batch_matmul",
|
| 501 |
+
"model.layers.41.self_attn.attn.impl.k_cache",
|
| 502 |
+
"model.layers.41.self_attn.attn.impl.v_cache",
|
| 503 |
+
"model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 504 |
+
"model.layers.41.mlp.gate_up_proj",
|
| 505 |
+
"model.layers.41.mlp.down_proj",
|
| 506 |
+
"model.layers.42.self_attn.qkv_proj",
|
| 507 |
+
"model.layers.42.self_attn.o_proj",
|
| 508 |
+
"model.layers.42.self_attn.attn.impl.matmul_qk",
|
| 509 |
+
"model.layers.42.self_attn.attn.impl.softmax",
|
| 510 |
+
"model.layers.42.self_attn.attn.impl.matmul_av",
|
| 511 |
+
"model.layers.42.self_attn.attn.impl.batch2block_matmul",
|
| 512 |
+
"model.layers.42.self_attn.attn.impl.block2batch_matmul",
|
| 513 |
+
"model.layers.42.self_attn.attn.impl.k_cache",
|
| 514 |
+
"model.layers.42.self_attn.attn.impl.v_cache",
|
| 515 |
+
"model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 516 |
+
"model.layers.42.mlp.gate_up_proj",
|
| 517 |
+
"model.layers.42.mlp.down_proj",
|
| 518 |
+
"model.layers.43.self_attn.qkv_proj",
|
| 519 |
+
"model.layers.43.self_attn.o_proj",
|
| 520 |
+
"model.layers.43.self_attn.attn.impl.matmul_qk",
|
| 521 |
+
"model.layers.43.self_attn.attn.impl.softmax",
|
| 522 |
+
"model.layers.43.self_attn.attn.impl.matmul_av",
|
| 523 |
+
"model.layers.43.self_attn.attn.impl.batch2block_matmul",
|
| 524 |
+
"model.layers.43.self_attn.attn.impl.block2batch_matmul",
|
| 525 |
+
"model.layers.43.self_attn.attn.impl.k_cache",
|
| 526 |
+
"model.layers.43.self_attn.attn.impl.v_cache",
|
| 527 |
+
"model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 528 |
+
"model.layers.43.mlp.gate_up_proj",
|
| 529 |
+
"model.layers.43.mlp.down_proj",
|
| 530 |
+
"model.layers.44.self_attn.qkv_proj",
|
| 531 |
+
"model.layers.44.self_attn.o_proj",
|
| 532 |
+
"model.layers.44.self_attn.attn.impl.matmul_qk",
|
| 533 |
+
"model.layers.44.self_attn.attn.impl.softmax",
|
| 534 |
+
"model.layers.44.self_attn.attn.impl.matmul_av",
|
| 535 |
+
"model.layers.44.self_attn.attn.impl.batch2block_matmul",
|
| 536 |
+
"model.layers.44.self_attn.attn.impl.block2batch_matmul",
|
| 537 |
+
"model.layers.44.self_attn.attn.impl.k_cache",
|
| 538 |
+
"model.layers.44.self_attn.attn.impl.v_cache",
|
| 539 |
+
"model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 540 |
+
"model.layers.44.mlp.gate_up_proj",
|
| 541 |
+
"model.layers.44.mlp.down_proj",
|
| 542 |
+
"model.layers.45.self_attn.qkv_proj",
|
| 543 |
+
"model.layers.45.self_attn.o_proj",
|
| 544 |
+
"model.layers.45.self_attn.attn.impl.matmul_qk",
|
| 545 |
+
"model.layers.45.self_attn.attn.impl.softmax",
|
| 546 |
+
"model.layers.45.self_attn.attn.impl.matmul_av",
|
| 547 |
+
"model.layers.45.self_attn.attn.impl.batch2block_matmul",
|
| 548 |
+
"model.layers.45.self_attn.attn.impl.block2batch_matmul",
|
| 549 |
+
"model.layers.45.self_attn.attn.impl.k_cache",
|
| 550 |
+
"model.layers.45.self_attn.attn.impl.v_cache",
|
| 551 |
+
"model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 552 |
+
"model.layers.45.mlp.gate_up_proj",
|
| 553 |
+
"model.layers.45.mlp.down_proj",
|
| 554 |
+
"model.layers.46.self_attn.qkv_proj",
|
| 555 |
+
"model.layers.46.self_attn.o_proj",
|
| 556 |
+
"model.layers.46.self_attn.attn.impl.matmul_qk",
|
| 557 |
+
"model.layers.46.self_attn.attn.impl.softmax",
|
| 558 |
+
"model.layers.46.self_attn.attn.impl.matmul_av",
|
| 559 |
+
"model.layers.46.self_attn.attn.impl.batch2block_matmul",
|
| 560 |
+
"model.layers.46.self_attn.attn.impl.block2batch_matmul",
|
| 561 |
+
"model.layers.46.self_attn.attn.impl.k_cache",
|
| 562 |
+
"model.layers.46.self_attn.attn.impl.v_cache",
|
| 563 |
+
"model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 564 |
+
"model.layers.46.mlp.gate_up_proj",
|
| 565 |
+
"model.layers.46.mlp.down_proj",
|
| 566 |
+
"model.layers.47.self_attn.qkv_proj",
|
| 567 |
+
"model.layers.47.self_attn.o_proj",
|
| 568 |
+
"model.layers.47.self_attn.attn.impl.matmul_qk",
|
| 569 |
+
"model.layers.47.self_attn.attn.impl.softmax",
|
| 570 |
+
"model.layers.47.self_attn.attn.impl.matmul_av",
|
| 571 |
+
"model.layers.47.self_attn.attn.impl.batch2block_matmul",
|
| 572 |
+
"model.layers.47.self_attn.attn.impl.block2batch_matmul",
|
| 573 |
+
"model.layers.47.self_attn.attn.impl.k_cache",
|
| 574 |
+
"model.layers.47.self_attn.attn.impl.v_cache",
|
| 575 |
+
"model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 576 |
+
"model.layers.47.mlp.gate_up_proj",
|
| 577 |
+
"model.layers.47.mlp.down_proj",
|
| 578 |
+
"model.layers.48.self_attn.qkv_proj",
|
| 579 |
+
"model.layers.48.self_attn.o_proj",
|
| 580 |
+
"model.layers.48.self_attn.attn.impl.matmul_qk",
|
| 581 |
+
"model.layers.48.self_attn.attn.impl.softmax",
|
| 582 |
+
"model.layers.48.self_attn.attn.impl.matmul_av",
|
| 583 |
+
"model.layers.48.self_attn.attn.impl.batch2block_matmul",
|
| 584 |
+
"model.layers.48.self_attn.attn.impl.block2batch_matmul",
|
| 585 |
+
"model.layers.48.self_attn.attn.impl.k_cache",
|
| 586 |
+
"model.layers.48.self_attn.attn.impl.v_cache",
|
| 587 |
+
"model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 588 |
+
"model.layers.48.mlp.gate_up_proj",
|
| 589 |
+
"model.layers.48.mlp.down_proj",
|
| 590 |
+
"model.layers.49.self_attn.qkv_proj",
|
| 591 |
+
"model.layers.49.self_attn.o_proj",
|
| 592 |
+
"model.layers.49.self_attn.attn.impl.matmul_qk",
|
| 593 |
+
"model.layers.49.self_attn.attn.impl.softmax",
|
| 594 |
+
"model.layers.49.self_attn.attn.impl.matmul_av",
|
| 595 |
+
"model.layers.49.self_attn.attn.impl.batch2block_matmul",
|
| 596 |
+
"model.layers.49.self_attn.attn.impl.block2batch_matmul",
|
| 597 |
+
"model.layers.49.self_attn.attn.impl.k_cache",
|
| 598 |
+
"model.layers.49.self_attn.attn.impl.v_cache",
|
| 599 |
+
"model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 600 |
+
"model.layers.49.mlp.gate_up_proj",
|
| 601 |
+
"model.layers.49.mlp.down_proj",
|
| 602 |
+
"model.layers.50.self_attn.qkv_proj",
|
| 603 |
+
"model.layers.50.self_attn.o_proj",
|
| 604 |
+
"model.layers.50.self_attn.attn.impl.matmul_qk",
|
| 605 |
+
"model.layers.50.self_attn.attn.impl.softmax",
|
| 606 |
+
"model.layers.50.self_attn.attn.impl.matmul_av",
|
| 607 |
+
"model.layers.50.self_attn.attn.impl.batch2block_matmul",
|
| 608 |
+
"model.layers.50.self_attn.attn.impl.block2batch_matmul",
|
| 609 |
+
"model.layers.50.self_attn.attn.impl.k_cache",
|
| 610 |
+
"model.layers.50.self_attn.attn.impl.v_cache",
|
| 611 |
+
"model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 612 |
+
"model.layers.50.mlp.gate_up_proj",
|
| 613 |
+
"model.layers.50.mlp.down_proj",
|
| 614 |
+
"model.layers.51.self_attn.qkv_proj",
|
| 615 |
+
"model.layers.51.self_attn.o_proj",
|
| 616 |
+
"model.layers.51.self_attn.attn.impl.matmul_qk",
|
| 617 |
+
"model.layers.51.self_attn.attn.impl.softmax",
|
| 618 |
+
"model.layers.51.self_attn.attn.impl.matmul_av",
|
| 619 |
+
"model.layers.51.self_attn.attn.impl.batch2block_matmul",
|
| 620 |
+
"model.layers.51.self_attn.attn.impl.block2batch_matmul",
|
| 621 |
+
"model.layers.51.self_attn.attn.impl.k_cache",
|
| 622 |
+
"model.layers.51.self_attn.attn.impl.v_cache",
|
| 623 |
+
"model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 624 |
+
"model.layers.51.mlp.gate_up_proj",
|
| 625 |
+
"model.layers.51.mlp.down_proj",
|
| 626 |
+
"model.layers.52.self_attn.qkv_proj",
|
| 627 |
+
"model.layers.52.self_attn.o_proj",
|
| 628 |
+
"model.layers.52.self_attn.attn.impl.matmul_qk",
|
| 629 |
+
"model.layers.52.self_attn.attn.impl.softmax",
|
| 630 |
+
"model.layers.52.self_attn.attn.impl.matmul_av",
|
| 631 |
+
"model.layers.52.self_attn.attn.impl.batch2block_matmul",
|
| 632 |
+
"model.layers.52.self_attn.attn.impl.block2batch_matmul",
|
| 633 |
+
"model.layers.52.self_attn.attn.impl.k_cache",
|
| 634 |
+
"model.layers.52.self_attn.attn.impl.v_cache",
|
| 635 |
+
"model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 636 |
+
"model.layers.52.mlp.gate_up_proj",
|
| 637 |
+
"model.layers.52.mlp.down_proj",
|
| 638 |
+
"model.layers.53.self_attn.qkv_proj",
|
| 639 |
+
"model.layers.53.self_attn.o_proj",
|
| 640 |
+
"model.layers.53.self_attn.attn.impl.matmul_qk",
|
| 641 |
+
"model.layers.53.self_attn.attn.impl.softmax",
|
| 642 |
+
"model.layers.53.self_attn.attn.impl.matmul_av",
|
| 643 |
+
"model.layers.53.self_attn.attn.impl.batch2block_matmul",
|
| 644 |
+
"model.layers.53.self_attn.attn.impl.block2batch_matmul",
|
| 645 |
+
"model.layers.53.self_attn.attn.impl.k_cache",
|
| 646 |
+
"model.layers.53.self_attn.attn.impl.v_cache",
|
| 647 |
+
"model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 648 |
+
"model.layers.53.mlp.gate_up_proj",
|
| 649 |
+
"model.layers.53.mlp.down_proj",
|
| 650 |
+
"model.layers.54.self_attn.qkv_proj",
|
| 651 |
+
"model.layers.54.self_attn.o_proj",
|
| 652 |
+
"model.layers.54.self_attn.attn.impl.matmul_qk",
|
| 653 |
+
"model.layers.54.self_attn.attn.impl.softmax",
|
| 654 |
+
"model.layers.54.self_attn.attn.impl.matmul_av",
|
| 655 |
+
"model.layers.54.self_attn.attn.impl.batch2block_matmul",
|
| 656 |
+
"model.layers.54.self_attn.attn.impl.block2batch_matmul",
|
| 657 |
+
"model.layers.54.self_attn.attn.impl.k_cache",
|
| 658 |
+
"model.layers.54.self_attn.attn.impl.v_cache",
|
| 659 |
+
"model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 660 |
+
"model.layers.54.mlp.gate_up_proj",
|
| 661 |
+
"model.layers.54.mlp.down_proj",
|
| 662 |
+
"model.layers.55.self_attn.qkv_proj",
|
| 663 |
+
"model.layers.55.self_attn.o_proj",
|
| 664 |
+
"model.layers.55.self_attn.attn.impl.matmul_qk",
|
| 665 |
+
"model.layers.55.self_attn.attn.impl.softmax",
|
| 666 |
+
"model.layers.55.self_attn.attn.impl.matmul_av",
|
| 667 |
+
"model.layers.55.self_attn.attn.impl.batch2block_matmul",
|
| 668 |
+
"model.layers.55.self_attn.attn.impl.block2batch_matmul",
|
| 669 |
+
"model.layers.55.self_attn.attn.impl.k_cache",
|
| 670 |
+
"model.layers.55.self_attn.attn.impl.v_cache",
|
| 671 |
+
"model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 672 |
+
"model.layers.55.mlp.gate_up_proj",
|
| 673 |
+
"model.layers.55.mlp.down_proj",
|
| 674 |
+
"model.layers.56.self_attn.qkv_proj",
|
| 675 |
+
"model.layers.56.self_attn.o_proj",
|
| 676 |
+
"model.layers.56.self_attn.attn.impl.matmul_qk",
|
| 677 |
+
"model.layers.56.self_attn.attn.impl.softmax",
|
| 678 |
+
"model.layers.56.self_attn.attn.impl.matmul_av",
|
| 679 |
+
"model.layers.56.self_attn.attn.impl.batch2block_matmul",
|
| 680 |
+
"model.layers.56.self_attn.attn.impl.block2batch_matmul",
|
| 681 |
+
"model.layers.56.self_attn.attn.impl.k_cache",
|
| 682 |
+
"model.layers.56.self_attn.attn.impl.v_cache",
|
| 683 |
+
"model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 684 |
+
"model.layers.56.mlp.gate_up_proj",
|
| 685 |
+
"model.layers.56.mlp.down_proj",
|
| 686 |
+
"model.layers.57.self_attn.qkv_proj",
|
| 687 |
+
"model.layers.57.self_attn.o_proj",
|
| 688 |
+
"model.layers.57.self_attn.attn.impl.matmul_qk",
|
| 689 |
+
"model.layers.57.self_attn.attn.impl.softmax",
|
| 690 |
+
"model.layers.57.self_attn.attn.impl.matmul_av",
|
| 691 |
+
"model.layers.57.self_attn.attn.impl.batch2block_matmul",
|
| 692 |
+
"model.layers.57.self_attn.attn.impl.block2batch_matmul",
|
| 693 |
+
"model.layers.57.self_attn.attn.impl.k_cache",
|
| 694 |
+
"model.layers.57.self_attn.attn.impl.v_cache",
|
| 695 |
+
"model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 696 |
+
"model.layers.57.mlp.gate_up_proj",
|
| 697 |
+
"model.layers.57.mlp.down_proj",
|
| 698 |
+
"model.layers.58.self_attn.qkv_proj",
|
| 699 |
+
"model.layers.58.self_attn.o_proj",
|
| 700 |
+
"model.layers.58.self_attn.attn.impl.matmul_qk",
|
| 701 |
+
"model.layers.58.self_attn.attn.impl.softmax",
|
| 702 |
+
"model.layers.58.self_attn.attn.impl.matmul_av",
|
| 703 |
+
"model.layers.58.self_attn.attn.impl.batch2block_matmul",
|
| 704 |
+
"model.layers.58.self_attn.attn.impl.block2batch_matmul",
|
| 705 |
+
"model.layers.58.self_attn.attn.impl.k_cache",
|
| 706 |
+
"model.layers.58.self_attn.attn.impl.v_cache",
|
| 707 |
+
"model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 708 |
+
"model.layers.58.mlp.gate_up_proj",
|
| 709 |
+
"model.layers.58.mlp.down_proj",
|
| 710 |
+
"model.layers.59.self_attn.qkv_proj",
|
| 711 |
+
"model.layers.59.self_attn.o_proj",
|
| 712 |
+
"model.layers.59.self_attn.attn.impl.matmul_qk",
|
| 713 |
+
"model.layers.59.self_attn.attn.impl.softmax",
|
| 714 |
+
"model.layers.59.self_attn.attn.impl.matmul_av",
|
| 715 |
+
"model.layers.59.self_attn.attn.impl.batch2block_matmul",
|
| 716 |
+
"model.layers.59.self_attn.attn.impl.block2batch_matmul",
|
| 717 |
+
"model.layers.59.self_attn.attn.impl.k_cache",
|
| 718 |
+
"model.layers.59.self_attn.attn.impl.v_cache",
|
| 719 |
+
"model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 720 |
+
"model.layers.59.mlp.gate_up_proj",
|
| 721 |
+
"model.layers.59.mlp.down_proj",
|
| 722 |
+
"model.layers.60.self_attn.qkv_proj",
|
| 723 |
+
"model.layers.60.self_attn.o_proj",
|
| 724 |
+
"model.layers.60.self_attn.attn.impl.matmul_qk",
|
| 725 |
+
"model.layers.60.self_attn.attn.impl.softmax",
|
| 726 |
+
"model.layers.60.self_attn.attn.impl.matmul_av",
|
| 727 |
+
"model.layers.60.self_attn.attn.impl.batch2block_matmul",
|
| 728 |
+
"model.layers.60.self_attn.attn.impl.block2batch_matmul",
|
| 729 |
+
"model.layers.60.self_attn.attn.impl.k_cache",
|
| 730 |
+
"model.layers.60.self_attn.attn.impl.v_cache",
|
| 731 |
+
"model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 732 |
+
"model.layers.60.mlp.gate_up_proj",
|
| 733 |
+
"model.layers.60.mlp.down_proj",
|
| 734 |
+
"model.layers.61.self_attn.qkv_proj",
|
| 735 |
+
"model.layers.61.self_attn.o_proj",
|
| 736 |
+
"model.layers.61.self_attn.attn.impl.matmul_qk",
|
| 737 |
+
"model.layers.61.self_attn.attn.impl.softmax",
|
| 738 |
+
"model.layers.61.self_attn.attn.impl.matmul_av",
|
| 739 |
+
"model.layers.61.self_attn.attn.impl.batch2block_matmul",
|
| 740 |
+
"model.layers.61.self_attn.attn.impl.block2batch_matmul",
|
| 741 |
+
"model.layers.61.self_attn.attn.impl.k_cache",
|
| 742 |
+
"model.layers.61.self_attn.attn.impl.v_cache",
|
| 743 |
+
"model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 744 |
+
"model.layers.61.mlp.gate_up_proj",
|
| 745 |
+
"model.layers.61.mlp.down_proj",
|
| 746 |
+
"model.layers.62.self_attn.qkv_proj",
|
| 747 |
+
"model.layers.62.self_attn.o_proj",
|
| 748 |
+
"model.layers.62.self_attn.attn.impl.matmul_qk",
|
| 749 |
+
"model.layers.62.self_attn.attn.impl.softmax",
|
| 750 |
+
"model.layers.62.self_attn.attn.impl.matmul_av",
|
| 751 |
+
"model.layers.62.self_attn.attn.impl.batch2block_matmul",
|
| 752 |
+
"model.layers.62.self_attn.attn.impl.block2batch_matmul",
|
| 753 |
+
"model.layers.62.self_attn.attn.impl.k_cache",
|
| 754 |
+
"model.layers.62.self_attn.attn.impl.v_cache",
|
| 755 |
+
"model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 756 |
+
"model.layers.62.mlp.gate_up_proj",
|
| 757 |
+
"model.layers.62.mlp.down_proj",
|
| 758 |
+
"model.layers.63.self_attn.qkv_proj",
|
| 759 |
+
"model.layers.63.self_attn.o_proj",
|
| 760 |
+
"model.layers.63.self_attn.attn.impl.matmul_qk",
|
| 761 |
+
"model.layers.63.self_attn.attn.impl.softmax",
|
| 762 |
+
"model.layers.63.self_attn.attn.impl.matmul_av",
|
| 763 |
+
"model.layers.63.self_attn.attn.impl.batch2block_matmul",
|
| 764 |
+
"model.layers.63.self_attn.attn.impl.block2batch_matmul",
|
| 765 |
+
"model.layers.63.self_attn.attn.impl.k_cache",
|
| 766 |
+
"model.layers.63.self_attn.attn.impl.v_cache",
|
| 767 |
+
"model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 768 |
+
"model.layers.63.mlp.gate_up_proj",
|
| 769 |
+
"model.layers.63.mlp.down_proj",
|
| 770 |
+
"model.layers.64.self_attn.qkv_proj",
|
| 771 |
+
"model.layers.64.self_attn.o_proj",
|
| 772 |
+
"model.layers.64.self_attn.attn.impl.matmul_qk",
|
| 773 |
+
"model.layers.64.self_attn.attn.impl.softmax",
|
| 774 |
+
"model.layers.64.self_attn.attn.impl.matmul_av",
|
| 775 |
+
"model.layers.64.self_attn.attn.impl.batch2block_matmul",
|
| 776 |
+
"model.layers.64.self_attn.attn.impl.block2batch_matmul",
|
| 777 |
+
"model.layers.64.self_attn.attn.impl.k_cache",
|
| 778 |
+
"model.layers.64.self_attn.attn.impl.v_cache",
|
| 779 |
+
"model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 780 |
+
"model.layers.64.mlp.gate_up_proj",
|
| 781 |
+
"model.layers.64.mlp.down_proj",
|
| 782 |
+
"model.layers.65.self_attn.qkv_proj",
|
| 783 |
+
"model.layers.65.self_attn.o_proj",
|
| 784 |
+
"model.layers.65.self_attn.attn.impl.matmul_qk",
|
| 785 |
+
"model.layers.65.self_attn.attn.impl.softmax",
|
| 786 |
+
"model.layers.65.self_attn.attn.impl.matmul_av",
|
| 787 |
+
"model.layers.65.self_attn.attn.impl.batch2block_matmul",
|
| 788 |
+
"model.layers.65.self_attn.attn.impl.block2batch_matmul",
|
| 789 |
+
"model.layers.65.self_attn.attn.impl.k_cache",
|
| 790 |
+
"model.layers.65.self_attn.attn.impl.v_cache",
|
| 791 |
+
"model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 792 |
+
"model.layers.65.mlp.gate_up_proj",
|
| 793 |
+
"model.layers.65.mlp.down_proj",
|
| 794 |
+
"model.layers.66.self_attn.qkv_proj",
|
| 795 |
+
"model.layers.66.self_attn.o_proj",
|
| 796 |
+
"model.layers.66.self_attn.attn.impl.matmul_qk",
|
| 797 |
+
"model.layers.66.self_attn.attn.impl.softmax",
|
| 798 |
+
"model.layers.66.self_attn.attn.impl.matmul_av",
|
| 799 |
+
"model.layers.66.self_attn.attn.impl.batch2block_matmul",
|
| 800 |
+
"model.layers.66.self_attn.attn.impl.block2batch_matmul",
|
| 801 |
+
"model.layers.66.self_attn.attn.impl.k_cache",
|
| 802 |
+
"model.layers.66.self_attn.attn.impl.v_cache",
|
| 803 |
+
"model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 804 |
+
"model.layers.66.mlp.gate_up_proj",
|
| 805 |
+
"model.layers.66.mlp.down_proj",
|
| 806 |
+
"model.layers.67.self_attn.qkv_proj",
|
| 807 |
+
"model.layers.67.self_attn.o_proj",
|
| 808 |
+
"model.layers.67.self_attn.attn.impl.matmul_qk",
|
| 809 |
+
"model.layers.67.self_attn.attn.impl.softmax",
|
| 810 |
+
"model.layers.67.self_attn.attn.impl.matmul_av",
|
| 811 |
+
"model.layers.67.self_attn.attn.impl.batch2block_matmul",
|
| 812 |
+
"model.layers.67.self_attn.attn.impl.block2batch_matmul",
|
| 813 |
+
"model.layers.67.self_attn.attn.impl.k_cache",
|
| 814 |
+
"model.layers.67.self_attn.attn.impl.v_cache",
|
| 815 |
+
"model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 816 |
+
"model.layers.67.mlp.gate_up_proj",
|
| 817 |
+
"model.layers.67.mlp.down_proj",
|
| 818 |
+
"model.layers.68.self_attn.qkv_proj",
|
| 819 |
+
"model.layers.68.self_attn.o_proj",
|
| 820 |
+
"model.layers.68.self_attn.attn.impl.matmul_qk",
|
| 821 |
+
"model.layers.68.self_attn.attn.impl.softmax",
|
| 822 |
+
"model.layers.68.self_attn.attn.impl.matmul_av",
|
| 823 |
+
"model.layers.68.self_attn.attn.impl.batch2block_matmul",
|
| 824 |
+
"model.layers.68.self_attn.attn.impl.block2batch_matmul",
|
| 825 |
+
"model.layers.68.self_attn.attn.impl.k_cache",
|
| 826 |
+
"model.layers.68.self_attn.attn.impl.v_cache",
|
| 827 |
+
"model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 828 |
+
"model.layers.68.mlp.gate_up_proj",
|
| 829 |
+
"model.layers.68.mlp.down_proj",
|
| 830 |
+
"model.layers.69.self_attn.qkv_proj",
|
| 831 |
+
"model.layers.69.self_attn.o_proj",
|
| 832 |
+
"model.layers.69.self_attn.attn.impl.matmul_qk",
|
| 833 |
+
"model.layers.69.self_attn.attn.impl.softmax",
|
| 834 |
+
"model.layers.69.self_attn.attn.impl.matmul_av",
|
| 835 |
+
"model.layers.69.self_attn.attn.impl.batch2block_matmul",
|
| 836 |
+
"model.layers.69.self_attn.attn.impl.block2batch_matmul",
|
| 837 |
+
"model.layers.69.self_attn.attn.impl.k_cache",
|
| 838 |
+
"model.layers.69.self_attn.attn.impl.v_cache",
|
| 839 |
+
"model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 840 |
+
"model.layers.69.mlp.gate_up_proj",
|
| 841 |
+
"model.layers.69.mlp.down_proj",
|
| 842 |
+
"model.layers.70.self_attn.qkv_proj",
|
| 843 |
+
"model.layers.70.self_attn.o_proj",
|
| 844 |
+
"model.layers.70.self_attn.attn.impl.matmul_qk",
|
| 845 |
+
"model.layers.70.self_attn.attn.impl.softmax",
|
| 846 |
+
"model.layers.70.self_attn.attn.impl.matmul_av",
|
| 847 |
+
"model.layers.70.self_attn.attn.impl.batch2block_matmul",
|
| 848 |
+
"model.layers.70.self_attn.attn.impl.block2batch_matmul",
|
| 849 |
+
"model.layers.70.self_attn.attn.impl.k_cache",
|
| 850 |
+
"model.layers.70.self_attn.attn.impl.v_cache",
|
| 851 |
+
"model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 852 |
+
"model.layers.70.mlp.gate_up_proj",
|
| 853 |
+
"model.layers.70.mlp.down_proj",
|
| 854 |
+
"model.layers.71.self_attn.qkv_proj",
|
| 855 |
+
"model.layers.71.self_attn.o_proj",
|
| 856 |
+
"model.layers.71.self_attn.attn.impl.matmul_qk",
|
| 857 |
+
"model.layers.71.self_attn.attn.impl.softmax",
|
| 858 |
+
"model.layers.71.self_attn.attn.impl.matmul_av",
|
| 859 |
+
"model.layers.71.self_attn.attn.impl.batch2block_matmul",
|
| 860 |
+
"model.layers.71.self_attn.attn.impl.block2batch_matmul",
|
| 861 |
+
"model.layers.71.self_attn.attn.impl.k_cache",
|
| 862 |
+
"model.layers.71.self_attn.attn.impl.v_cache",
|
| 863 |
+
"model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 864 |
+
"model.layers.71.mlp.gate_up_proj",
|
| 865 |
+
"model.layers.71.mlp.down_proj",
|
| 866 |
+
"model.layers.72.self_attn.qkv_proj",
|
| 867 |
+
"model.layers.72.self_attn.o_proj",
|
| 868 |
+
"model.layers.72.self_attn.attn.impl.matmul_qk",
|
| 869 |
+
"model.layers.72.self_attn.attn.impl.softmax",
|
| 870 |
+
"model.layers.72.self_attn.attn.impl.matmul_av",
|
| 871 |
+
"model.layers.72.self_attn.attn.impl.batch2block_matmul",
|
| 872 |
+
"model.layers.72.self_attn.attn.impl.block2batch_matmul",
|
| 873 |
+
"model.layers.72.self_attn.attn.impl.k_cache",
|
| 874 |
+
"model.layers.72.self_attn.attn.impl.v_cache",
|
| 875 |
+
"model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 876 |
+
"model.layers.72.mlp.gate_up_proj",
|
| 877 |
+
"model.layers.72.mlp.down_proj",
|
| 878 |
+
"model.layers.73.self_attn.qkv_proj",
|
| 879 |
+
"model.layers.73.self_attn.o_proj",
|
| 880 |
+
"model.layers.73.self_attn.attn.impl.matmul_qk",
|
| 881 |
+
"model.layers.73.self_attn.attn.impl.softmax",
|
| 882 |
+
"model.layers.73.self_attn.attn.impl.matmul_av",
|
| 883 |
+
"model.layers.73.self_attn.attn.impl.batch2block_matmul",
|
| 884 |
+
"model.layers.73.self_attn.attn.impl.block2batch_matmul",
|
| 885 |
+
"model.layers.73.self_attn.attn.impl.k_cache",
|
| 886 |
+
"model.layers.73.self_attn.attn.impl.v_cache",
|
| 887 |
+
"model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 888 |
+
"model.layers.73.mlp.gate_up_proj",
|
| 889 |
+
"model.layers.73.mlp.down_proj",
|
| 890 |
+
"model.layers.74.self_attn.qkv_proj",
|
| 891 |
+
"model.layers.74.self_attn.o_proj",
|
| 892 |
+
"model.layers.74.self_attn.attn.impl.matmul_qk",
|
| 893 |
+
"model.layers.74.self_attn.attn.impl.softmax",
|
| 894 |
+
"model.layers.74.self_attn.attn.impl.matmul_av",
|
| 895 |
+
"model.layers.74.self_attn.attn.impl.batch2block_matmul",
|
| 896 |
+
"model.layers.74.self_attn.attn.impl.block2batch_matmul",
|
| 897 |
+
"model.layers.74.self_attn.attn.impl.k_cache",
|
| 898 |
+
"model.layers.74.self_attn.attn.impl.v_cache",
|
| 899 |
+
"model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 900 |
+
"model.layers.74.mlp.gate_up_proj",
|
| 901 |
+
"model.layers.74.mlp.down_proj",
|
| 902 |
+
"model.layers.75.self_attn.qkv_proj",
|
| 903 |
+
"model.layers.75.self_attn.o_proj",
|
| 904 |
+
"model.layers.75.self_attn.attn.impl.matmul_qk",
|
| 905 |
+
"model.layers.75.self_attn.attn.impl.softmax",
|
| 906 |
+
"model.layers.75.self_attn.attn.impl.matmul_av",
|
| 907 |
+
"model.layers.75.self_attn.attn.impl.batch2block_matmul",
|
| 908 |
+
"model.layers.75.self_attn.attn.impl.block2batch_matmul",
|
| 909 |
+
"model.layers.75.self_attn.attn.impl.k_cache",
|
| 910 |
+
"model.layers.75.self_attn.attn.impl.v_cache",
|
| 911 |
+
"model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 912 |
+
"model.layers.75.mlp.gate_up_proj",
|
| 913 |
+
"model.layers.75.mlp.down_proj",
|
| 914 |
+
"model.layers.76.self_attn.qkv_proj",
|
| 915 |
+
"model.layers.76.self_attn.o_proj",
|
| 916 |
+
"model.layers.76.self_attn.attn.impl.matmul_qk",
|
| 917 |
+
"model.layers.76.self_attn.attn.impl.softmax",
|
| 918 |
+
"model.layers.76.self_attn.attn.impl.matmul_av",
|
| 919 |
+
"model.layers.76.self_attn.attn.impl.batch2block_matmul",
|
| 920 |
+
"model.layers.76.self_attn.attn.impl.block2batch_matmul",
|
| 921 |
+
"model.layers.76.self_attn.attn.impl.k_cache",
|
| 922 |
+
"model.layers.76.self_attn.attn.impl.v_cache",
|
| 923 |
+
"model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 924 |
+
"model.layers.76.mlp.gate_up_proj",
|
| 925 |
+
"model.layers.76.mlp.down_proj",
|
| 926 |
+
"model.layers.77.self_attn.qkv_proj",
|
| 927 |
+
"model.layers.77.self_attn.o_proj",
|
| 928 |
+
"model.layers.77.self_attn.attn.impl.matmul_qk",
|
| 929 |
+
"model.layers.77.self_attn.attn.impl.softmax",
|
| 930 |
+
"model.layers.77.self_attn.attn.impl.matmul_av",
|
| 931 |
+
"model.layers.77.self_attn.attn.impl.batch2block_matmul",
|
| 932 |
+
"model.layers.77.self_attn.attn.impl.block2batch_matmul",
|
| 933 |
+
"model.layers.77.self_attn.attn.impl.k_cache",
|
| 934 |
+
"model.layers.77.self_attn.attn.impl.v_cache",
|
| 935 |
+
"model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 936 |
+
"model.layers.77.mlp.gate_up_proj",
|
| 937 |
+
"model.layers.77.mlp.down_proj",
|
| 938 |
+
"model.layers.78.self_attn.qkv_proj",
|
| 939 |
+
"model.layers.78.self_attn.o_proj",
|
| 940 |
+
"model.layers.78.self_attn.attn.impl.matmul_qk",
|
| 941 |
+
"model.layers.78.self_attn.attn.impl.softmax",
|
| 942 |
+
"model.layers.78.self_attn.attn.impl.matmul_av",
|
| 943 |
+
"model.layers.78.self_attn.attn.impl.batch2block_matmul",
|
| 944 |
+
"model.layers.78.self_attn.attn.impl.block2batch_matmul",
|
| 945 |
+
"model.layers.78.self_attn.attn.impl.k_cache",
|
| 946 |
+
"model.layers.78.self_attn.attn.impl.v_cache",
|
| 947 |
+
"model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 948 |
+
"model.layers.78.mlp.gate_up_proj",
|
| 949 |
+
"model.layers.78.mlp.down_proj",
|
| 950 |
+
"model.layers.79.self_attn.qkv_proj",
|
| 951 |
+
"model.layers.79.self_attn.o_proj",
|
| 952 |
+
"model.layers.79.self_attn.attn.impl.matmul_qk",
|
| 953 |
+
"model.layers.79.self_attn.attn.impl.softmax",
|
| 954 |
+
"model.layers.79.self_attn.attn.impl.matmul_av",
|
| 955 |
+
"model.layers.79.self_attn.attn.impl.batch2block_matmul",
|
| 956 |
+
"model.layers.79.self_attn.attn.impl.block2batch_matmul",
|
| 957 |
+
"model.layers.79.self_attn.attn.impl.k_cache",
|
| 958 |
+
"model.layers.79.self_attn.attn.impl.v_cache",
|
| 959 |
+
"model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 960 |
+
"model.layers.79.mlp.gate_up_proj",
|
| 961 |
+
"model.layers.79.mlp.down_proj",
|
| 962 |
+
"lm_head"
|
| 963 |
+
]
|
quant/g3/inc_output_hooks_maxabs_2_4.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"GlobalRank": null, "LocalRank": 2, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[78.5]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.1318359375]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.341796875]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55078125]], [[5.78125]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.1396484375]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[540.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[121.5]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.78125]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.1396484375]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.46875]], [[5.78125]], [[0.1337890625]]], "outputs": [[[0.1318359375]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[8.4375]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[0.220703125]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[0.5625]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[12.1875]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.087890625]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.287109375]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.52734375]], [[17.125]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.55859375]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.34375]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.90625]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.55859375]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.25]], [[17.125]], [[0.48046875]]], "outputs": [[[0.0849609375]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[0.875]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[0.314453125]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.46875]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[3.453125]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.0927734375]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.12451171875]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8828125]], [[14.375]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.353515625]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.640625]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.203125]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[14.375]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.353515625]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.8125]], [[13.8125]], [[0.357421875]]], "outputs": [[[0.0927734375]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[1.609375]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.734375]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.421875]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[7.5]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.1318359375]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.185546875]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[14.1875]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.416015625]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.71875]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[14.1875]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.416015625]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[14.1875]], [[0.376953125]]], "outputs": [[[0.1318359375]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[13.9375]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[143.0]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[2.171875]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.408203125]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.10205078125]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.3125]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.703125]], [[16.625]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.140625]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.09375]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.96875]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[16.625]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[1.140625]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.25]], [[16.0]], [[1.1015625]]], "outputs": [[[0.10205078125]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[1.765625]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.52734375]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[0.51953125]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[2.125]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.12890625]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.1494140625]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5859375]], [[17.375]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3203125]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.078125]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[1.3203125]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.03125]], [[16.25]], [[1.1953125]]], "outputs": [[[0.06982421875]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[3.546875]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[0.478515625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.376953125]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.359375]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.224609375]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[14.0]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3046875]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.5]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.796875]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[1.3046875]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.21875]], [[13.375]], [[1.3046875]]], "outputs": [[[0.11669921875]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[1.5859375]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.75390625]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.26171875]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.26953125]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.427734375]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.1376953125]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59765625]], [[11.25]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8046875]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.375]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.90625]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[11.25]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[1.8046875]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[10.125]], [[1.6015625]]], "outputs": [[[0.427734375]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.447265625]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.259765625]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.25]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.224609375]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.58203125]], [[22.375]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.80078125]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.984375]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.640625]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[22.375]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[0.80078125]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.03125]], [[20.75]], [[0.68359375]]], "outputs": [[[0.224609375]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[1.5234375]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.5234375]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.2314453125]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[0.68359375]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.150390625]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.15234375]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[15.875]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.609375]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.375]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.21875]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[15.875]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[0.609375]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.65625]], [[15.25]], [[0.58203125]]], "outputs": [[[0.150390625]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[7.71875]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[6.84375]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.84375]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.328125]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.294921875]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.1416015625]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[11.875]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.91015625]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.0625]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.125]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[11.875]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[0.91015625]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[10.8125]], [[0.9140625]]], "outputs": [[[0.169921875]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.326171875]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[0.76953125]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.326171875]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.373046875]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.19140625]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.19921875]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.474609375]], [[10.1875]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.046875]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.890625]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[10.1875]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[1.046875]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.8125]], [[8.8125]], [[1.046875]]], "outputs": [[[0.19140625]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.0390625]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.87890625]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.154296875]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.216796875]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.1591796875]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.1552734375]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5078125]], [[13.625]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6796875]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.15625]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[1.6796875]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.3125]], [[13.0]], [[1.6796875]]], "outputs": [[[0.1552734375]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.478515625]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[0.62890625]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.25390625]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.55859375]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.1552734375]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[18.0]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.90625]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[18.0]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[17.625]], [[1.484375]]], "outputs": [[[0.3359375]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.39453125]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[1.5390625]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.265625]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.275390625]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.578125]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.1923828125]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[12.3125]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3203125]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.125]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.375]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.3203125]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.65625]], [[11.5625]], [[1.0859375]]], "outputs": [[[0.447265625]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.859375]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.2373046875]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.2490234375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.369140625]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.091796875]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[9.875]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5703125]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.375]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.25]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[9.875]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.5703125]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[9.75]], [[1.5703125]]], "outputs": [[[0.255859375]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.298828125]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[1.0546875]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.24609375]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.328125]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.44921875]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.1455078125]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[14.375]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5390625]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.375]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.5]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[14.375]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[1.5390625]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.15625]], [[13.0]], [[1.5390625]]], "outputs": [[[0.25]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[0.2734375]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[1.0625]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.375]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.1962890625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.609375]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.212890625]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.796875]], [[10.375]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.234375]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[10.375]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.234375]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[10.1875]], [[1.234375]]], "outputs": [[[0.50390625]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.416015625]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[2.03125]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.255859375]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.162109375]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[14.4375]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8984375]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.25]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.375]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.8984375]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[13.625]], [[1.0703125]]], "outputs": [[[0.455078125]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[2.421875]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[0.490234375]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.3515625]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[0.5234375]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.1416015625]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[16.625]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1796875]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[43.5]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.375]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[16.625]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.1796875]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5]], [[15.75]], [[1.046875]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.2734375]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[3.453125]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.86328125]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.2470703125]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.5859375]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.2412109375]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.609375]], [[11.0]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3203125]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.5]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.8125]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[11.0]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.3203125]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[10.375]], [[0.87109375]]], "outputs": [[[0.5859375]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.32421875]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.375]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.4375]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.294921875]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.68359375]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.36328125]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.734375]], [[14.25]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2890625]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.75]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.8125]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[14.25]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[1.2890625]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[12.375]], [[1.2890625]]], "outputs": [[[0.58203125]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.54296875]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[2.640625]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[0.6015625]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.26171875]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.99609375]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.388671875]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.89453125]], [[11.375]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.0]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.5]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[11.375]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[6.0]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[10.625]], [[6.0]]], "outputs": [[[0.703125]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.3046875]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[1.71875]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.625]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.37109375]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[0.6171875]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.35546875]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[18.125]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.234375]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[46.5]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[21.75]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[1.234375]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.40625]], [[17.75]], [[1.234375]]], "outputs": [[[0.451171875]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.279296875]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[2.15625]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.6640625]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.453125]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.5390625]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.49609375]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[12.75]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.4375]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.25]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[2.4375]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[11.4375]], [[1.46875]]], "outputs": [[[0.41796875]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.353515625]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[12.5625]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.255859375]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[0.5546875]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.77734375]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.82421875]], [[15.9375]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[7.53125]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.0]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.8125]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[7.53125]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.875]], [[15.75]], [[7.53125]]], "outputs": [[[0.388671875]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.279296875]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[4.15625]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[0.47265625]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.30859375]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[0.7109375]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.4140625]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.90625]], [[14.875]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.25]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[14.875]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.125]], [[13.9375]], [[2.84375]]], "outputs": [[[0.482421875]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.28515625]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[1.7578125]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.9375]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.373046875]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.76953125]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.255859375]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8046875]], [[17.875]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0390625]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[40.25]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.0]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[17.875]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[1.0390625]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.90625]], [[16.0]], [[1.0390625]]], "outputs": [[[0.76953125]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.458984375]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[2.546875]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.609375]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.302734375]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[0.75]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.337890625]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91796875]], [[16.0]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.359375]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[56.75]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.0]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[2.359375]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[15.375]], [[2.359375]]], "outputs": [[[0.71484375]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[1.0859375]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[4.21875]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.84375]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[0.416015625]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.63671875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.609375]], [[14.5]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.65625]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.875]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[14.5]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[4.65625]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.34375]], [[13.5625]], [[4.65625]]], "outputs": [[[0.416015625]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.310546875]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[1.984375]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[0.578125]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.423828125]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.6328125]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[16.875]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.125]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[16.875]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0]], [[15.875]], [[1.0]]], "outputs": [[[0.50390625]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.49609375]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[2.984375]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[1.4453125]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.298828125]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.734375]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.361328125]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8828125]], [[19.125]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.21875]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[52.75]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.75]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[19.125]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[2.21875]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.5625]], [[18.75]], [[2.21875]]], "outputs": [[[0.72265625]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.8046875]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[1.9609375]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.74609375]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.357421875]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[0.5625]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.6484375]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.74609375]], [[13.6875]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.40625]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.5]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.5]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[13.6875]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[4.40625]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.34375]], [[11.75]], [[4.40625]]], "outputs": [[[0.5625]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.3515625]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[1.7265625]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[0.53515625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.27734375]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[0.79296875]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.24609375]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[18.0]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.828125]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.25]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.875]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[18.0]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[2.828125]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[16.5]], [[2.828125]]], "outputs": [[[0.5390625]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[9.25]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[1.9453125]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[0.734375]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.318359375]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[0.765625]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.203125]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.90625]], [[16.125]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.734375]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[2.734375]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.375]], [[15.6875]], [[2.734375]]], "outputs": [[[0.66015625]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.318359375]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[0.55078125]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.373046875]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.90234375]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.408203125]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8125]], [[18.375]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.84375]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.0]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[18.375]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[2.84375]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.4375]], [[17.0]], [[2.8125]]], "outputs": [[[0.60546875]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.26953125]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[2.640625]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[0.4375]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.33984375]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.5546875]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.310546875]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[15.8125]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.375]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.0]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.125]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[15.8125]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[2.375]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.3125]], [[14.25]], [[2.375]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[2.546875]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[1.46875]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.54296875]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[0.18359375]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[20.0]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.109375]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[47.75]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.625]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[20.0]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[1.109375]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[16.625]], [[0.828125]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.7265625]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[2.671875]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[1.40625]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.28125]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[1.09375]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.59375]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[15.125]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.625]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.78125]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.90625]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[15.125]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[4.625]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0]], [[14.5]], [[4.625]]], "outputs": [[[1.09375]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.58984375]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[2.5]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.67578125]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.5]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[0.81640625]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.10791015625]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.82421875]], [[17.5]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1953125]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[49.75]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[1.1953125]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.4375]], [[16.5]], [[1.1953125]]], "outputs": [[[0.5625]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.318359375]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[2.46875]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[0.390625]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.31640625]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[12.5]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6953125]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.5]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[1.6953125]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5625]], [[11.625]], [[1.328125]]], "outputs": [[[0.7421875]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.392578125]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[3.21875]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[0.44921875]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.375]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[0.486328125]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.30078125]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[15.3125]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.96484375]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.0]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.9375]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[0.96484375]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[14.375]], [[1.1015625]]], "outputs": [[[0.390625]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.294921875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[3.203125]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.494140625]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.34765625]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.328125]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53125]], [[11.9375]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.609375]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.84375]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.8125]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[3.609375]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.53125]], [[11.9375]], [[3.609375]]], "outputs": [[[0.3359375]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.375]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[3.8125]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[0.396484375]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.384765625]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.6640625]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.24609375]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.51171875]], [[12.5]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.83203125]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.65625]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[0.83203125]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.375]], [[11.375]], [[0.83203125]]], "outputs": [[[0.5546875]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.40625]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[9.4375]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.77734375]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.3515625]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.91796875]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.310546875]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.95703125]], [[12.625]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6015625]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.125]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[18.375]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[12.625]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.6015625]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.03125]], [[12.3125]], [[1.546875]]], "outputs": [[[0.6328125]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.5234375]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[6.65625]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.4375]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.412109375]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.5859375]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.205078125]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.57421875]], [[12.125]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.3125]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.25]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[12.125]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.65625]], [[11.8125]], [[0.8984375]]], "outputs": [[[0.46484375]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.6484375]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[8.625]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[0.38671875]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.73046875]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.384765625]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.1689453125]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.67578125]], [[15.625]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.609375]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.125]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.84375]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[15.625]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[0.609375]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[15.625]], [[0.609375]]], "outputs": [[[0.384765625]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.32421875]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[4.15625]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.251953125]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.431640625]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.6640625]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.244140625]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.60546875]], [[12.3125]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.609375]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.875]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.125]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[3.609375]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[11.625]], [[3.609375]]], "outputs": [[[0.431640625]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.51953125]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[6.15625]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[0.236328125]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[0.72265625]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.1796875]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.54296875]], [[13.625]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2578125]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.5625]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.5625]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[1.2578125]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.53125]], [[13.0625]], [[1.1953125]]], "outputs": [[[0.72265625]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.5703125]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[4.8125]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[0.462890625]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.46484375]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.443359375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.232421875]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[11.5625]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.77734375]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.6875]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.75]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[11.5625]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[0.77734375]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.625]], [[11.375]], [[0.76953125]]], "outputs": [[[0.361328125]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[3.9375]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[0.24609375]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.486328125]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.7734375]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.1826171875]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.25]], [[11.75]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.546875]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[26.75]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.6875]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[11.75]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[1.546875]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.4375]], [[11.0625]], [[1.484375]]], "outputs": [[[0.59375]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.45703125]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[9.6875]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.44140625]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.77734375]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.51171875]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.3359375]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.54296875]], [[12.5]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.8125]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.6875]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.625]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[4.8125]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.03125]], [[12.5]], [[4.8125]]], "outputs": [[[0.51171875]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.40625]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[8.9375]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[0.4296875]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.33203125]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[0.63671875]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.306640625]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[13.8125]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3046875]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.5]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[1.3046875]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.21875]], [[12.625]], [[1.265625]]], "outputs": [[[0.6328125]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.412109375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[3.296875]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[0.271484375]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.419921875]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.67578125]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.212890625]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[13.75]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2578125]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.875]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.59375]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[1.2578125]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.34375]], [[12.875]], [[1.2578125]]], "outputs": [[[0.494140625]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.416015625]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[5.21875]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[1.1796875]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.59375]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.43359375]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.19140625]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.609375]], [[12.875]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2734375]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.125]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[12.875]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[1.2734375]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.75]], [[12.875]], [[1.2734375]]], "outputs": [[[0.345703125]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.82421875]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[8.0625]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[1.2890625]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.58203125]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.74609375]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[0.2001953125]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.39453125]], [[16.0]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3828125]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.625]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.125]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.3828125]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5]], [[12.3125]], [[1.3828125]]], "outputs": [[[0.74609375]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.66015625]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[5.375]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[0.408203125]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.376953125]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[1.4921875]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.09912109375]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.296875]], [[13.75]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.28125]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.25]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.8125]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[2.28125]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[13.1875]], [[13.0]], [[1.6328125]]], "outputs": [[[0.5390625]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.41015625]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[6.875]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[0.275390625]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.466796875]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.22265625]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5546875]], [[14.5625]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2109375]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.28125]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[14.5625]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[1.2109375]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.21875]], [[14.5625]], [[1.0390625]]], "outputs": [[[0.53515625]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.4140625]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[5.59375]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.578125]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.484375]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[0.70703125]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.1923828125]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59375]], [[17.375]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.77734375]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.875]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.3125]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[0.77734375]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.15625]], [[14.0]], [[0.7578125]]], "outputs": [[[0.48828125]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.271484375]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[6.0]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.296875]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.6015625]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.57421875]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.228515625]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5078125]], [[11.4375]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1328125]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.875]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.875]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[11.4375]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[1.1328125]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.0625]], [[11.4375]], [[1.1328125]]], "outputs": [[[0.5078125]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.3125]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[7.40625]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[0.490234375]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.400390625]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[1.1328125]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.20703125]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.50390625]], [[17.75]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.078125]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.1875]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.78125]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[2.078125]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.46875]], [[11.9375]], [[1.2578125]]], "outputs": [[[0.734375]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.373046875]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[13.375]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[1.5]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.58984375]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[0.4609375]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.1982421875]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5859375]], [[15.6875]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4140625]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.375]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.0625]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[15.6875]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[1.4140625]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.3125]], [[15.6875]], [[1.3359375]]], "outputs": [[[0.4609375]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.322265625]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[8.75]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.412109375]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.9453125]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.478515625]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.12158203125]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[25.125]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.64453125]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.5]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[25.125]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[0.64453125]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.6875]], [[25.125]], [[0.77734375]]], "outputs": [[[0.443359375]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.322265625]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[8.5]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[0.765625]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.65625]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.482421875]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.310546875]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[13.5625]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.390625]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.875]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.6875]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[13.5625]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[1.390625]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.78125]], [[12.625]], [[1.390625]]], "outputs": [[[0.353515625]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.4375]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[6.875]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[0.1865234375]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.427734375]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[0.62890625]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.34375]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.57421875]], [[13.0625]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.0625]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.28125]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.0625]], [[0.83984375]]], "outputs": [[[0.62890625]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.484375]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[5.78125]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[0.482421875]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[0.45703125]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[1.6484375]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[0.10986328125]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[12.75]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.84375]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.71875]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[12.75]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[1.84375]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.59375]], [[11.625]], [[1.0]]], "outputs": [[[0.59375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.419921875]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[9.9375]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.5234375]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.49609375]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.54296875]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.10205078125]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5234375]], [[13.4375]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.9375]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.0]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.09375]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[13.4375]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[0.9375]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.8125]], [[11.5625]], [[0.9375]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.359375]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[8.375]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[1.28125]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.490234375]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[0.609375]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.2177734375]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.64453125]], [[13.0]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.78125]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.875]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.75]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[3.78125]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.53125]], [[12.0]], [[3.78125]]], "outputs": [[[0.56640625]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.41015625]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[4.84375]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.3125]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.51953125]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[1.84375]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.130859375]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.75]], [[14.0625]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.109375]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.6875]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[14.0625]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[2.109375]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.65625]], [[13.25]], [[1.28125]]], "outputs": [[[0.8515625]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.470703125]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[6.125]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[0.234375]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.396484375]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[1.4609375]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.291015625]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.66796875]], [[17.5]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.109375]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.625]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.1875]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[2.109375]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.875]], [[15.0]], [[2.109375]]], "outputs": [[[1.4296875]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.419921875]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[12.5625]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.3203125]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[0.9921875]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.7578125]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.68359375]], [[15.5]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.71875]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.4375]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.34375]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[15.5]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[1.71875]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.15625]], [[14.0]], [[1.703125]]], "outputs": [[[0.859375]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.54296875]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[12.6875]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[1.0546875]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.302734375]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[2.484375]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.54296875]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0859375]], [[15.0]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.109375]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.0]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.78125]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[3.109375]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.75]], [[14.0]], [[2.796875]]], "outputs": [[[1.5625]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.375]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[6.46875]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.69921875]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.42578125]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.984375]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[0.265625]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.921875]], [[20.875]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.390625]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0625]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[20.875]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[3.390625]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.6875]], [[20.375]], [[3.21875]]], "outputs": [[[1.953125]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.427734375]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[7.9375]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[0.6328125]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.322265625]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.640625]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.224609375]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0546875]], [[13.3125]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.703125]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.875]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.15625]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[13.3125]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[2.703125]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.625]], [[12.6875]], [[2.734375]]], "outputs": [[[0.76953125]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.66015625]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[7.125]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[0.55078125]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.2470703125]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[1.4609375]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.78515625]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[18.75]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.28125]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.375]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.625]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[18.75]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[2.28125]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.75]], [[18.375]], [[2.28125]]], "outputs": [[[0.84765625]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.390625]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[11.0625]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[0.703125]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[1.8984375]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.193359375]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.86328125]], [[17.875]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.515625]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.375]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[17.875]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[2.515625]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.5]], [[16.375]], [[1.9921875]]], "outputs": [[[1.09375]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[7.90625]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[0.70703125]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.2421875]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.40625]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.43359375]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.03125]], [[17.125]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.046875]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.875]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0625]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[3.046875]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.8125]], [[15.5625]], [[3.046875]]], "outputs": [[[1.3984375]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.478515625]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[12.75]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.66796875]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.349609375]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[2.0625]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.28125]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.84375]], [[15.9375]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.625]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[36.0]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[15.9375]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[2.625]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.5625]], [[13.0625]], [[2.25]]], "outputs": [[[1.3828125]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.265625]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[12.1875]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.50390625]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.263671875]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[3.0625]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.173828125]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[17.625]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.65625]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.5]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[17.625]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[3.65625]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.875]], [[15.5]], [[3.03125]]], "outputs": [[[2.28125]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.40625]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[73.0]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.546875]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.31640625]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[3.484375]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.318359375]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59375]], [[11.9375]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.28125]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.75]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[4.28125]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.8125]], [[10.3125]], [[3.46875]]], "outputs": [[[2.109375]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.390625]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[47.5]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.451171875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.294921875]]}}}}
|
quant/g3/inc_output_hooks_maxabs_2_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cbd1dcfe8c3012610aa934c544fc532e85858aa306a3177b9cbed9ae56e5fdff
|
| 3 |
+
size 206298
|
quant/g3/inc_output_hooks_maxabs_2_4_mod_list.json
ADDED
|
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
"model.layers.0.self_attn.qkv_proj",
|
| 3 |
+
"model.layers.0.self_attn.o_proj",
|
| 4 |
+
"model.layers.0.self_attn.attn.impl.matmul_qk",
|
| 5 |
+
"model.layers.0.self_attn.attn.impl.softmax",
|
| 6 |
+
"model.layers.0.self_attn.attn.impl.matmul_av",
|
| 7 |
+
"model.layers.0.self_attn.attn.impl.batch2block_matmul",
|
| 8 |
+
"model.layers.0.self_attn.attn.impl.block2batch_matmul",
|
| 9 |
+
"model.layers.0.self_attn.attn.impl.k_cache",
|
| 10 |
+
"model.layers.0.self_attn.attn.impl.v_cache",
|
| 11 |
+
"model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 12 |
+
"model.layers.0.mlp.gate_up_proj",
|
| 13 |
+
"model.layers.0.mlp.down_proj",
|
| 14 |
+
"model.layers.1.self_attn.qkv_proj",
|
| 15 |
+
"model.layers.1.self_attn.o_proj",
|
| 16 |
+
"model.layers.1.self_attn.attn.impl.matmul_qk",
|
| 17 |
+
"model.layers.1.self_attn.attn.impl.softmax",
|
| 18 |
+
"model.layers.1.self_attn.attn.impl.matmul_av",
|
| 19 |
+
"model.layers.1.self_attn.attn.impl.batch2block_matmul",
|
| 20 |
+
"model.layers.1.self_attn.attn.impl.block2batch_matmul",
|
| 21 |
+
"model.layers.1.self_attn.attn.impl.k_cache",
|
| 22 |
+
"model.layers.1.self_attn.attn.impl.v_cache",
|
| 23 |
+
"model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 24 |
+
"model.layers.1.mlp.gate_up_proj",
|
| 25 |
+
"model.layers.1.mlp.down_proj",
|
| 26 |
+
"model.layers.2.self_attn.qkv_proj",
|
| 27 |
+
"model.layers.2.self_attn.o_proj",
|
| 28 |
+
"model.layers.2.self_attn.attn.impl.matmul_qk",
|
| 29 |
+
"model.layers.2.self_attn.attn.impl.softmax",
|
| 30 |
+
"model.layers.2.self_attn.attn.impl.matmul_av",
|
| 31 |
+
"model.layers.2.self_attn.attn.impl.batch2block_matmul",
|
| 32 |
+
"model.layers.2.self_attn.attn.impl.block2batch_matmul",
|
| 33 |
+
"model.layers.2.self_attn.attn.impl.k_cache",
|
| 34 |
+
"model.layers.2.self_attn.attn.impl.v_cache",
|
| 35 |
+
"model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 36 |
+
"model.layers.2.mlp.gate_up_proj",
|
| 37 |
+
"model.layers.2.mlp.down_proj",
|
| 38 |
+
"model.layers.3.self_attn.qkv_proj",
|
| 39 |
+
"model.layers.3.self_attn.o_proj",
|
| 40 |
+
"model.layers.3.self_attn.attn.impl.matmul_qk",
|
| 41 |
+
"model.layers.3.self_attn.attn.impl.softmax",
|
| 42 |
+
"model.layers.3.self_attn.attn.impl.matmul_av",
|
| 43 |
+
"model.layers.3.self_attn.attn.impl.batch2block_matmul",
|
| 44 |
+
"model.layers.3.self_attn.attn.impl.block2batch_matmul",
|
| 45 |
+
"model.layers.3.self_attn.attn.impl.k_cache",
|
| 46 |
+
"model.layers.3.self_attn.attn.impl.v_cache",
|
| 47 |
+
"model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 48 |
+
"model.layers.3.mlp.gate_up_proj",
|
| 49 |
+
"model.layers.3.mlp.down_proj",
|
| 50 |
+
"model.layers.4.self_attn.qkv_proj",
|
| 51 |
+
"model.layers.4.self_attn.o_proj",
|
| 52 |
+
"model.layers.4.self_attn.attn.impl.matmul_qk",
|
| 53 |
+
"model.layers.4.self_attn.attn.impl.softmax",
|
| 54 |
+
"model.layers.4.self_attn.attn.impl.matmul_av",
|
| 55 |
+
"model.layers.4.self_attn.attn.impl.batch2block_matmul",
|
| 56 |
+
"model.layers.4.self_attn.attn.impl.block2batch_matmul",
|
| 57 |
+
"model.layers.4.self_attn.attn.impl.k_cache",
|
| 58 |
+
"model.layers.4.self_attn.attn.impl.v_cache",
|
| 59 |
+
"model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 60 |
+
"model.layers.4.mlp.gate_up_proj",
|
| 61 |
+
"model.layers.4.mlp.down_proj",
|
| 62 |
+
"model.layers.5.self_attn.qkv_proj",
|
| 63 |
+
"model.layers.5.self_attn.o_proj",
|
| 64 |
+
"model.layers.5.self_attn.attn.impl.matmul_qk",
|
| 65 |
+
"model.layers.5.self_attn.attn.impl.softmax",
|
| 66 |
+
"model.layers.5.self_attn.attn.impl.matmul_av",
|
| 67 |
+
"model.layers.5.self_attn.attn.impl.batch2block_matmul",
|
| 68 |
+
"model.layers.5.self_attn.attn.impl.block2batch_matmul",
|
| 69 |
+
"model.layers.5.self_attn.attn.impl.k_cache",
|
| 70 |
+
"model.layers.5.self_attn.attn.impl.v_cache",
|
| 71 |
+
"model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 72 |
+
"model.layers.5.mlp.gate_up_proj",
|
| 73 |
+
"model.layers.5.mlp.down_proj",
|
| 74 |
+
"model.layers.6.self_attn.qkv_proj",
|
| 75 |
+
"model.layers.6.self_attn.o_proj",
|
| 76 |
+
"model.layers.6.self_attn.attn.impl.matmul_qk",
|
| 77 |
+
"model.layers.6.self_attn.attn.impl.softmax",
|
| 78 |
+
"model.layers.6.self_attn.attn.impl.matmul_av",
|
| 79 |
+
"model.layers.6.self_attn.attn.impl.batch2block_matmul",
|
| 80 |
+
"model.layers.6.self_attn.attn.impl.block2batch_matmul",
|
| 81 |
+
"model.layers.6.self_attn.attn.impl.k_cache",
|
| 82 |
+
"model.layers.6.self_attn.attn.impl.v_cache",
|
| 83 |
+
"model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 84 |
+
"model.layers.6.mlp.gate_up_proj",
|
| 85 |
+
"model.layers.6.mlp.down_proj",
|
| 86 |
+
"model.layers.7.self_attn.qkv_proj",
|
| 87 |
+
"model.layers.7.self_attn.o_proj",
|
| 88 |
+
"model.layers.7.self_attn.attn.impl.matmul_qk",
|
| 89 |
+
"model.layers.7.self_attn.attn.impl.softmax",
|
| 90 |
+
"model.layers.7.self_attn.attn.impl.matmul_av",
|
| 91 |
+
"model.layers.7.self_attn.attn.impl.batch2block_matmul",
|
| 92 |
+
"model.layers.7.self_attn.attn.impl.block2batch_matmul",
|
| 93 |
+
"model.layers.7.self_attn.attn.impl.k_cache",
|
| 94 |
+
"model.layers.7.self_attn.attn.impl.v_cache",
|
| 95 |
+
"model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 96 |
+
"model.layers.7.mlp.gate_up_proj",
|
| 97 |
+
"model.layers.7.mlp.down_proj",
|
| 98 |
+
"model.layers.8.self_attn.qkv_proj",
|
| 99 |
+
"model.layers.8.self_attn.o_proj",
|
| 100 |
+
"model.layers.8.self_attn.attn.impl.matmul_qk",
|
| 101 |
+
"model.layers.8.self_attn.attn.impl.softmax",
|
| 102 |
+
"model.layers.8.self_attn.attn.impl.matmul_av",
|
| 103 |
+
"model.layers.8.self_attn.attn.impl.batch2block_matmul",
|
| 104 |
+
"model.layers.8.self_attn.attn.impl.block2batch_matmul",
|
| 105 |
+
"model.layers.8.self_attn.attn.impl.k_cache",
|
| 106 |
+
"model.layers.8.self_attn.attn.impl.v_cache",
|
| 107 |
+
"model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 108 |
+
"model.layers.8.mlp.gate_up_proj",
|
| 109 |
+
"model.layers.8.mlp.down_proj",
|
| 110 |
+
"model.layers.9.self_attn.qkv_proj",
|
| 111 |
+
"model.layers.9.self_attn.o_proj",
|
| 112 |
+
"model.layers.9.self_attn.attn.impl.matmul_qk",
|
| 113 |
+
"model.layers.9.self_attn.attn.impl.softmax",
|
| 114 |
+
"model.layers.9.self_attn.attn.impl.matmul_av",
|
| 115 |
+
"model.layers.9.self_attn.attn.impl.batch2block_matmul",
|
| 116 |
+
"model.layers.9.self_attn.attn.impl.block2batch_matmul",
|
| 117 |
+
"model.layers.9.self_attn.attn.impl.k_cache",
|
| 118 |
+
"model.layers.9.self_attn.attn.impl.v_cache",
|
| 119 |
+
"model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 120 |
+
"model.layers.9.mlp.gate_up_proj",
|
| 121 |
+
"model.layers.9.mlp.down_proj",
|
| 122 |
+
"model.layers.10.self_attn.qkv_proj",
|
| 123 |
+
"model.layers.10.self_attn.o_proj",
|
| 124 |
+
"model.layers.10.self_attn.attn.impl.matmul_qk",
|
| 125 |
+
"model.layers.10.self_attn.attn.impl.softmax",
|
| 126 |
+
"model.layers.10.self_attn.attn.impl.matmul_av",
|
| 127 |
+
"model.layers.10.self_attn.attn.impl.batch2block_matmul",
|
| 128 |
+
"model.layers.10.self_attn.attn.impl.block2batch_matmul",
|
| 129 |
+
"model.layers.10.self_attn.attn.impl.k_cache",
|
| 130 |
+
"model.layers.10.self_attn.attn.impl.v_cache",
|
| 131 |
+
"model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 132 |
+
"model.layers.10.mlp.gate_up_proj",
|
| 133 |
+
"model.layers.10.mlp.down_proj",
|
| 134 |
+
"model.layers.11.self_attn.qkv_proj",
|
| 135 |
+
"model.layers.11.self_attn.o_proj",
|
| 136 |
+
"model.layers.11.self_attn.attn.impl.matmul_qk",
|
| 137 |
+
"model.layers.11.self_attn.attn.impl.softmax",
|
| 138 |
+
"model.layers.11.self_attn.attn.impl.matmul_av",
|
| 139 |
+
"model.layers.11.self_attn.attn.impl.batch2block_matmul",
|
| 140 |
+
"model.layers.11.self_attn.attn.impl.block2batch_matmul",
|
| 141 |
+
"model.layers.11.self_attn.attn.impl.k_cache",
|
| 142 |
+
"model.layers.11.self_attn.attn.impl.v_cache",
|
| 143 |
+
"model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 144 |
+
"model.layers.11.mlp.gate_up_proj",
|
| 145 |
+
"model.layers.11.mlp.down_proj",
|
| 146 |
+
"model.layers.12.self_attn.qkv_proj",
|
| 147 |
+
"model.layers.12.self_attn.o_proj",
|
| 148 |
+
"model.layers.12.self_attn.attn.impl.matmul_qk",
|
| 149 |
+
"model.layers.12.self_attn.attn.impl.softmax",
|
| 150 |
+
"model.layers.12.self_attn.attn.impl.matmul_av",
|
| 151 |
+
"model.layers.12.self_attn.attn.impl.batch2block_matmul",
|
| 152 |
+
"model.layers.12.self_attn.attn.impl.block2batch_matmul",
|
| 153 |
+
"model.layers.12.self_attn.attn.impl.k_cache",
|
| 154 |
+
"model.layers.12.self_attn.attn.impl.v_cache",
|
| 155 |
+
"model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 156 |
+
"model.layers.12.mlp.gate_up_proj",
|
| 157 |
+
"model.layers.12.mlp.down_proj",
|
| 158 |
+
"model.layers.13.self_attn.qkv_proj",
|
| 159 |
+
"model.layers.13.self_attn.o_proj",
|
| 160 |
+
"model.layers.13.self_attn.attn.impl.matmul_qk",
|
| 161 |
+
"model.layers.13.self_attn.attn.impl.softmax",
|
| 162 |
+
"model.layers.13.self_attn.attn.impl.matmul_av",
|
| 163 |
+
"model.layers.13.self_attn.attn.impl.batch2block_matmul",
|
| 164 |
+
"model.layers.13.self_attn.attn.impl.block2batch_matmul",
|
| 165 |
+
"model.layers.13.self_attn.attn.impl.k_cache",
|
| 166 |
+
"model.layers.13.self_attn.attn.impl.v_cache",
|
| 167 |
+
"model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 168 |
+
"model.layers.13.mlp.gate_up_proj",
|
| 169 |
+
"model.layers.13.mlp.down_proj",
|
| 170 |
+
"model.layers.14.self_attn.qkv_proj",
|
| 171 |
+
"model.layers.14.self_attn.o_proj",
|
| 172 |
+
"model.layers.14.self_attn.attn.impl.matmul_qk",
|
| 173 |
+
"model.layers.14.self_attn.attn.impl.softmax",
|
| 174 |
+
"model.layers.14.self_attn.attn.impl.matmul_av",
|
| 175 |
+
"model.layers.14.self_attn.attn.impl.batch2block_matmul",
|
| 176 |
+
"model.layers.14.self_attn.attn.impl.block2batch_matmul",
|
| 177 |
+
"model.layers.14.self_attn.attn.impl.k_cache",
|
| 178 |
+
"model.layers.14.self_attn.attn.impl.v_cache",
|
| 179 |
+
"model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 180 |
+
"model.layers.14.mlp.gate_up_proj",
|
| 181 |
+
"model.layers.14.mlp.down_proj",
|
| 182 |
+
"model.layers.15.self_attn.qkv_proj",
|
| 183 |
+
"model.layers.15.self_attn.o_proj",
|
| 184 |
+
"model.layers.15.self_attn.attn.impl.matmul_qk",
|
| 185 |
+
"model.layers.15.self_attn.attn.impl.softmax",
|
| 186 |
+
"model.layers.15.self_attn.attn.impl.matmul_av",
|
| 187 |
+
"model.layers.15.self_attn.attn.impl.batch2block_matmul",
|
| 188 |
+
"model.layers.15.self_attn.attn.impl.block2batch_matmul",
|
| 189 |
+
"model.layers.15.self_attn.attn.impl.k_cache",
|
| 190 |
+
"model.layers.15.self_attn.attn.impl.v_cache",
|
| 191 |
+
"model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 192 |
+
"model.layers.15.mlp.gate_up_proj",
|
| 193 |
+
"model.layers.15.mlp.down_proj",
|
| 194 |
+
"model.layers.16.self_attn.qkv_proj",
|
| 195 |
+
"model.layers.16.self_attn.o_proj",
|
| 196 |
+
"model.layers.16.self_attn.attn.impl.matmul_qk",
|
| 197 |
+
"model.layers.16.self_attn.attn.impl.softmax",
|
| 198 |
+
"model.layers.16.self_attn.attn.impl.matmul_av",
|
| 199 |
+
"model.layers.16.self_attn.attn.impl.batch2block_matmul",
|
| 200 |
+
"model.layers.16.self_attn.attn.impl.block2batch_matmul",
|
| 201 |
+
"model.layers.16.self_attn.attn.impl.k_cache",
|
| 202 |
+
"model.layers.16.self_attn.attn.impl.v_cache",
|
| 203 |
+
"model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 204 |
+
"model.layers.16.mlp.gate_up_proj",
|
| 205 |
+
"model.layers.16.mlp.down_proj",
|
| 206 |
+
"model.layers.17.self_attn.qkv_proj",
|
| 207 |
+
"model.layers.17.self_attn.o_proj",
|
| 208 |
+
"model.layers.17.self_attn.attn.impl.matmul_qk",
|
| 209 |
+
"model.layers.17.self_attn.attn.impl.softmax",
|
| 210 |
+
"model.layers.17.self_attn.attn.impl.matmul_av",
|
| 211 |
+
"model.layers.17.self_attn.attn.impl.batch2block_matmul",
|
| 212 |
+
"model.layers.17.self_attn.attn.impl.block2batch_matmul",
|
| 213 |
+
"model.layers.17.self_attn.attn.impl.k_cache",
|
| 214 |
+
"model.layers.17.self_attn.attn.impl.v_cache",
|
| 215 |
+
"model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 216 |
+
"model.layers.17.mlp.gate_up_proj",
|
| 217 |
+
"model.layers.17.mlp.down_proj",
|
| 218 |
+
"model.layers.18.self_attn.qkv_proj",
|
| 219 |
+
"model.layers.18.self_attn.o_proj",
|
| 220 |
+
"model.layers.18.self_attn.attn.impl.matmul_qk",
|
| 221 |
+
"model.layers.18.self_attn.attn.impl.softmax",
|
| 222 |
+
"model.layers.18.self_attn.attn.impl.matmul_av",
|
| 223 |
+
"model.layers.18.self_attn.attn.impl.batch2block_matmul",
|
| 224 |
+
"model.layers.18.self_attn.attn.impl.block2batch_matmul",
|
| 225 |
+
"model.layers.18.self_attn.attn.impl.k_cache",
|
| 226 |
+
"model.layers.18.self_attn.attn.impl.v_cache",
|
| 227 |
+
"model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 228 |
+
"model.layers.18.mlp.gate_up_proj",
|
| 229 |
+
"model.layers.18.mlp.down_proj",
|
| 230 |
+
"model.layers.19.self_attn.qkv_proj",
|
| 231 |
+
"model.layers.19.self_attn.o_proj",
|
| 232 |
+
"model.layers.19.self_attn.attn.impl.matmul_qk",
|
| 233 |
+
"model.layers.19.self_attn.attn.impl.softmax",
|
| 234 |
+
"model.layers.19.self_attn.attn.impl.matmul_av",
|
| 235 |
+
"model.layers.19.self_attn.attn.impl.batch2block_matmul",
|
| 236 |
+
"model.layers.19.self_attn.attn.impl.block2batch_matmul",
|
| 237 |
+
"model.layers.19.self_attn.attn.impl.k_cache",
|
| 238 |
+
"model.layers.19.self_attn.attn.impl.v_cache",
|
| 239 |
+
"model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 240 |
+
"model.layers.19.mlp.gate_up_proj",
|
| 241 |
+
"model.layers.19.mlp.down_proj",
|
| 242 |
+
"model.layers.20.self_attn.qkv_proj",
|
| 243 |
+
"model.layers.20.self_attn.o_proj",
|
| 244 |
+
"model.layers.20.self_attn.attn.impl.matmul_qk",
|
| 245 |
+
"model.layers.20.self_attn.attn.impl.softmax",
|
| 246 |
+
"model.layers.20.self_attn.attn.impl.matmul_av",
|
| 247 |
+
"model.layers.20.self_attn.attn.impl.batch2block_matmul",
|
| 248 |
+
"model.layers.20.self_attn.attn.impl.block2batch_matmul",
|
| 249 |
+
"model.layers.20.self_attn.attn.impl.k_cache",
|
| 250 |
+
"model.layers.20.self_attn.attn.impl.v_cache",
|
| 251 |
+
"model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 252 |
+
"model.layers.20.mlp.gate_up_proj",
|
| 253 |
+
"model.layers.20.mlp.down_proj",
|
| 254 |
+
"model.layers.21.self_attn.qkv_proj",
|
| 255 |
+
"model.layers.21.self_attn.o_proj",
|
| 256 |
+
"model.layers.21.self_attn.attn.impl.matmul_qk",
|
| 257 |
+
"model.layers.21.self_attn.attn.impl.softmax",
|
| 258 |
+
"model.layers.21.self_attn.attn.impl.matmul_av",
|
| 259 |
+
"model.layers.21.self_attn.attn.impl.batch2block_matmul",
|
| 260 |
+
"model.layers.21.self_attn.attn.impl.block2batch_matmul",
|
| 261 |
+
"model.layers.21.self_attn.attn.impl.k_cache",
|
| 262 |
+
"model.layers.21.self_attn.attn.impl.v_cache",
|
| 263 |
+
"model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 264 |
+
"model.layers.21.mlp.gate_up_proj",
|
| 265 |
+
"model.layers.21.mlp.down_proj",
|
| 266 |
+
"model.layers.22.self_attn.qkv_proj",
|
| 267 |
+
"model.layers.22.self_attn.o_proj",
|
| 268 |
+
"model.layers.22.self_attn.attn.impl.matmul_qk",
|
| 269 |
+
"model.layers.22.self_attn.attn.impl.softmax",
|
| 270 |
+
"model.layers.22.self_attn.attn.impl.matmul_av",
|
| 271 |
+
"model.layers.22.self_attn.attn.impl.batch2block_matmul",
|
| 272 |
+
"model.layers.22.self_attn.attn.impl.block2batch_matmul",
|
| 273 |
+
"model.layers.22.self_attn.attn.impl.k_cache",
|
| 274 |
+
"model.layers.22.self_attn.attn.impl.v_cache",
|
| 275 |
+
"model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 276 |
+
"model.layers.22.mlp.gate_up_proj",
|
| 277 |
+
"model.layers.22.mlp.down_proj",
|
| 278 |
+
"model.layers.23.self_attn.qkv_proj",
|
| 279 |
+
"model.layers.23.self_attn.o_proj",
|
| 280 |
+
"model.layers.23.self_attn.attn.impl.matmul_qk",
|
| 281 |
+
"model.layers.23.self_attn.attn.impl.softmax",
|
| 282 |
+
"model.layers.23.self_attn.attn.impl.matmul_av",
|
| 283 |
+
"model.layers.23.self_attn.attn.impl.batch2block_matmul",
|
| 284 |
+
"model.layers.23.self_attn.attn.impl.block2batch_matmul",
|
| 285 |
+
"model.layers.23.self_attn.attn.impl.k_cache",
|
| 286 |
+
"model.layers.23.self_attn.attn.impl.v_cache",
|
| 287 |
+
"model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 288 |
+
"model.layers.23.mlp.gate_up_proj",
|
| 289 |
+
"model.layers.23.mlp.down_proj",
|
| 290 |
+
"model.layers.24.self_attn.qkv_proj",
|
| 291 |
+
"model.layers.24.self_attn.o_proj",
|
| 292 |
+
"model.layers.24.self_attn.attn.impl.matmul_qk",
|
| 293 |
+
"model.layers.24.self_attn.attn.impl.softmax",
|
| 294 |
+
"model.layers.24.self_attn.attn.impl.matmul_av",
|
| 295 |
+
"model.layers.24.self_attn.attn.impl.batch2block_matmul",
|
| 296 |
+
"model.layers.24.self_attn.attn.impl.block2batch_matmul",
|
| 297 |
+
"model.layers.24.self_attn.attn.impl.k_cache",
|
| 298 |
+
"model.layers.24.self_attn.attn.impl.v_cache",
|
| 299 |
+
"model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 300 |
+
"model.layers.24.mlp.gate_up_proj",
|
| 301 |
+
"model.layers.24.mlp.down_proj",
|
| 302 |
+
"model.layers.25.self_attn.qkv_proj",
|
| 303 |
+
"model.layers.25.self_attn.o_proj",
|
| 304 |
+
"model.layers.25.self_attn.attn.impl.matmul_qk",
|
| 305 |
+
"model.layers.25.self_attn.attn.impl.softmax",
|
| 306 |
+
"model.layers.25.self_attn.attn.impl.matmul_av",
|
| 307 |
+
"model.layers.25.self_attn.attn.impl.batch2block_matmul",
|
| 308 |
+
"model.layers.25.self_attn.attn.impl.block2batch_matmul",
|
| 309 |
+
"model.layers.25.self_attn.attn.impl.k_cache",
|
| 310 |
+
"model.layers.25.self_attn.attn.impl.v_cache",
|
| 311 |
+
"model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 312 |
+
"model.layers.25.mlp.gate_up_proj",
|
| 313 |
+
"model.layers.25.mlp.down_proj",
|
| 314 |
+
"model.layers.26.self_attn.qkv_proj",
|
| 315 |
+
"model.layers.26.self_attn.o_proj",
|
| 316 |
+
"model.layers.26.self_attn.attn.impl.matmul_qk",
|
| 317 |
+
"model.layers.26.self_attn.attn.impl.softmax",
|
| 318 |
+
"model.layers.26.self_attn.attn.impl.matmul_av",
|
| 319 |
+
"model.layers.26.self_attn.attn.impl.batch2block_matmul",
|
| 320 |
+
"model.layers.26.self_attn.attn.impl.block2batch_matmul",
|
| 321 |
+
"model.layers.26.self_attn.attn.impl.k_cache",
|
| 322 |
+
"model.layers.26.self_attn.attn.impl.v_cache",
|
| 323 |
+
"model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 324 |
+
"model.layers.26.mlp.gate_up_proj",
|
| 325 |
+
"model.layers.26.mlp.down_proj",
|
| 326 |
+
"model.layers.27.self_attn.qkv_proj",
|
| 327 |
+
"model.layers.27.self_attn.o_proj",
|
| 328 |
+
"model.layers.27.self_attn.attn.impl.matmul_qk",
|
| 329 |
+
"model.layers.27.self_attn.attn.impl.softmax",
|
| 330 |
+
"model.layers.27.self_attn.attn.impl.matmul_av",
|
| 331 |
+
"model.layers.27.self_attn.attn.impl.batch2block_matmul",
|
| 332 |
+
"model.layers.27.self_attn.attn.impl.block2batch_matmul",
|
| 333 |
+
"model.layers.27.self_attn.attn.impl.k_cache",
|
| 334 |
+
"model.layers.27.self_attn.attn.impl.v_cache",
|
| 335 |
+
"model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 336 |
+
"model.layers.27.mlp.gate_up_proj",
|
| 337 |
+
"model.layers.27.mlp.down_proj",
|
| 338 |
+
"model.layers.28.self_attn.qkv_proj",
|
| 339 |
+
"model.layers.28.self_attn.o_proj",
|
| 340 |
+
"model.layers.28.self_attn.attn.impl.matmul_qk",
|
| 341 |
+
"model.layers.28.self_attn.attn.impl.softmax",
|
| 342 |
+
"model.layers.28.self_attn.attn.impl.matmul_av",
|
| 343 |
+
"model.layers.28.self_attn.attn.impl.batch2block_matmul",
|
| 344 |
+
"model.layers.28.self_attn.attn.impl.block2batch_matmul",
|
| 345 |
+
"model.layers.28.self_attn.attn.impl.k_cache",
|
| 346 |
+
"model.layers.28.self_attn.attn.impl.v_cache",
|
| 347 |
+
"model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 348 |
+
"model.layers.28.mlp.gate_up_proj",
|
| 349 |
+
"model.layers.28.mlp.down_proj",
|
| 350 |
+
"model.layers.29.self_attn.qkv_proj",
|
| 351 |
+
"model.layers.29.self_attn.o_proj",
|
| 352 |
+
"model.layers.29.self_attn.attn.impl.matmul_qk",
|
| 353 |
+
"model.layers.29.self_attn.attn.impl.softmax",
|
| 354 |
+
"model.layers.29.self_attn.attn.impl.matmul_av",
|
| 355 |
+
"model.layers.29.self_attn.attn.impl.batch2block_matmul",
|
| 356 |
+
"model.layers.29.self_attn.attn.impl.block2batch_matmul",
|
| 357 |
+
"model.layers.29.self_attn.attn.impl.k_cache",
|
| 358 |
+
"model.layers.29.self_attn.attn.impl.v_cache",
|
| 359 |
+
"model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 360 |
+
"model.layers.29.mlp.gate_up_proj",
|
| 361 |
+
"model.layers.29.mlp.down_proj",
|
| 362 |
+
"model.layers.30.self_attn.qkv_proj",
|
| 363 |
+
"model.layers.30.self_attn.o_proj",
|
| 364 |
+
"model.layers.30.self_attn.attn.impl.matmul_qk",
|
| 365 |
+
"model.layers.30.self_attn.attn.impl.softmax",
|
| 366 |
+
"model.layers.30.self_attn.attn.impl.matmul_av",
|
| 367 |
+
"model.layers.30.self_attn.attn.impl.batch2block_matmul",
|
| 368 |
+
"model.layers.30.self_attn.attn.impl.block2batch_matmul",
|
| 369 |
+
"model.layers.30.self_attn.attn.impl.k_cache",
|
| 370 |
+
"model.layers.30.self_attn.attn.impl.v_cache",
|
| 371 |
+
"model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 372 |
+
"model.layers.30.mlp.gate_up_proj",
|
| 373 |
+
"model.layers.30.mlp.down_proj",
|
| 374 |
+
"model.layers.31.self_attn.qkv_proj",
|
| 375 |
+
"model.layers.31.self_attn.o_proj",
|
| 376 |
+
"model.layers.31.self_attn.attn.impl.matmul_qk",
|
| 377 |
+
"model.layers.31.self_attn.attn.impl.softmax",
|
| 378 |
+
"model.layers.31.self_attn.attn.impl.matmul_av",
|
| 379 |
+
"model.layers.31.self_attn.attn.impl.batch2block_matmul",
|
| 380 |
+
"model.layers.31.self_attn.attn.impl.block2batch_matmul",
|
| 381 |
+
"model.layers.31.self_attn.attn.impl.k_cache",
|
| 382 |
+
"model.layers.31.self_attn.attn.impl.v_cache",
|
| 383 |
+
"model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 384 |
+
"model.layers.31.mlp.gate_up_proj",
|
| 385 |
+
"model.layers.31.mlp.down_proj",
|
| 386 |
+
"model.layers.32.self_attn.qkv_proj",
|
| 387 |
+
"model.layers.32.self_attn.o_proj",
|
| 388 |
+
"model.layers.32.self_attn.attn.impl.matmul_qk",
|
| 389 |
+
"model.layers.32.self_attn.attn.impl.softmax",
|
| 390 |
+
"model.layers.32.self_attn.attn.impl.matmul_av",
|
| 391 |
+
"model.layers.32.self_attn.attn.impl.batch2block_matmul",
|
| 392 |
+
"model.layers.32.self_attn.attn.impl.block2batch_matmul",
|
| 393 |
+
"model.layers.32.self_attn.attn.impl.k_cache",
|
| 394 |
+
"model.layers.32.self_attn.attn.impl.v_cache",
|
| 395 |
+
"model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 396 |
+
"model.layers.32.mlp.gate_up_proj",
|
| 397 |
+
"model.layers.32.mlp.down_proj",
|
| 398 |
+
"model.layers.33.self_attn.qkv_proj",
|
| 399 |
+
"model.layers.33.self_attn.o_proj",
|
| 400 |
+
"model.layers.33.self_attn.attn.impl.matmul_qk",
|
| 401 |
+
"model.layers.33.self_attn.attn.impl.softmax",
|
| 402 |
+
"model.layers.33.self_attn.attn.impl.matmul_av",
|
| 403 |
+
"model.layers.33.self_attn.attn.impl.batch2block_matmul",
|
| 404 |
+
"model.layers.33.self_attn.attn.impl.block2batch_matmul",
|
| 405 |
+
"model.layers.33.self_attn.attn.impl.k_cache",
|
| 406 |
+
"model.layers.33.self_attn.attn.impl.v_cache",
|
| 407 |
+
"model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 408 |
+
"model.layers.33.mlp.gate_up_proj",
|
| 409 |
+
"model.layers.33.mlp.down_proj",
|
| 410 |
+
"model.layers.34.self_attn.qkv_proj",
|
| 411 |
+
"model.layers.34.self_attn.o_proj",
|
| 412 |
+
"model.layers.34.self_attn.attn.impl.matmul_qk",
|
| 413 |
+
"model.layers.34.self_attn.attn.impl.softmax",
|
| 414 |
+
"model.layers.34.self_attn.attn.impl.matmul_av",
|
| 415 |
+
"model.layers.34.self_attn.attn.impl.batch2block_matmul",
|
| 416 |
+
"model.layers.34.self_attn.attn.impl.block2batch_matmul",
|
| 417 |
+
"model.layers.34.self_attn.attn.impl.k_cache",
|
| 418 |
+
"model.layers.34.self_attn.attn.impl.v_cache",
|
| 419 |
+
"model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 420 |
+
"model.layers.34.mlp.gate_up_proj",
|
| 421 |
+
"model.layers.34.mlp.down_proj",
|
| 422 |
+
"model.layers.35.self_attn.qkv_proj",
|
| 423 |
+
"model.layers.35.self_attn.o_proj",
|
| 424 |
+
"model.layers.35.self_attn.attn.impl.matmul_qk",
|
| 425 |
+
"model.layers.35.self_attn.attn.impl.softmax",
|
| 426 |
+
"model.layers.35.self_attn.attn.impl.matmul_av",
|
| 427 |
+
"model.layers.35.self_attn.attn.impl.batch2block_matmul",
|
| 428 |
+
"model.layers.35.self_attn.attn.impl.block2batch_matmul",
|
| 429 |
+
"model.layers.35.self_attn.attn.impl.k_cache",
|
| 430 |
+
"model.layers.35.self_attn.attn.impl.v_cache",
|
| 431 |
+
"model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 432 |
+
"model.layers.35.mlp.gate_up_proj",
|
| 433 |
+
"model.layers.35.mlp.down_proj",
|
| 434 |
+
"model.layers.36.self_attn.qkv_proj",
|
| 435 |
+
"model.layers.36.self_attn.o_proj",
|
| 436 |
+
"model.layers.36.self_attn.attn.impl.matmul_qk",
|
| 437 |
+
"model.layers.36.self_attn.attn.impl.softmax",
|
| 438 |
+
"model.layers.36.self_attn.attn.impl.matmul_av",
|
| 439 |
+
"model.layers.36.self_attn.attn.impl.batch2block_matmul",
|
| 440 |
+
"model.layers.36.self_attn.attn.impl.block2batch_matmul",
|
| 441 |
+
"model.layers.36.self_attn.attn.impl.k_cache",
|
| 442 |
+
"model.layers.36.self_attn.attn.impl.v_cache",
|
| 443 |
+
"model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 444 |
+
"model.layers.36.mlp.gate_up_proj",
|
| 445 |
+
"model.layers.36.mlp.down_proj",
|
| 446 |
+
"model.layers.37.self_attn.qkv_proj",
|
| 447 |
+
"model.layers.37.self_attn.o_proj",
|
| 448 |
+
"model.layers.37.self_attn.attn.impl.matmul_qk",
|
| 449 |
+
"model.layers.37.self_attn.attn.impl.softmax",
|
| 450 |
+
"model.layers.37.self_attn.attn.impl.matmul_av",
|
| 451 |
+
"model.layers.37.self_attn.attn.impl.batch2block_matmul",
|
| 452 |
+
"model.layers.37.self_attn.attn.impl.block2batch_matmul",
|
| 453 |
+
"model.layers.37.self_attn.attn.impl.k_cache",
|
| 454 |
+
"model.layers.37.self_attn.attn.impl.v_cache",
|
| 455 |
+
"model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 456 |
+
"model.layers.37.mlp.gate_up_proj",
|
| 457 |
+
"model.layers.37.mlp.down_proj",
|
| 458 |
+
"model.layers.38.self_attn.qkv_proj",
|
| 459 |
+
"model.layers.38.self_attn.o_proj",
|
| 460 |
+
"model.layers.38.self_attn.attn.impl.matmul_qk",
|
| 461 |
+
"model.layers.38.self_attn.attn.impl.softmax",
|
| 462 |
+
"model.layers.38.self_attn.attn.impl.matmul_av",
|
| 463 |
+
"model.layers.38.self_attn.attn.impl.batch2block_matmul",
|
| 464 |
+
"model.layers.38.self_attn.attn.impl.block2batch_matmul",
|
| 465 |
+
"model.layers.38.self_attn.attn.impl.k_cache",
|
| 466 |
+
"model.layers.38.self_attn.attn.impl.v_cache",
|
| 467 |
+
"model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 468 |
+
"model.layers.38.mlp.gate_up_proj",
|
| 469 |
+
"model.layers.38.mlp.down_proj",
|
| 470 |
+
"model.layers.39.self_attn.qkv_proj",
|
| 471 |
+
"model.layers.39.self_attn.o_proj",
|
| 472 |
+
"model.layers.39.self_attn.attn.impl.matmul_qk",
|
| 473 |
+
"model.layers.39.self_attn.attn.impl.softmax",
|
| 474 |
+
"model.layers.39.self_attn.attn.impl.matmul_av",
|
| 475 |
+
"model.layers.39.self_attn.attn.impl.batch2block_matmul",
|
| 476 |
+
"model.layers.39.self_attn.attn.impl.block2batch_matmul",
|
| 477 |
+
"model.layers.39.self_attn.attn.impl.k_cache",
|
| 478 |
+
"model.layers.39.self_attn.attn.impl.v_cache",
|
| 479 |
+
"model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 480 |
+
"model.layers.39.mlp.gate_up_proj",
|
| 481 |
+
"model.layers.39.mlp.down_proj",
|
| 482 |
+
"model.layers.40.self_attn.qkv_proj",
|
| 483 |
+
"model.layers.40.self_attn.o_proj",
|
| 484 |
+
"model.layers.40.self_attn.attn.impl.matmul_qk",
|
| 485 |
+
"model.layers.40.self_attn.attn.impl.softmax",
|
| 486 |
+
"model.layers.40.self_attn.attn.impl.matmul_av",
|
| 487 |
+
"model.layers.40.self_attn.attn.impl.batch2block_matmul",
|
| 488 |
+
"model.layers.40.self_attn.attn.impl.block2batch_matmul",
|
| 489 |
+
"model.layers.40.self_attn.attn.impl.k_cache",
|
| 490 |
+
"model.layers.40.self_attn.attn.impl.v_cache",
|
| 491 |
+
"model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 492 |
+
"model.layers.40.mlp.gate_up_proj",
|
| 493 |
+
"model.layers.40.mlp.down_proj",
|
| 494 |
+
"model.layers.41.self_attn.qkv_proj",
|
| 495 |
+
"model.layers.41.self_attn.o_proj",
|
| 496 |
+
"model.layers.41.self_attn.attn.impl.matmul_qk",
|
| 497 |
+
"model.layers.41.self_attn.attn.impl.softmax",
|
| 498 |
+
"model.layers.41.self_attn.attn.impl.matmul_av",
|
| 499 |
+
"model.layers.41.self_attn.attn.impl.batch2block_matmul",
|
| 500 |
+
"model.layers.41.self_attn.attn.impl.block2batch_matmul",
|
| 501 |
+
"model.layers.41.self_attn.attn.impl.k_cache",
|
| 502 |
+
"model.layers.41.self_attn.attn.impl.v_cache",
|
| 503 |
+
"model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 504 |
+
"model.layers.41.mlp.gate_up_proj",
|
| 505 |
+
"model.layers.41.mlp.down_proj",
|
| 506 |
+
"model.layers.42.self_attn.qkv_proj",
|
| 507 |
+
"model.layers.42.self_attn.o_proj",
|
| 508 |
+
"model.layers.42.self_attn.attn.impl.matmul_qk",
|
| 509 |
+
"model.layers.42.self_attn.attn.impl.softmax",
|
| 510 |
+
"model.layers.42.self_attn.attn.impl.matmul_av",
|
| 511 |
+
"model.layers.42.self_attn.attn.impl.batch2block_matmul",
|
| 512 |
+
"model.layers.42.self_attn.attn.impl.block2batch_matmul",
|
| 513 |
+
"model.layers.42.self_attn.attn.impl.k_cache",
|
| 514 |
+
"model.layers.42.self_attn.attn.impl.v_cache",
|
| 515 |
+
"model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 516 |
+
"model.layers.42.mlp.gate_up_proj",
|
| 517 |
+
"model.layers.42.mlp.down_proj",
|
| 518 |
+
"model.layers.43.self_attn.qkv_proj",
|
| 519 |
+
"model.layers.43.self_attn.o_proj",
|
| 520 |
+
"model.layers.43.self_attn.attn.impl.matmul_qk",
|
| 521 |
+
"model.layers.43.self_attn.attn.impl.softmax",
|
| 522 |
+
"model.layers.43.self_attn.attn.impl.matmul_av",
|
| 523 |
+
"model.layers.43.self_attn.attn.impl.batch2block_matmul",
|
| 524 |
+
"model.layers.43.self_attn.attn.impl.block2batch_matmul",
|
| 525 |
+
"model.layers.43.self_attn.attn.impl.k_cache",
|
| 526 |
+
"model.layers.43.self_attn.attn.impl.v_cache",
|
| 527 |
+
"model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 528 |
+
"model.layers.43.mlp.gate_up_proj",
|
| 529 |
+
"model.layers.43.mlp.down_proj",
|
| 530 |
+
"model.layers.44.self_attn.qkv_proj",
|
| 531 |
+
"model.layers.44.self_attn.o_proj",
|
| 532 |
+
"model.layers.44.self_attn.attn.impl.matmul_qk",
|
| 533 |
+
"model.layers.44.self_attn.attn.impl.softmax",
|
| 534 |
+
"model.layers.44.self_attn.attn.impl.matmul_av",
|
| 535 |
+
"model.layers.44.self_attn.attn.impl.batch2block_matmul",
|
| 536 |
+
"model.layers.44.self_attn.attn.impl.block2batch_matmul",
|
| 537 |
+
"model.layers.44.self_attn.attn.impl.k_cache",
|
| 538 |
+
"model.layers.44.self_attn.attn.impl.v_cache",
|
| 539 |
+
"model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 540 |
+
"model.layers.44.mlp.gate_up_proj",
|
| 541 |
+
"model.layers.44.mlp.down_proj",
|
| 542 |
+
"model.layers.45.self_attn.qkv_proj",
|
| 543 |
+
"model.layers.45.self_attn.o_proj",
|
| 544 |
+
"model.layers.45.self_attn.attn.impl.matmul_qk",
|
| 545 |
+
"model.layers.45.self_attn.attn.impl.softmax",
|
| 546 |
+
"model.layers.45.self_attn.attn.impl.matmul_av",
|
| 547 |
+
"model.layers.45.self_attn.attn.impl.batch2block_matmul",
|
| 548 |
+
"model.layers.45.self_attn.attn.impl.block2batch_matmul",
|
| 549 |
+
"model.layers.45.self_attn.attn.impl.k_cache",
|
| 550 |
+
"model.layers.45.self_attn.attn.impl.v_cache",
|
| 551 |
+
"model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 552 |
+
"model.layers.45.mlp.gate_up_proj",
|
| 553 |
+
"model.layers.45.mlp.down_proj",
|
| 554 |
+
"model.layers.46.self_attn.qkv_proj",
|
| 555 |
+
"model.layers.46.self_attn.o_proj",
|
| 556 |
+
"model.layers.46.self_attn.attn.impl.matmul_qk",
|
| 557 |
+
"model.layers.46.self_attn.attn.impl.softmax",
|
| 558 |
+
"model.layers.46.self_attn.attn.impl.matmul_av",
|
| 559 |
+
"model.layers.46.self_attn.attn.impl.batch2block_matmul",
|
| 560 |
+
"model.layers.46.self_attn.attn.impl.block2batch_matmul",
|
| 561 |
+
"model.layers.46.self_attn.attn.impl.k_cache",
|
| 562 |
+
"model.layers.46.self_attn.attn.impl.v_cache",
|
| 563 |
+
"model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 564 |
+
"model.layers.46.mlp.gate_up_proj",
|
| 565 |
+
"model.layers.46.mlp.down_proj",
|
| 566 |
+
"model.layers.47.self_attn.qkv_proj",
|
| 567 |
+
"model.layers.47.self_attn.o_proj",
|
| 568 |
+
"model.layers.47.self_attn.attn.impl.matmul_qk",
|
| 569 |
+
"model.layers.47.self_attn.attn.impl.softmax",
|
| 570 |
+
"model.layers.47.self_attn.attn.impl.matmul_av",
|
| 571 |
+
"model.layers.47.self_attn.attn.impl.batch2block_matmul",
|
| 572 |
+
"model.layers.47.self_attn.attn.impl.block2batch_matmul",
|
| 573 |
+
"model.layers.47.self_attn.attn.impl.k_cache",
|
| 574 |
+
"model.layers.47.self_attn.attn.impl.v_cache",
|
| 575 |
+
"model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 576 |
+
"model.layers.47.mlp.gate_up_proj",
|
| 577 |
+
"model.layers.47.mlp.down_proj",
|
| 578 |
+
"model.layers.48.self_attn.qkv_proj",
|
| 579 |
+
"model.layers.48.self_attn.o_proj",
|
| 580 |
+
"model.layers.48.self_attn.attn.impl.matmul_qk",
|
| 581 |
+
"model.layers.48.self_attn.attn.impl.softmax",
|
| 582 |
+
"model.layers.48.self_attn.attn.impl.matmul_av",
|
| 583 |
+
"model.layers.48.self_attn.attn.impl.batch2block_matmul",
|
| 584 |
+
"model.layers.48.self_attn.attn.impl.block2batch_matmul",
|
| 585 |
+
"model.layers.48.self_attn.attn.impl.k_cache",
|
| 586 |
+
"model.layers.48.self_attn.attn.impl.v_cache",
|
| 587 |
+
"model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 588 |
+
"model.layers.48.mlp.gate_up_proj",
|
| 589 |
+
"model.layers.48.mlp.down_proj",
|
| 590 |
+
"model.layers.49.self_attn.qkv_proj",
|
| 591 |
+
"model.layers.49.self_attn.o_proj",
|
| 592 |
+
"model.layers.49.self_attn.attn.impl.matmul_qk",
|
| 593 |
+
"model.layers.49.self_attn.attn.impl.softmax",
|
| 594 |
+
"model.layers.49.self_attn.attn.impl.matmul_av",
|
| 595 |
+
"model.layers.49.self_attn.attn.impl.batch2block_matmul",
|
| 596 |
+
"model.layers.49.self_attn.attn.impl.block2batch_matmul",
|
| 597 |
+
"model.layers.49.self_attn.attn.impl.k_cache",
|
| 598 |
+
"model.layers.49.self_attn.attn.impl.v_cache",
|
| 599 |
+
"model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 600 |
+
"model.layers.49.mlp.gate_up_proj",
|
| 601 |
+
"model.layers.49.mlp.down_proj",
|
| 602 |
+
"model.layers.50.self_attn.qkv_proj",
|
| 603 |
+
"model.layers.50.self_attn.o_proj",
|
| 604 |
+
"model.layers.50.self_attn.attn.impl.matmul_qk",
|
| 605 |
+
"model.layers.50.self_attn.attn.impl.softmax",
|
| 606 |
+
"model.layers.50.self_attn.attn.impl.matmul_av",
|
| 607 |
+
"model.layers.50.self_attn.attn.impl.batch2block_matmul",
|
| 608 |
+
"model.layers.50.self_attn.attn.impl.block2batch_matmul",
|
| 609 |
+
"model.layers.50.self_attn.attn.impl.k_cache",
|
| 610 |
+
"model.layers.50.self_attn.attn.impl.v_cache",
|
| 611 |
+
"model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 612 |
+
"model.layers.50.mlp.gate_up_proj",
|
| 613 |
+
"model.layers.50.mlp.down_proj",
|
| 614 |
+
"model.layers.51.self_attn.qkv_proj",
|
| 615 |
+
"model.layers.51.self_attn.o_proj",
|
| 616 |
+
"model.layers.51.self_attn.attn.impl.matmul_qk",
|
| 617 |
+
"model.layers.51.self_attn.attn.impl.softmax",
|
| 618 |
+
"model.layers.51.self_attn.attn.impl.matmul_av",
|
| 619 |
+
"model.layers.51.self_attn.attn.impl.batch2block_matmul",
|
| 620 |
+
"model.layers.51.self_attn.attn.impl.block2batch_matmul",
|
| 621 |
+
"model.layers.51.self_attn.attn.impl.k_cache",
|
| 622 |
+
"model.layers.51.self_attn.attn.impl.v_cache",
|
| 623 |
+
"model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 624 |
+
"model.layers.51.mlp.gate_up_proj",
|
| 625 |
+
"model.layers.51.mlp.down_proj",
|
| 626 |
+
"model.layers.52.self_attn.qkv_proj",
|
| 627 |
+
"model.layers.52.self_attn.o_proj",
|
| 628 |
+
"model.layers.52.self_attn.attn.impl.matmul_qk",
|
| 629 |
+
"model.layers.52.self_attn.attn.impl.softmax",
|
| 630 |
+
"model.layers.52.self_attn.attn.impl.matmul_av",
|
| 631 |
+
"model.layers.52.self_attn.attn.impl.batch2block_matmul",
|
| 632 |
+
"model.layers.52.self_attn.attn.impl.block2batch_matmul",
|
| 633 |
+
"model.layers.52.self_attn.attn.impl.k_cache",
|
| 634 |
+
"model.layers.52.self_attn.attn.impl.v_cache",
|
| 635 |
+
"model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 636 |
+
"model.layers.52.mlp.gate_up_proj",
|
| 637 |
+
"model.layers.52.mlp.down_proj",
|
| 638 |
+
"model.layers.53.self_attn.qkv_proj",
|
| 639 |
+
"model.layers.53.self_attn.o_proj",
|
| 640 |
+
"model.layers.53.self_attn.attn.impl.matmul_qk",
|
| 641 |
+
"model.layers.53.self_attn.attn.impl.softmax",
|
| 642 |
+
"model.layers.53.self_attn.attn.impl.matmul_av",
|
| 643 |
+
"model.layers.53.self_attn.attn.impl.batch2block_matmul",
|
| 644 |
+
"model.layers.53.self_attn.attn.impl.block2batch_matmul",
|
| 645 |
+
"model.layers.53.self_attn.attn.impl.k_cache",
|
| 646 |
+
"model.layers.53.self_attn.attn.impl.v_cache",
|
| 647 |
+
"model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 648 |
+
"model.layers.53.mlp.gate_up_proj",
|
| 649 |
+
"model.layers.53.mlp.down_proj",
|
| 650 |
+
"model.layers.54.self_attn.qkv_proj",
|
| 651 |
+
"model.layers.54.self_attn.o_proj",
|
| 652 |
+
"model.layers.54.self_attn.attn.impl.matmul_qk",
|
| 653 |
+
"model.layers.54.self_attn.attn.impl.softmax",
|
| 654 |
+
"model.layers.54.self_attn.attn.impl.matmul_av",
|
| 655 |
+
"model.layers.54.self_attn.attn.impl.batch2block_matmul",
|
| 656 |
+
"model.layers.54.self_attn.attn.impl.block2batch_matmul",
|
| 657 |
+
"model.layers.54.self_attn.attn.impl.k_cache",
|
| 658 |
+
"model.layers.54.self_attn.attn.impl.v_cache",
|
| 659 |
+
"model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 660 |
+
"model.layers.54.mlp.gate_up_proj",
|
| 661 |
+
"model.layers.54.mlp.down_proj",
|
| 662 |
+
"model.layers.55.self_attn.qkv_proj",
|
| 663 |
+
"model.layers.55.self_attn.o_proj",
|
| 664 |
+
"model.layers.55.self_attn.attn.impl.matmul_qk",
|
| 665 |
+
"model.layers.55.self_attn.attn.impl.softmax",
|
| 666 |
+
"model.layers.55.self_attn.attn.impl.matmul_av",
|
| 667 |
+
"model.layers.55.self_attn.attn.impl.batch2block_matmul",
|
| 668 |
+
"model.layers.55.self_attn.attn.impl.block2batch_matmul",
|
| 669 |
+
"model.layers.55.self_attn.attn.impl.k_cache",
|
| 670 |
+
"model.layers.55.self_attn.attn.impl.v_cache",
|
| 671 |
+
"model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 672 |
+
"model.layers.55.mlp.gate_up_proj",
|
| 673 |
+
"model.layers.55.mlp.down_proj",
|
| 674 |
+
"model.layers.56.self_attn.qkv_proj",
|
| 675 |
+
"model.layers.56.self_attn.o_proj",
|
| 676 |
+
"model.layers.56.self_attn.attn.impl.matmul_qk",
|
| 677 |
+
"model.layers.56.self_attn.attn.impl.softmax",
|
| 678 |
+
"model.layers.56.self_attn.attn.impl.matmul_av",
|
| 679 |
+
"model.layers.56.self_attn.attn.impl.batch2block_matmul",
|
| 680 |
+
"model.layers.56.self_attn.attn.impl.block2batch_matmul",
|
| 681 |
+
"model.layers.56.self_attn.attn.impl.k_cache",
|
| 682 |
+
"model.layers.56.self_attn.attn.impl.v_cache",
|
| 683 |
+
"model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 684 |
+
"model.layers.56.mlp.gate_up_proj",
|
| 685 |
+
"model.layers.56.mlp.down_proj",
|
| 686 |
+
"model.layers.57.self_attn.qkv_proj",
|
| 687 |
+
"model.layers.57.self_attn.o_proj",
|
| 688 |
+
"model.layers.57.self_attn.attn.impl.matmul_qk",
|
| 689 |
+
"model.layers.57.self_attn.attn.impl.softmax",
|
| 690 |
+
"model.layers.57.self_attn.attn.impl.matmul_av",
|
| 691 |
+
"model.layers.57.self_attn.attn.impl.batch2block_matmul",
|
| 692 |
+
"model.layers.57.self_attn.attn.impl.block2batch_matmul",
|
| 693 |
+
"model.layers.57.self_attn.attn.impl.k_cache",
|
| 694 |
+
"model.layers.57.self_attn.attn.impl.v_cache",
|
| 695 |
+
"model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 696 |
+
"model.layers.57.mlp.gate_up_proj",
|
| 697 |
+
"model.layers.57.mlp.down_proj",
|
| 698 |
+
"model.layers.58.self_attn.qkv_proj",
|
| 699 |
+
"model.layers.58.self_attn.o_proj",
|
| 700 |
+
"model.layers.58.self_attn.attn.impl.matmul_qk",
|
| 701 |
+
"model.layers.58.self_attn.attn.impl.softmax",
|
| 702 |
+
"model.layers.58.self_attn.attn.impl.matmul_av",
|
| 703 |
+
"model.layers.58.self_attn.attn.impl.batch2block_matmul",
|
| 704 |
+
"model.layers.58.self_attn.attn.impl.block2batch_matmul",
|
| 705 |
+
"model.layers.58.self_attn.attn.impl.k_cache",
|
| 706 |
+
"model.layers.58.self_attn.attn.impl.v_cache",
|
| 707 |
+
"model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 708 |
+
"model.layers.58.mlp.gate_up_proj",
|
| 709 |
+
"model.layers.58.mlp.down_proj",
|
| 710 |
+
"model.layers.59.self_attn.qkv_proj",
|
| 711 |
+
"model.layers.59.self_attn.o_proj",
|
| 712 |
+
"model.layers.59.self_attn.attn.impl.matmul_qk",
|
| 713 |
+
"model.layers.59.self_attn.attn.impl.softmax",
|
| 714 |
+
"model.layers.59.self_attn.attn.impl.matmul_av",
|
| 715 |
+
"model.layers.59.self_attn.attn.impl.batch2block_matmul",
|
| 716 |
+
"model.layers.59.self_attn.attn.impl.block2batch_matmul",
|
| 717 |
+
"model.layers.59.self_attn.attn.impl.k_cache",
|
| 718 |
+
"model.layers.59.self_attn.attn.impl.v_cache",
|
| 719 |
+
"model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 720 |
+
"model.layers.59.mlp.gate_up_proj",
|
| 721 |
+
"model.layers.59.mlp.down_proj",
|
| 722 |
+
"model.layers.60.self_attn.qkv_proj",
|
| 723 |
+
"model.layers.60.self_attn.o_proj",
|
| 724 |
+
"model.layers.60.self_attn.attn.impl.matmul_qk",
|
| 725 |
+
"model.layers.60.self_attn.attn.impl.softmax",
|
| 726 |
+
"model.layers.60.self_attn.attn.impl.matmul_av",
|
| 727 |
+
"model.layers.60.self_attn.attn.impl.batch2block_matmul",
|
| 728 |
+
"model.layers.60.self_attn.attn.impl.block2batch_matmul",
|
| 729 |
+
"model.layers.60.self_attn.attn.impl.k_cache",
|
| 730 |
+
"model.layers.60.self_attn.attn.impl.v_cache",
|
| 731 |
+
"model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 732 |
+
"model.layers.60.mlp.gate_up_proj",
|
| 733 |
+
"model.layers.60.mlp.down_proj",
|
| 734 |
+
"model.layers.61.self_attn.qkv_proj",
|
| 735 |
+
"model.layers.61.self_attn.o_proj",
|
| 736 |
+
"model.layers.61.self_attn.attn.impl.matmul_qk",
|
| 737 |
+
"model.layers.61.self_attn.attn.impl.softmax",
|
| 738 |
+
"model.layers.61.self_attn.attn.impl.matmul_av",
|
| 739 |
+
"model.layers.61.self_attn.attn.impl.batch2block_matmul",
|
| 740 |
+
"model.layers.61.self_attn.attn.impl.block2batch_matmul",
|
| 741 |
+
"model.layers.61.self_attn.attn.impl.k_cache",
|
| 742 |
+
"model.layers.61.self_attn.attn.impl.v_cache",
|
| 743 |
+
"model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 744 |
+
"model.layers.61.mlp.gate_up_proj",
|
| 745 |
+
"model.layers.61.mlp.down_proj",
|
| 746 |
+
"model.layers.62.self_attn.qkv_proj",
|
| 747 |
+
"model.layers.62.self_attn.o_proj",
|
| 748 |
+
"model.layers.62.self_attn.attn.impl.matmul_qk",
|
| 749 |
+
"model.layers.62.self_attn.attn.impl.softmax",
|
| 750 |
+
"model.layers.62.self_attn.attn.impl.matmul_av",
|
| 751 |
+
"model.layers.62.self_attn.attn.impl.batch2block_matmul",
|
| 752 |
+
"model.layers.62.self_attn.attn.impl.block2batch_matmul",
|
| 753 |
+
"model.layers.62.self_attn.attn.impl.k_cache",
|
| 754 |
+
"model.layers.62.self_attn.attn.impl.v_cache",
|
| 755 |
+
"model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 756 |
+
"model.layers.62.mlp.gate_up_proj",
|
| 757 |
+
"model.layers.62.mlp.down_proj",
|
| 758 |
+
"model.layers.63.self_attn.qkv_proj",
|
| 759 |
+
"model.layers.63.self_attn.o_proj",
|
| 760 |
+
"model.layers.63.self_attn.attn.impl.matmul_qk",
|
| 761 |
+
"model.layers.63.self_attn.attn.impl.softmax",
|
| 762 |
+
"model.layers.63.self_attn.attn.impl.matmul_av",
|
| 763 |
+
"model.layers.63.self_attn.attn.impl.batch2block_matmul",
|
| 764 |
+
"model.layers.63.self_attn.attn.impl.block2batch_matmul",
|
| 765 |
+
"model.layers.63.self_attn.attn.impl.k_cache",
|
| 766 |
+
"model.layers.63.self_attn.attn.impl.v_cache",
|
| 767 |
+
"model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 768 |
+
"model.layers.63.mlp.gate_up_proj",
|
| 769 |
+
"model.layers.63.mlp.down_proj",
|
| 770 |
+
"model.layers.64.self_attn.qkv_proj",
|
| 771 |
+
"model.layers.64.self_attn.o_proj",
|
| 772 |
+
"model.layers.64.self_attn.attn.impl.matmul_qk",
|
| 773 |
+
"model.layers.64.self_attn.attn.impl.softmax",
|
| 774 |
+
"model.layers.64.self_attn.attn.impl.matmul_av",
|
| 775 |
+
"model.layers.64.self_attn.attn.impl.batch2block_matmul",
|
| 776 |
+
"model.layers.64.self_attn.attn.impl.block2batch_matmul",
|
| 777 |
+
"model.layers.64.self_attn.attn.impl.k_cache",
|
| 778 |
+
"model.layers.64.self_attn.attn.impl.v_cache",
|
| 779 |
+
"model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 780 |
+
"model.layers.64.mlp.gate_up_proj",
|
| 781 |
+
"model.layers.64.mlp.down_proj",
|
| 782 |
+
"model.layers.65.self_attn.qkv_proj",
|
| 783 |
+
"model.layers.65.self_attn.o_proj",
|
| 784 |
+
"model.layers.65.self_attn.attn.impl.matmul_qk",
|
| 785 |
+
"model.layers.65.self_attn.attn.impl.softmax",
|
| 786 |
+
"model.layers.65.self_attn.attn.impl.matmul_av",
|
| 787 |
+
"model.layers.65.self_attn.attn.impl.batch2block_matmul",
|
| 788 |
+
"model.layers.65.self_attn.attn.impl.block2batch_matmul",
|
| 789 |
+
"model.layers.65.self_attn.attn.impl.k_cache",
|
| 790 |
+
"model.layers.65.self_attn.attn.impl.v_cache",
|
| 791 |
+
"model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 792 |
+
"model.layers.65.mlp.gate_up_proj",
|
| 793 |
+
"model.layers.65.mlp.down_proj",
|
| 794 |
+
"model.layers.66.self_attn.qkv_proj",
|
| 795 |
+
"model.layers.66.self_attn.o_proj",
|
| 796 |
+
"model.layers.66.self_attn.attn.impl.matmul_qk",
|
| 797 |
+
"model.layers.66.self_attn.attn.impl.softmax",
|
| 798 |
+
"model.layers.66.self_attn.attn.impl.matmul_av",
|
| 799 |
+
"model.layers.66.self_attn.attn.impl.batch2block_matmul",
|
| 800 |
+
"model.layers.66.self_attn.attn.impl.block2batch_matmul",
|
| 801 |
+
"model.layers.66.self_attn.attn.impl.k_cache",
|
| 802 |
+
"model.layers.66.self_attn.attn.impl.v_cache",
|
| 803 |
+
"model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 804 |
+
"model.layers.66.mlp.gate_up_proj",
|
| 805 |
+
"model.layers.66.mlp.down_proj",
|
| 806 |
+
"model.layers.67.self_attn.qkv_proj",
|
| 807 |
+
"model.layers.67.self_attn.o_proj",
|
| 808 |
+
"model.layers.67.self_attn.attn.impl.matmul_qk",
|
| 809 |
+
"model.layers.67.self_attn.attn.impl.softmax",
|
| 810 |
+
"model.layers.67.self_attn.attn.impl.matmul_av",
|
| 811 |
+
"model.layers.67.self_attn.attn.impl.batch2block_matmul",
|
| 812 |
+
"model.layers.67.self_attn.attn.impl.block2batch_matmul",
|
| 813 |
+
"model.layers.67.self_attn.attn.impl.k_cache",
|
| 814 |
+
"model.layers.67.self_attn.attn.impl.v_cache",
|
| 815 |
+
"model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 816 |
+
"model.layers.67.mlp.gate_up_proj",
|
| 817 |
+
"model.layers.67.mlp.down_proj",
|
| 818 |
+
"model.layers.68.self_attn.qkv_proj",
|
| 819 |
+
"model.layers.68.self_attn.o_proj",
|
| 820 |
+
"model.layers.68.self_attn.attn.impl.matmul_qk",
|
| 821 |
+
"model.layers.68.self_attn.attn.impl.softmax",
|
| 822 |
+
"model.layers.68.self_attn.attn.impl.matmul_av",
|
| 823 |
+
"model.layers.68.self_attn.attn.impl.batch2block_matmul",
|
| 824 |
+
"model.layers.68.self_attn.attn.impl.block2batch_matmul",
|
| 825 |
+
"model.layers.68.self_attn.attn.impl.k_cache",
|
| 826 |
+
"model.layers.68.self_attn.attn.impl.v_cache",
|
| 827 |
+
"model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 828 |
+
"model.layers.68.mlp.gate_up_proj",
|
| 829 |
+
"model.layers.68.mlp.down_proj",
|
| 830 |
+
"model.layers.69.self_attn.qkv_proj",
|
| 831 |
+
"model.layers.69.self_attn.o_proj",
|
| 832 |
+
"model.layers.69.self_attn.attn.impl.matmul_qk",
|
| 833 |
+
"model.layers.69.self_attn.attn.impl.softmax",
|
| 834 |
+
"model.layers.69.self_attn.attn.impl.matmul_av",
|
| 835 |
+
"model.layers.69.self_attn.attn.impl.batch2block_matmul",
|
| 836 |
+
"model.layers.69.self_attn.attn.impl.block2batch_matmul",
|
| 837 |
+
"model.layers.69.self_attn.attn.impl.k_cache",
|
| 838 |
+
"model.layers.69.self_attn.attn.impl.v_cache",
|
| 839 |
+
"model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 840 |
+
"model.layers.69.mlp.gate_up_proj",
|
| 841 |
+
"model.layers.69.mlp.down_proj",
|
| 842 |
+
"model.layers.70.self_attn.qkv_proj",
|
| 843 |
+
"model.layers.70.self_attn.o_proj",
|
| 844 |
+
"model.layers.70.self_attn.attn.impl.matmul_qk",
|
| 845 |
+
"model.layers.70.self_attn.attn.impl.softmax",
|
| 846 |
+
"model.layers.70.self_attn.attn.impl.matmul_av",
|
| 847 |
+
"model.layers.70.self_attn.attn.impl.batch2block_matmul",
|
| 848 |
+
"model.layers.70.self_attn.attn.impl.block2batch_matmul",
|
| 849 |
+
"model.layers.70.self_attn.attn.impl.k_cache",
|
| 850 |
+
"model.layers.70.self_attn.attn.impl.v_cache",
|
| 851 |
+
"model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 852 |
+
"model.layers.70.mlp.gate_up_proj",
|
| 853 |
+
"model.layers.70.mlp.down_proj",
|
| 854 |
+
"model.layers.71.self_attn.qkv_proj",
|
| 855 |
+
"model.layers.71.self_attn.o_proj",
|
| 856 |
+
"model.layers.71.self_attn.attn.impl.matmul_qk",
|
| 857 |
+
"model.layers.71.self_attn.attn.impl.softmax",
|
| 858 |
+
"model.layers.71.self_attn.attn.impl.matmul_av",
|
| 859 |
+
"model.layers.71.self_attn.attn.impl.batch2block_matmul",
|
| 860 |
+
"model.layers.71.self_attn.attn.impl.block2batch_matmul",
|
| 861 |
+
"model.layers.71.self_attn.attn.impl.k_cache",
|
| 862 |
+
"model.layers.71.self_attn.attn.impl.v_cache",
|
| 863 |
+
"model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 864 |
+
"model.layers.71.mlp.gate_up_proj",
|
| 865 |
+
"model.layers.71.mlp.down_proj",
|
| 866 |
+
"model.layers.72.self_attn.qkv_proj",
|
| 867 |
+
"model.layers.72.self_attn.o_proj",
|
| 868 |
+
"model.layers.72.self_attn.attn.impl.matmul_qk",
|
| 869 |
+
"model.layers.72.self_attn.attn.impl.softmax",
|
| 870 |
+
"model.layers.72.self_attn.attn.impl.matmul_av",
|
| 871 |
+
"model.layers.72.self_attn.attn.impl.batch2block_matmul",
|
| 872 |
+
"model.layers.72.self_attn.attn.impl.block2batch_matmul",
|
| 873 |
+
"model.layers.72.self_attn.attn.impl.k_cache",
|
| 874 |
+
"model.layers.72.self_attn.attn.impl.v_cache",
|
| 875 |
+
"model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 876 |
+
"model.layers.72.mlp.gate_up_proj",
|
| 877 |
+
"model.layers.72.mlp.down_proj",
|
| 878 |
+
"model.layers.73.self_attn.qkv_proj",
|
| 879 |
+
"model.layers.73.self_attn.o_proj",
|
| 880 |
+
"model.layers.73.self_attn.attn.impl.matmul_qk",
|
| 881 |
+
"model.layers.73.self_attn.attn.impl.softmax",
|
| 882 |
+
"model.layers.73.self_attn.attn.impl.matmul_av",
|
| 883 |
+
"model.layers.73.self_attn.attn.impl.batch2block_matmul",
|
| 884 |
+
"model.layers.73.self_attn.attn.impl.block2batch_matmul",
|
| 885 |
+
"model.layers.73.self_attn.attn.impl.k_cache",
|
| 886 |
+
"model.layers.73.self_attn.attn.impl.v_cache",
|
| 887 |
+
"model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 888 |
+
"model.layers.73.mlp.gate_up_proj",
|
| 889 |
+
"model.layers.73.mlp.down_proj",
|
| 890 |
+
"model.layers.74.self_attn.qkv_proj",
|
| 891 |
+
"model.layers.74.self_attn.o_proj",
|
| 892 |
+
"model.layers.74.self_attn.attn.impl.matmul_qk",
|
| 893 |
+
"model.layers.74.self_attn.attn.impl.softmax",
|
| 894 |
+
"model.layers.74.self_attn.attn.impl.matmul_av",
|
| 895 |
+
"model.layers.74.self_attn.attn.impl.batch2block_matmul",
|
| 896 |
+
"model.layers.74.self_attn.attn.impl.block2batch_matmul",
|
| 897 |
+
"model.layers.74.self_attn.attn.impl.k_cache",
|
| 898 |
+
"model.layers.74.self_attn.attn.impl.v_cache",
|
| 899 |
+
"model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 900 |
+
"model.layers.74.mlp.gate_up_proj",
|
| 901 |
+
"model.layers.74.mlp.down_proj",
|
| 902 |
+
"model.layers.75.self_attn.qkv_proj",
|
| 903 |
+
"model.layers.75.self_attn.o_proj",
|
| 904 |
+
"model.layers.75.self_attn.attn.impl.matmul_qk",
|
| 905 |
+
"model.layers.75.self_attn.attn.impl.softmax",
|
| 906 |
+
"model.layers.75.self_attn.attn.impl.matmul_av",
|
| 907 |
+
"model.layers.75.self_attn.attn.impl.batch2block_matmul",
|
| 908 |
+
"model.layers.75.self_attn.attn.impl.block2batch_matmul",
|
| 909 |
+
"model.layers.75.self_attn.attn.impl.k_cache",
|
| 910 |
+
"model.layers.75.self_attn.attn.impl.v_cache",
|
| 911 |
+
"model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 912 |
+
"model.layers.75.mlp.gate_up_proj",
|
| 913 |
+
"model.layers.75.mlp.down_proj",
|
| 914 |
+
"model.layers.76.self_attn.qkv_proj",
|
| 915 |
+
"model.layers.76.self_attn.o_proj",
|
| 916 |
+
"model.layers.76.self_attn.attn.impl.matmul_qk",
|
| 917 |
+
"model.layers.76.self_attn.attn.impl.softmax",
|
| 918 |
+
"model.layers.76.self_attn.attn.impl.matmul_av",
|
| 919 |
+
"model.layers.76.self_attn.attn.impl.batch2block_matmul",
|
| 920 |
+
"model.layers.76.self_attn.attn.impl.block2batch_matmul",
|
| 921 |
+
"model.layers.76.self_attn.attn.impl.k_cache",
|
| 922 |
+
"model.layers.76.self_attn.attn.impl.v_cache",
|
| 923 |
+
"model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 924 |
+
"model.layers.76.mlp.gate_up_proj",
|
| 925 |
+
"model.layers.76.mlp.down_proj",
|
| 926 |
+
"model.layers.77.self_attn.qkv_proj",
|
| 927 |
+
"model.layers.77.self_attn.o_proj",
|
| 928 |
+
"model.layers.77.self_attn.attn.impl.matmul_qk",
|
| 929 |
+
"model.layers.77.self_attn.attn.impl.softmax",
|
| 930 |
+
"model.layers.77.self_attn.attn.impl.matmul_av",
|
| 931 |
+
"model.layers.77.self_attn.attn.impl.batch2block_matmul",
|
| 932 |
+
"model.layers.77.self_attn.attn.impl.block2batch_matmul",
|
| 933 |
+
"model.layers.77.self_attn.attn.impl.k_cache",
|
| 934 |
+
"model.layers.77.self_attn.attn.impl.v_cache",
|
| 935 |
+
"model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 936 |
+
"model.layers.77.mlp.gate_up_proj",
|
| 937 |
+
"model.layers.77.mlp.down_proj",
|
| 938 |
+
"model.layers.78.self_attn.qkv_proj",
|
| 939 |
+
"model.layers.78.self_attn.o_proj",
|
| 940 |
+
"model.layers.78.self_attn.attn.impl.matmul_qk",
|
| 941 |
+
"model.layers.78.self_attn.attn.impl.softmax",
|
| 942 |
+
"model.layers.78.self_attn.attn.impl.matmul_av",
|
| 943 |
+
"model.layers.78.self_attn.attn.impl.batch2block_matmul",
|
| 944 |
+
"model.layers.78.self_attn.attn.impl.block2batch_matmul",
|
| 945 |
+
"model.layers.78.self_attn.attn.impl.k_cache",
|
| 946 |
+
"model.layers.78.self_attn.attn.impl.v_cache",
|
| 947 |
+
"model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 948 |
+
"model.layers.78.mlp.gate_up_proj",
|
| 949 |
+
"model.layers.78.mlp.down_proj",
|
| 950 |
+
"model.layers.79.self_attn.qkv_proj",
|
| 951 |
+
"model.layers.79.self_attn.o_proj",
|
| 952 |
+
"model.layers.79.self_attn.attn.impl.matmul_qk",
|
| 953 |
+
"model.layers.79.self_attn.attn.impl.softmax",
|
| 954 |
+
"model.layers.79.self_attn.attn.impl.matmul_av",
|
| 955 |
+
"model.layers.79.self_attn.attn.impl.batch2block_matmul",
|
| 956 |
+
"model.layers.79.self_attn.attn.impl.block2batch_matmul",
|
| 957 |
+
"model.layers.79.self_attn.attn.impl.k_cache",
|
| 958 |
+
"model.layers.79.self_attn.attn.impl.v_cache",
|
| 959 |
+
"model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 960 |
+
"model.layers.79.mlp.gate_up_proj",
|
| 961 |
+
"model.layers.79.mlp.down_proj",
|
| 962 |
+
"lm_head"
|
| 963 |
+
]
|
quant/g3/inc_output_hooks_maxabs_3_4.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"GlobalRank": null, "LocalRank": 3, "Mode": "DynamicRange", "Nodes": {"model.layers.0.self_attn.qkv_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[29.0]]}}, "model.layers.0.self_attn.o_proj": {"inputs": [[[0.12353515625]]], "outputs": [[[0.140625]], [[0.248046875]]], "params": {"weight": [[0.30859375]]}}, "model.layers.0.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.388671875]], [[5.0]]]}, "model.layers.0.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.1884765625]]]}, "model.layers.0.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[404.0]]]}, "model.layers.0.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[123.0]]]}, "model.layers.0.self_attn.attn.impl.k_cache": {"inputs": [[[5.0]]]}, "model.layers.0.self_attn.attn.impl.v_cache": {"inputs": [[[0.1884765625]]]}, "model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.71875]], [[5.0]], [[0.1884765625]]], "outputs": [[[0.12353515625]], [[1.0]]]}, "model.layers.0.mlp.gate_up_proj": {"inputs": [[[1.453125]]], "params": {"weight": [[43.25]]}}, "model.layers.0.mlp.down_proj": {"inputs": [[[0.5390625]]], "outputs": [[[8.625]], [[52.5]]], "params": {"weight": [[0.64453125]]}}, "model.layers.1.self_attn.qkv_proj": {"inputs": [[[7.40625]]], "params": {"weight": [[4.875]]}}, "model.layers.1.self_attn.o_proj": {"inputs": [[[0.158203125]]], "outputs": [[[0.65625]], [[0.765625]]], "params": {"weight": [[0.515625]]}}, "model.layers.1.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.85546875]], [[12.4375]]]}, "model.layers.1.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.8359375]]]}, "model.layers.1.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.609375]]]}, "model.layers.1.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.984375]]]}, "model.layers.1.self_attn.attn.impl.k_cache": {"inputs": [[[12.4375]]]}, "model.layers.1.self_attn.attn.impl.v_cache": {"inputs": [[[0.8359375]]]}, "model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.9375]], [[12.4375]], [[0.8203125]]], "outputs": [[[0.1123046875]], [[1.0]]]}, "model.layers.1.mlp.gate_up_proj": {"inputs": [[[3.09375]]], "params": {"weight": [[7.875]]}}, "model.layers.1.mlp.down_proj": {"inputs": [[[6.5625]]], "outputs": [[[2.171875]], [[5.0625]]], "params": {"weight": [[0.52734375]]}}, "model.layers.2.self_attn.qkv_proj": {"inputs": [[[6.625]]], "params": {"weight": [[1.2890625]]}}, "model.layers.2.self_attn.o_proj": {"inputs": [[[0.06787109375]]], "outputs": [[[0.044189453125]], [[0.099609375]]], "params": {"weight": [[0.2158203125]]}}, "model.layers.2.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0625]], [[12.1875]]]}, "model.layers.2.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.5234375]]]}, "model.layers.2.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.2.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.65625]]]}, "model.layers.2.self_attn.attn.impl.k_cache": {"inputs": [[[12.1875]]]}, "model.layers.2.self_attn.attn.impl.v_cache": {"inputs": [[[0.5234375]]]}, "model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[11.4375]], [[11.75]], [[0.5078125]]], "outputs": [[[0.05078125]], [[1.0]]]}, "model.layers.2.mlp.gate_up_proj": {"inputs": [[[2.578125]]], "params": {"weight": [[2.78125]]}}, "model.layers.2.mlp.down_proj": {"inputs": [[[0.26171875]]], "outputs": [[[0.345703125]], [[0.72265625]]], "params": {"weight": [[0.298828125]]}}, "model.layers.3.self_attn.qkv_proj": {"inputs": [[[3.796875]]], "params": {"weight": [[7.875]]}}, "model.layers.3.self_attn.o_proj": {"inputs": [[[0.26953125]]], "outputs": [[[0.64453125]], [[0.9453125]]], "params": {"weight": [[0.26953125]]}}, "model.layers.3.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.48046875]], [[12.8125]]]}, "model.layers.3.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.53515625]]]}, "model.layers.3.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.375]]]}, "model.layers.3.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.140625]]]}, "model.layers.3.self_attn.attn.impl.k_cache": {"inputs": [[[12.8125]]]}, "model.layers.3.self_attn.attn.impl.v_cache": {"inputs": [[[0.53515625]]]}, "model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.0625]], [[12.0]], [[0.48046875]]], "outputs": [[[0.26953125]], [[1.0]]]}, "model.layers.3.mlp.gate_up_proj": {"inputs": [[[22.625]]], "params": {"weight": [[3.203125]]}}, "model.layers.3.mlp.down_proj": {"inputs": [[[1.0078125]]], "outputs": [[[4.90625]], [[452.0]]], "params": {"weight": [[1.3671875]]}}, "model.layers.4.self_attn.qkv_proj": {"inputs": [[[4.875]]], "params": {"weight": [[0.322265625]]}}, "model.layers.4.self_attn.o_proj": {"inputs": [[[0.16796875]]], "outputs": [[[0.1015625]], [[0.154296875]]], "params": {"weight": [[0.330078125]]}}, "model.layers.4.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[13.75]]]}, "model.layers.4.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.875]]]}, "model.layers.4.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.4.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.8125]]]}, "model.layers.4.self_attn.attn.impl.k_cache": {"inputs": [[[13.75]]]}, "model.layers.4.self_attn.attn.impl.v_cache": {"inputs": [[[0.875]]]}, "model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.9375]], [[13.1875]], [[0.875]]], "outputs": [[[0.1328125]], [[1.0]]]}, "model.layers.4.mlp.gate_up_proj": {"inputs": [[[1.8828125]]], "params": {"weight": [[1.1328125]]}}, "model.layers.4.mlp.down_proj": {"inputs": [[[0.388671875]]], "outputs": [[[0.15234375]], [[0.68359375]]], "params": {"weight": [[1.0234375]]}}, "model.layers.5.self_attn.qkv_proj": {"inputs": [[[4.84375]]], "params": {"weight": [[3.1875]]}}, "model.layers.5.self_attn.o_proj": {"inputs": [[[0.146484375]]], "outputs": [[[0.06640625]], [[0.10888671875]]], "params": {"weight": [[0.09326171875]]}}, "model.layers.5.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[18.875]]]}, "model.layers.5.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.76953125]]]}, "model.layers.5.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.5]]]}, "model.layers.5.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.015625]]]}, "model.layers.5.self_attn.attn.impl.k_cache": {"inputs": [[[18.875]]]}, "model.layers.5.self_attn.attn.impl.v_cache": {"inputs": [[[0.76953125]]]}, "model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.1875]], [[17.625]], [[0.76953125]]], "outputs": [[[0.107421875]], [[1.0]]]}, "model.layers.5.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[11.875]]}}, "model.layers.5.mlp.down_proj": {"inputs": [[[0.369140625]]], "outputs": [[[1.0078125]], [[7.375]]], "params": {"weight": [[0.66796875]]}}, "model.layers.6.self_attn.qkv_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.345703125]]}}, "model.layers.6.self_attn.o_proj": {"inputs": [[[0.1064453125]]], "outputs": [[[0.2451171875]], [[0.279296875]]], "params": {"weight": [[0.146484375]]}}, "model.layers.6.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[15.75]]]}, "model.layers.6.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.94921875]]]}, "model.layers.6.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.3125]]]}, "model.layers.6.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.6.self_attn.attn.impl.k_cache": {"inputs": [[[15.75]]]}, "model.layers.6.self_attn.attn.impl.v_cache": {"inputs": [[[0.94921875]]]}, "model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.21875]], [[14.8125]], [[0.86328125]]], "outputs": [[[0.0771484375]], [[1.0]]]}, "model.layers.6.mlp.gate_up_proj": {"inputs": [[[3.328125]]], "params": {"weight": [[1.015625]]}}, "model.layers.6.mlp.down_proj": {"inputs": [[[0.69140625]]], "outputs": [[[0.1982421875]], [[0.431640625]]], "params": {"weight": [[0.345703125]]}}, "model.layers.7.self_attn.qkv_proj": {"inputs": [[[5.625]]], "params": {"weight": [[0.357421875]]}}, "model.layers.7.self_attn.o_proj": {"inputs": [[[0.216796875]]], "outputs": [[[0.0849609375]], [[0.1240234375]]], "params": {"weight": [[0.181640625]]}}, "model.layers.7.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7734375]], [[12.875]]]}, "model.layers.7.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.9765625]]]}, "model.layers.7.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.7.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.1875]]]}, "model.layers.7.self_attn.attn.impl.k_cache": {"inputs": [[[12.875]]]}, "model.layers.7.self_attn.attn.impl.v_cache": {"inputs": [[[0.9765625]]]}, "model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.1875]], [[12.1875]], [[0.921875]]], "outputs": [[[0.134765625]], [[1.0]]]}, "model.layers.7.mlp.gate_up_proj": {"inputs": [[[3.3125]]], "params": {"weight": [[0.4453125]]}}, "model.layers.7.mlp.down_proj": {"inputs": [[[1.8984375]]], "outputs": [[[0.59765625]], [[1.59375]]], "params": {"weight": [[0.62109375]]}}, "model.layers.8.self_attn.qkv_proj": {"inputs": [[[4.8125]]], "params": {"weight": [[0.333984375]]}}, "model.layers.8.self_attn.o_proj": {"inputs": [[[0.1728515625]]], "outputs": [[[0.091796875]], [[0.138671875]]], "params": {"weight": [[0.12158203125]]}}, "model.layers.8.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.71875]], [[17.125]]]}, "model.layers.8.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.7109375]]]}, "model.layers.8.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.78125]]]}, "model.layers.8.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.890625]]]}, "model.layers.8.self_attn.attn.impl.k_cache": {"inputs": [[[17.125]]]}, "model.layers.8.self_attn.attn.impl.v_cache": {"inputs": [[[0.7109375]]]}, "model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[16.5]], [[0.66015625]]], "outputs": [[[0.1728515625]], [[1.0]]]}, "model.layers.8.mlp.gate_up_proj": {"inputs": [[[3.078125]]], "params": {"weight": [[3.09375]]}}, "model.layers.8.mlp.down_proj": {"inputs": [[[0.51953125]]], "outputs": [[[0.126953125]], [[0.474609375]]], "params": {"weight": [[0.240234375]]}}, "model.layers.9.self_attn.qkv_proj": {"inputs": [[[5.59375]]], "params": {"weight": [[0.515625]]}}, "model.layers.9.self_attn.o_proj": {"inputs": [[[0.16015625]]], "outputs": [[[0.0517578125]], [[0.126953125]]], "params": {"weight": [[0.130859375]]}}, "model.layers.9.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6015625]], [[22.25]]]}, "model.layers.9.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.640625]]]}, "model.layers.9.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.96875]]]}, "model.layers.9.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.0]]]}, "model.layers.9.self_attn.attn.impl.k_cache": {"inputs": [[[22.25]]]}, "model.layers.9.self_attn.attn.impl.v_cache": {"inputs": [[[0.640625]]]}, "model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[21.125]], [[0.5234375]]], "outputs": [[[0.16015625]], [[1.0]]]}, "model.layers.9.mlp.gate_up_proj": {"inputs": [[[4.28125]]], "params": {"weight": [[15.4375]]}}, "model.layers.9.mlp.down_proj": {"inputs": [[[0.9140625]]], "outputs": [[[1.4375]], [[7.15625]]], "params": {"weight": [[0.2236328125]]}}, "model.layers.10.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.328125]]}}, "model.layers.10.self_attn.o_proj": {"inputs": [[[0.359375]]], "outputs": [[[0.11181640625]], [[0.234375]]], "params": {"weight": [[0.248046875]]}}, "model.layers.10.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[11.9375]]]}, "model.layers.10.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.234375]]]}, "model.layers.10.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.84375]]]}, "model.layers.10.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.765625]]]}, "model.layers.10.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.10.self_attn.attn.impl.v_cache": {"inputs": [[[1.234375]]]}, "model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.25]], [[11.5]], [[1.234375]]], "outputs": [[[0.1494140625]], [[1.0]]]}, "model.layers.10.mlp.gate_up_proj": {"inputs": [[[3.125]]], "params": {"weight": [[0.400390625]]}}, "model.layers.10.mlp.down_proj": {"inputs": [[[0.92578125]]], "outputs": [[[0.10888671875]], [[0.40625]]], "params": {"weight": [[0.31640625]]}}, "model.layers.11.self_attn.qkv_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[2.8125]]}}, "model.layers.11.self_attn.o_proj": {"inputs": [[[0.20703125]]], "outputs": [[[0.08154296875]], [[0.166015625]]], "params": {"weight": [[0.193359375]]}}, "model.layers.11.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.640625]], [[15.5625]]]}, "model.layers.11.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.89453125]]]}, "model.layers.11.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.09375]]]}, "model.layers.11.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.84375]]]}, "model.layers.11.self_attn.attn.impl.k_cache": {"inputs": [[[15.5625]]]}, "model.layers.11.self_attn.attn.impl.v_cache": {"inputs": [[[0.89453125]]]}, "model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[15.125]], [[0.8203125]]], "outputs": [[[0.1611328125]], [[1.0]]]}, "model.layers.11.mlp.gate_up_proj": {"inputs": [[[3.34375]]], "params": {"weight": [[1.6015625]]}}, "model.layers.11.mlp.down_proj": {"inputs": [[[0.9921875]]], "outputs": [[[0.169921875]], [[0.75390625]]], "params": {"weight": [[0.2001953125]]}}, "model.layers.12.self_attn.qkv_proj": {"inputs": [[[6.1875]]], "params": {"weight": [[0.37109375]]}}, "model.layers.12.self_attn.o_proj": {"inputs": [[[0.357421875]]], "outputs": [[[0.1376953125]], [[0.32421875]]], "params": {"weight": [[0.1962890625]]}}, "model.layers.12.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8515625]], [[13.25]]]}, "model.layers.12.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.796875]]]}, "model.layers.12.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.5]]]}, "model.layers.12.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.03125]]]}, "model.layers.12.self_attn.attn.impl.k_cache": {"inputs": [[[13.25]]]}, "model.layers.12.self_attn.attn.impl.v_cache": {"inputs": [[[0.796875]]]}, "model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.375]], [[12.625]], [[0.8046875]]], "outputs": [[[0.291015625]], [[1.0]]]}, "model.layers.12.mlp.gate_up_proj": {"inputs": [[[3.703125]]], "params": {"weight": [[0.8203125]]}}, "model.layers.12.mlp.down_proj": {"inputs": [[[0.72265625]]], "outputs": [[[0.5234375]], [[1.734375]]], "params": {"weight": [[0.326171875]]}}, "model.layers.13.self_attn.qkv_proj": {"inputs": [[[6.0]]], "params": {"weight": [[0.2578125]]}}, "model.layers.13.self_attn.o_proj": {"inputs": [[[0.3671875]]], "outputs": [[[0.150390625]], [[0.34375]]], "params": {"weight": [[0.16015625]]}}, "model.layers.13.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.62890625]], [[15.1875]]]}, "model.layers.13.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.859375]]]}, "model.layers.13.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[3.96875]]]}, "model.layers.13.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[2.859375]]]}, "model.layers.13.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.13.self_attn.attn.impl.v_cache": {"inputs": [[[1.859375]]]}, "model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.46875]], [[14.9375]], [[1.328125]]], "outputs": [[[0.333984375]], [[1.0]]]}, "model.layers.13.mlp.gate_up_proj": {"inputs": [[[3.8125]]], "params": {"weight": [[0.25390625]]}}, "model.layers.13.mlp.down_proj": {"inputs": [[[0.98828125]]], "outputs": [[[0.328125]], [[0.89453125]]], "params": {"weight": [[0.240234375]]}}, "model.layers.14.self_attn.qkv_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.2197265625]]}}, "model.layers.14.self_attn.o_proj": {"inputs": [[[0.240234375]]], "outputs": [[[0.27734375]], [[0.490234375]]], "params": {"weight": [[0.1845703125]]}}, "model.layers.14.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[10.125]]]}, "model.layers.14.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6171875]]]}, "model.layers.14.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[4.25]]]}, "model.layers.14.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[3.375]]]}, "model.layers.14.self_attn.attn.impl.k_cache": {"inputs": [[[10.125]]]}, "model.layers.14.self_attn.attn.impl.v_cache": {"inputs": [[[1.6171875]]]}, "model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5625]], [[9.8125]], [[1.4921875]]], "outputs": [[[0.2138671875]], [[1.0]]]}, "model.layers.14.mlp.gate_up_proj": {"inputs": [[[3.875]]], "params": {"weight": [[0.255859375]]}}, "model.layers.14.mlp.down_proj": {"inputs": [[[0.94140625]]], "outputs": [[[0.306640625]], [[0.87109375]]], "params": {"weight": [[0.330078125]]}}, "model.layers.15.self_attn.qkv_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.2255859375]]}}, "model.layers.15.self_attn.o_proj": {"inputs": [[[0.427734375]]], "outputs": [[[0.1884765625]], [[0.4140625]]], "params": {"weight": [[0.1357421875]]}}, "model.layers.15.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[12.3125]]]}, "model.layers.15.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5625]]]}, "model.layers.15.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.5625]]]}, "model.layers.15.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.15.self_attn.attn.impl.k_cache": {"inputs": [[[12.3125]]]}, "model.layers.15.self_attn.attn.impl.v_cache": {"inputs": [[[1.5625]]]}, "model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.71875]], [[11.25]], [[1.234375]]], "outputs": [[[0.306640625]], [[1.0]]]}, "model.layers.15.mlp.gate_up_proj": {"inputs": [[[3.453125]]], "params": {"weight": [[0.30078125]]}}, "model.layers.15.mlp.down_proj": {"inputs": [[[1.2734375]]], "outputs": [[[0.11328125]], [[0.375]]], "params": {"weight": [[0.62109375]]}}, "model.layers.16.self_attn.qkv_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.431640625]]}}, "model.layers.16.self_attn.o_proj": {"inputs": [[[0.53125]]], "outputs": [[[0.263671875]], [[0.5234375]]], "params": {"weight": [[0.1953125]]}}, "model.layers.16.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.625]], [[16.0]]]}, "model.layers.16.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.984375]]]}, "model.layers.16.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.0625]]]}, "model.layers.16.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.875]]]}, "model.layers.16.self_attn.attn.impl.k_cache": {"inputs": [[[16.0]]]}, "model.layers.16.self_attn.attn.impl.v_cache": {"inputs": [[[1.984375]]]}, "model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.3125]], [[15.375]], [[1.4921875]]], "outputs": [[[0.359375]], [[1.0]]]}, "model.layers.16.mlp.gate_up_proj": {"inputs": [[[4.1875]]], "params": {"weight": [[0.5078125]]}}, "model.layers.16.mlp.down_proj": {"inputs": [[[1.15625]]], "outputs": [[[0.32421875]], [[0.6328125]]], "params": {"weight": [[0.486328125]]}}, "model.layers.17.self_attn.qkv_proj": {"inputs": [[[10.9375]]], "params": {"weight": [[0.3515625]]}}, "model.layers.17.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.236328125]], [[0.75]]], "params": {"weight": [[0.1044921875]]}}, "model.layers.17.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.72265625]], [[13.0625]]]}, "model.layers.17.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.109375]]]}, "model.layers.17.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[37.25]]]}, "model.layers.17.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.17.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.17.self_attn.attn.impl.v_cache": {"inputs": [[[1.109375]]]}, "model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.6875]], [[12.0625]], [[1.0234375]]], "outputs": [[[0.43359375]], [[1.0]]]}, "model.layers.17.mlp.gate_up_proj": {"inputs": [[[4.03125]]], "params": {"weight": [[0.380859375]]}}, "model.layers.17.mlp.down_proj": {"inputs": [[[1.4765625]]], "outputs": [[[0.2353515625]], [[0.84765625]]], "params": {"weight": [[0.546875]]}}, "model.layers.18.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.322265625]]}}, "model.layers.18.self_attn.o_proj": {"inputs": [[[0.498046875]]], "outputs": [[[0.20703125]], [[0.640625]]], "params": {"weight": [[0.1142578125]]}}, "model.layers.18.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[14.625]]]}, "model.layers.18.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.90625]]]}, "model.layers.18.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.5]]]}, "model.layers.18.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.18.self_attn.attn.impl.k_cache": {"inputs": [[[14.625]]]}, "model.layers.18.self_attn.attn.impl.v_cache": {"inputs": [[[1.90625]]]}, "model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.71875]], [[13.75]], [[1.0]]], "outputs": [[[0.392578125]], [[1.0]]]}, "model.layers.18.mlp.gate_up_proj": {"inputs": [[[7.5625]]], "params": {"weight": [[0.26171875]]}}, "model.layers.18.mlp.down_proj": {"inputs": [[[27.0]]], "outputs": [[[6.625]], [[30.625]]], "params": {"weight": [[1.109375]]}}, "model.layers.19.self_attn.qkv_proj": {"inputs": [[[10.6875]]], "params": {"weight": [[0.255859375]]}}, "model.layers.19.self_attn.o_proj": {"inputs": [[[0.4921875]]], "outputs": [[[0.28515625]], [[0.76171875]]], "params": {"weight": [[0.16796875]]}}, "model.layers.19.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.703125]], [[12.375]]]}, "model.layers.19.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6640625]]]}, "model.layers.19.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[37.5]]]}, "model.layers.19.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.25]]]}, "model.layers.19.self_attn.attn.impl.k_cache": {"inputs": [[[12.375]]]}, "model.layers.19.self_attn.attn.impl.v_cache": {"inputs": [[[1.6640625]]]}, "model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[11.375]], [[1.5390625]]], "outputs": [[[0.306640625]], [[1.0]]]}, "model.layers.19.mlp.gate_up_proj": {"inputs": [[[4.09375]]], "params": {"weight": [[0.44921875]]}}, "model.layers.19.mlp.down_proj": {"inputs": [[[1.953125]]], "outputs": [[[0.44921875]], [[1.2265625]]], "params": {"weight": [[0.44140625]]}}, "model.layers.20.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.390625]]}}, "model.layers.20.self_attn.o_proj": {"inputs": [[[0.625]]], "outputs": [[[0.2451171875]], [[1.1484375]]], "params": {"weight": [[0.2119140625]]}}, "model.layers.20.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7109375]], [[18.125]]]}, "model.layers.20.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.46875]]]}, "model.layers.20.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.25]]]}, "model.layers.20.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.875]]]}, "model.layers.20.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.20.self_attn.attn.impl.v_cache": {"inputs": [[[1.46875]]]}, "model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.03125]], [[16.375]], [[1.3203125]]], "outputs": [[[0.40234375]], [[1.0]]]}, "model.layers.20.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.314453125]]}}, "model.layers.20.mlp.down_proj": {"inputs": [[[2.015625]]], "outputs": [[[0.73046875]], [[4.6875]]], "params": {"weight": [[0.59375]]}}, "model.layers.21.self_attn.qkv_proj": {"inputs": [[[11.4375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.21.self_attn.o_proj": {"inputs": [[[0.84765625]]], "outputs": [[[0.2890625]], [[1.3984375]]], "params": {"weight": [[0.1806640625]]}}, "model.layers.21.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.69140625]], [[14.875]]]}, "model.layers.21.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.296875]]]}, "model.layers.21.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.5]]]}, "model.layers.21.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.21.self_attn.attn.impl.k_cache": {"inputs": [[[14.875]]]}, "model.layers.21.self_attn.attn.impl.v_cache": {"inputs": [[[1.296875]]]}, "model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[13.625]], [[1.21875]]], "outputs": [[[0.5078125]], [[1.0]]]}, "model.layers.21.mlp.gate_up_proj": {"inputs": [[[3.578125]]], "params": {"weight": [[0.416015625]]}}, "model.layers.21.mlp.down_proj": {"inputs": [[[2.171875]]], "outputs": [[[0.68359375]], [[5.0]]], "params": {"weight": [[1.1640625]]}}, "model.layers.22.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.296875]]}}, "model.layers.22.self_attn.o_proj": {"inputs": [[[0.6171875]]], "outputs": [[[0.37109375]], [[1.25]]], "params": {"weight": [[0.380859375]]}}, "model.layers.22.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[15.1875]]]}, "model.layers.22.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.296875]]]}, "model.layers.22.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[20.875]]]}, "model.layers.22.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.625]]]}, "model.layers.22.self_attn.attn.impl.k_cache": {"inputs": [[[15.1875]]]}, "model.layers.22.self_attn.attn.impl.v_cache": {"inputs": [[[1.296875]]]}, "model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.0625]], [[14.1875]], [[1.0859375]]], "outputs": [[[0.4375]], [[1.0]]]}, "model.layers.22.mlp.gate_up_proj": {"inputs": [[[3.25]]], "params": {"weight": [[0.5859375]]}}, "model.layers.22.mlp.down_proj": {"inputs": [[[2.046875]]], "outputs": [[[0.478515625]], [[2.578125]]], "params": {"weight": [[0.482421875]]}}, "model.layers.23.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.33203125]]}}, "model.layers.23.self_attn.o_proj": {"inputs": [[[0.63671875]]], "outputs": [[[0.578125]], [[2.140625]]], "params": {"weight": [[0.380859375]]}}, "model.layers.23.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[16.375]]]}, "model.layers.23.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.09375]]]}, "model.layers.23.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.25]]]}, "model.layers.23.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.0]]]}, "model.layers.23.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.23.self_attn.attn.impl.v_cache": {"inputs": [[[1.09375]]]}, "model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.71875]], [[16.125]], [[1.0078125]]], "outputs": [[[0.51953125]], [[1.0]]]}, "model.layers.23.mlp.gate_up_proj": {"inputs": [[[3.265625]]], "params": {"weight": [[0.390625]]}}, "model.layers.23.mlp.down_proj": {"inputs": [[[6.375]]], "outputs": [[[0.5625]], [[2.75]]], "params": {"weight": [[0.396484375]]}}, "model.layers.24.self_attn.qkv_proj": {"inputs": [[[9.3125]]], "params": {"weight": [[0.375]]}}, "model.layers.24.self_attn.o_proj": {"inputs": [[[0.5703125]]], "outputs": [[[0.2158203125]], [[2.0]]], "params": {"weight": [[0.33984375]]}}, "model.layers.24.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6484375]], [[13.0]]]}, "model.layers.24.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6875]]]}, "model.layers.24.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.1875]]]}, "model.layers.24.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.8125]]]}, "model.layers.24.self_attn.attn.impl.k_cache": {"inputs": [[[13.0]]]}, "model.layers.24.self_attn.attn.impl.v_cache": {"inputs": [[[1.6875]]]}, "model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[11.5625]], [[1.6875]]], "outputs": [[[0.546875]], [[1.0]]]}, "model.layers.24.mlp.gate_up_proj": {"inputs": [[[3.4375]]], "params": {"weight": [[0.50390625]]}}, "model.layers.24.mlp.down_proj": {"inputs": [[[2.421875]]], "outputs": [[[2.078125]], [[14.9375]]], "params": {"weight": [[0.79296875]]}}, "model.layers.25.self_attn.qkv_proj": {"inputs": [[[10.5625]]], "params": {"weight": [[0.33984375]]}}, "model.layers.25.self_attn.o_proj": {"inputs": [[[0.48828125]]], "outputs": [[[0.375]], [[2.28125]]], "params": {"weight": [[0.302734375]]}}, "model.layers.25.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91015625]], [[14.4375]]]}, "model.layers.25.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.703125]]]}, "model.layers.25.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.5]]]}, "model.layers.25.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[21.375]]]}, "model.layers.25.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.25.self_attn.attn.impl.v_cache": {"inputs": [[[2.703125]]]}, "model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0625]], [[14.4375]], [[2.703125]]], "outputs": [[[0.388671875]], [[1.0]]]}, "model.layers.25.mlp.gate_up_proj": {"inputs": [[[3.5]]], "params": {"weight": [[0.439453125]]}}, "model.layers.25.mlp.down_proj": {"inputs": [[[1.796875]]], "outputs": [[[0.9375]], [[6.28125]]], "params": {"weight": [[0.7734375]]}}, "model.layers.26.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.353515625]]}}, "model.layers.26.self_attn.o_proj": {"inputs": [[[0.765625]]], "outputs": [[[0.341796875]], [[2.1875]]], "params": {"weight": [[0.400390625]]}}, "model.layers.26.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.78515625]], [[13.8125]]]}, "model.layers.26.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.015625]]]}, "model.layers.26.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.625]]]}, "model.layers.26.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.25]]]}, "model.layers.26.self_attn.attn.impl.k_cache": {"inputs": [[[13.8125]]]}, "model.layers.26.self_attn.attn.impl.v_cache": {"inputs": [[[2.015625]]]}, "model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.65625]], [[13.4375]], [[2.015625]]], "outputs": [[[0.44140625]], [[1.0]]]}, "model.layers.26.mlp.gate_up_proj": {"inputs": [[[3.890625]]], "params": {"weight": [[0.4296875]]}}, "model.layers.26.mlp.down_proj": {"inputs": [[[1.9921875]]], "outputs": [[[0.984375]], [[3.546875]]], "params": {"weight": [[0.7578125]]}}, "model.layers.27.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.376953125]]}}, "model.layers.27.self_attn.o_proj": {"inputs": [[[0.53125]]], "outputs": [[[0.9921875]], [[2.34375]]], "params": {"weight": [[0.408203125]]}}, "model.layers.27.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[15.8125]]]}, "model.layers.27.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.71875]]]}, "model.layers.27.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[23.125]]]}, "model.layers.27.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[12.5]]]}, "model.layers.27.self_attn.attn.impl.k_cache": {"inputs": [[[15.8125]]]}, "model.layers.27.self_attn.attn.impl.v_cache": {"inputs": [[[2.71875]]]}, "model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.90625]], [[13.5625]], [[2.71875]]], "outputs": [[[0.53125]], [[1.0]]]}, "model.layers.27.mlp.gate_up_proj": {"inputs": [[[4.0625]]], "params": {"weight": [[0.361328125]]}}, "model.layers.27.mlp.down_proj": {"inputs": [[[5.71875]]], "outputs": [[[0.85546875]], [[2.375]]], "params": {"weight": [[0.62890625]]}}, "model.layers.28.self_attn.qkv_proj": {"inputs": [[[11.0]]], "params": {"weight": [[0.3046875]]}}, "model.layers.28.self_attn.o_proj": {"inputs": [[[2.0]]], "outputs": [[[0.82421875]], [[2.625]]], "params": {"weight": [[0.875]]}}, "model.layers.28.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[11.9375]]]}, "model.layers.28.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.59375]]]}, "model.layers.28.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.125]]]}, "model.layers.28.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.03125]]]}, "model.layers.28.self_attn.attn.impl.k_cache": {"inputs": [[[11.9375]]]}, "model.layers.28.self_attn.attn.impl.v_cache": {"inputs": [[[6.59375]]]}, "model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.65625]], [[10.0]], [[6.59375]]], "outputs": [[[2.0]], [[1.0]]]}, "model.layers.28.mlp.gate_up_proj": {"inputs": [[[4.78125]]], "params": {"weight": [[0.6328125]]}}, "model.layers.28.mlp.down_proj": {"inputs": [[[1.78125]]], "outputs": [[[0.8984375]], [[2.90625]]], "params": {"weight": [[0.92578125]]}}, "model.layers.29.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.3828125]]}}, "model.layers.29.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[2.171875]], [[2.625]]], "params": {"weight": [[0.2451171875]]}}, "model.layers.29.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.890625]], [[15.375]]]}, "model.layers.29.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.4375]]]}, "model.layers.29.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[46.0]]]}, "model.layers.29.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[22.75]]]}, "model.layers.29.self_attn.attn.impl.k_cache": {"inputs": [[[15.375]]]}, "model.layers.29.self_attn.attn.impl.v_cache": {"inputs": [[[5.4375]]]}, "model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.3125]], [[15.375]], [[5.4375]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.29.mlp.gate_up_proj": {"inputs": [[[4.9375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.29.mlp.down_proj": {"inputs": [[[1.703125]]], "outputs": [[[1.046875]], [[2.390625]]], "params": {"weight": [[0.51171875]]}}, "model.layers.30.self_attn.qkv_proj": {"inputs": [[[10.25]]], "params": {"weight": [[0.5625]]}}, "model.layers.30.self_attn.o_proj": {"inputs": [[[0.5078125]]], "outputs": [[[0.38671875]], [[2.03125]]], "params": {"weight": [[0.31640625]]}}, "model.layers.30.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[20.25]]]}, "model.layers.30.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0859375]]]}, "model.layers.30.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[31.125]]]}, "model.layers.30.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.875]]]}, "model.layers.30.self_attn.attn.impl.k_cache": {"inputs": [[[20.25]]]}, "model.layers.30.self_attn.attn.impl.v_cache": {"inputs": [[[1.0859375]]]}, "model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.75]], [[18.375]], [[0.8046875]]], "outputs": [[[0.4921875]], [[1.0]]]}, "model.layers.30.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.4921875]]}}, "model.layers.30.mlp.down_proj": {"inputs": [[[3.0]]], "outputs": [[[0.7890625]], [[3.375]]], "params": {"weight": [[0.6484375]]}}, "model.layers.31.self_attn.qkv_proj": {"inputs": [[[12.5]]], "params": {"weight": [[0.2314453125]]}}, "model.layers.31.self_attn.o_proj": {"inputs": [[[0.90625]]], "outputs": [[[1.4921875]], [[2.265625]]], "params": {"weight": [[0.400390625]]}}, "model.layers.31.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.828125]], [[17.625]]]}, "model.layers.31.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9921875]]]}, "model.layers.31.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[37.5]]]}, "model.layers.31.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.375]]]}, "model.layers.31.self_attn.attn.impl.k_cache": {"inputs": [[[17.625]]]}, "model.layers.31.self_attn.attn.impl.v_cache": {"inputs": [[[1.9921875]]]}, "model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.53125]], [[17.125]], [[1.9921875]]], "outputs": [[[0.53125]], [[1.0]]]}, "model.layers.31.mlp.gate_up_proj": {"inputs": [[[5.09375]]], "params": {"weight": [[0.396484375]]}}, "model.layers.31.mlp.down_proj": {"inputs": [[[2.453125]]], "outputs": [[[0.60546875]], [[1.5390625]]], "params": {"weight": [[0.53515625]]}}, "model.layers.32.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.400390625]]}}, "model.layers.32.self_attn.o_proj": {"inputs": [[[1.0546875]]], "outputs": [[[0.470703125]], [[1.5]]], "params": {"weight": [[0.44140625]]}}, "model.layers.32.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6484375]], [[16.375]]]}, "model.layers.32.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.34375]]]}, "model.layers.32.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.32.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[19.25]]]}, "model.layers.32.self_attn.attn.impl.k_cache": {"inputs": [[[16.375]]]}, "model.layers.32.self_attn.attn.impl.v_cache": {"inputs": [[[4.34375]]]}, "model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.96875]], [[16.375]], [[4.34375]]], "outputs": [[[1.0546875]], [[1.0]]]}, "model.layers.32.mlp.gate_up_proj": {"inputs": [[[6.65625]]], "params": {"weight": [[0.3671875]]}}, "model.layers.32.mlp.down_proj": {"inputs": [[[4.28125]]], "outputs": [[[0.703125]], [[2.703125]]], "params": {"weight": [[1.015625]]}}, "model.layers.33.self_attn.qkv_proj": {"inputs": [[[14.25]]], "params": {"weight": [[0.421875]]}}, "model.layers.33.self_attn.o_proj": {"inputs": [[[0.75]]], "outputs": [[[1.4921875]], [[2.65625]]], "params": {"weight": [[0.490234375]]}}, "model.layers.33.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.7890625]], [[17.875]]]}, "model.layers.33.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.0625]]]}, "model.layers.33.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.0]]]}, "model.layers.33.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.25]]]}, "model.layers.33.self_attn.attn.impl.k_cache": {"inputs": [[[17.875]]]}, "model.layers.33.self_attn.attn.impl.v_cache": {"inputs": [[[2.0625]]]}, "model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.71875]], [[17.0]], [[2.0625]]], "outputs": [[[0.57421875]], [[1.0]]]}, "model.layers.33.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[28.125]]}}, "model.layers.33.mlp.down_proj": {"inputs": [[[3.203125]]], "outputs": [[[0.890625]], [[1.7578125]]], "params": {"weight": [[1.25]]}}, "model.layers.34.self_attn.qkv_proj": {"inputs": [[[13.25]]], "params": {"weight": [[0.337890625]]}}, "model.layers.34.self_attn.o_proj": {"inputs": [[[0.78125]]], "outputs": [[[13.5625]], [[14.9375]]], "params": {"weight": [[0.298828125]]}}, "model.layers.34.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.85546875]], [[18.125]]]}, "model.layers.34.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.71875]]]}, "model.layers.34.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[19.375]]]}, "model.layers.34.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.5]]]}, "model.layers.34.self_attn.attn.impl.k_cache": {"inputs": [[[18.125]]]}, "model.layers.34.self_attn.attn.impl.v_cache": {"inputs": [[[1.71875]]]}, "model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.75]], [[17.25]], [[1.71875]]], "outputs": [[[0.57421875]], [[1.0]]]}, "model.layers.34.mlp.gate_up_proj": {"inputs": [[[7.0]]], "params": {"weight": [[0.765625]]}}, "model.layers.34.mlp.down_proj": {"inputs": [[[1.9140625]]], "outputs": [[[0.85546875]], [[3.125]]], "params": {"weight": [[0.59375]]}}, "model.layers.35.self_attn.qkv_proj": {"inputs": [[[11.8125]]], "params": {"weight": [[0.271484375]]}}, "model.layers.35.self_attn.o_proj": {"inputs": [[[0.875]]], "outputs": [[[5.90625]], [[6.71875]]], "params": {"weight": [[0.96875]]}}, "model.layers.35.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.796875]], [[18.5]]]}, "model.layers.35.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.734375]]]}, "model.layers.35.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[35.75]]]}, "model.layers.35.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[17.875]]]}, "model.layers.35.self_attn.attn.impl.k_cache": {"inputs": [[[18.5]]]}, "model.layers.35.self_attn.attn.impl.v_cache": {"inputs": [[[2.734375]]]}, "model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.0]], [[16.875]], [[2.734375]]], "outputs": [[[0.6953125]], [[1.0]]]}, "model.layers.35.mlp.gate_up_proj": {"inputs": [[[6.5]]], "params": {"weight": [[0.388671875]]}}, "model.layers.35.mlp.down_proj": {"inputs": [[[3.34375]]], "outputs": [[[0.8125]], [[4.46875]]], "params": {"weight": [[0.328125]]}}, "model.layers.36.self_attn.qkv_proj": {"inputs": [[[15.4375]]], "params": {"weight": [[0.46875]]}}, "model.layers.36.self_attn.o_proj": {"inputs": [[[0.5234375]]], "outputs": [[[2.71875]], [[2.75]]], "params": {"weight": [[0.5390625]]}}, "model.layers.36.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[17.375]]]}, "model.layers.36.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.90625]]]}, "model.layers.36.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[36.0]]]}, "model.layers.36.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.375]]]}, "model.layers.36.self_attn.attn.impl.k_cache": {"inputs": [[[17.375]]]}, "model.layers.36.self_attn.attn.impl.v_cache": {"inputs": [[[5.90625]]]}, "model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.25]], [[16.5]], [[5.90625]]], "outputs": [[[0.515625]], [[1.0]]]}, "model.layers.36.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.458984375]]}}, "model.layers.36.mlp.down_proj": {"inputs": [[[2.671875]]], "outputs": [[[0.73828125]], [[3.40625]]], "params": {"weight": [[0.73828125]]}}, "model.layers.37.self_attn.qkv_proj": {"inputs": [[[17.625]]], "params": {"weight": [[0.291015625]]}}, "model.layers.37.self_attn.o_proj": {"inputs": [[[0.9921875]]], "outputs": [[[2.859375]], [[3.59375]]], "params": {"weight": [[1.0859375]]}}, "model.layers.37.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73046875]], [[16.75]]]}, "model.layers.37.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.1875]]]}, "model.layers.37.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.0625]]]}, "model.layers.37.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.37.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.37.self_attn.attn.impl.v_cache": {"inputs": [[[5.1875]]]}, "model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.59375]], [[14.875]], [[5.1875]]], "outputs": [[[0.77734375]], [[1.0]]]}, "model.layers.37.mlp.gate_up_proj": {"inputs": [[[7.4375]]], "params": {"weight": [[0.42578125]]}}, "model.layers.37.mlp.down_proj": {"inputs": [[[2.671875]]], "outputs": [[[0.78515625]], [[2.21875]]], "params": {"weight": [[0.6171875]]}}, "model.layers.38.self_attn.qkv_proj": {"inputs": [[[16.125]]], "params": {"weight": [[0.97265625]]}}, "model.layers.38.self_attn.o_proj": {"inputs": [[[0.7421875]]], "outputs": [[[0.703125]], [[1.109375]]], "params": {"weight": [[0.34375]]}}, "model.layers.38.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.890625]], [[18.25]]]}, "model.layers.38.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.40625]]]}, "model.layers.38.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[44.0]]]}, "model.layers.38.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.4375]]]}, "model.layers.38.self_attn.attn.impl.k_cache": {"inputs": [[[18.25]]]}, "model.layers.38.self_attn.attn.impl.v_cache": {"inputs": [[[1.40625]]]}, "model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.125]], [[17.5]], [[1.0234375]]], "outputs": [[[0.7109375]], [[1.0]]]}, "model.layers.38.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.376953125]]}}, "model.layers.38.mlp.down_proj": {"inputs": [[[7.09375]]], "outputs": [[[2.140625]], [[3.078125]]], "params": {"weight": [[0.9609375]]}}, "model.layers.39.self_attn.qkv_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.310546875]]}}, "model.layers.39.self_attn.o_proj": {"inputs": [[[0.90234375]]], "outputs": [[[3.515625]], [[3.625]]], "params": {"weight": [[0.40234375]]}}, "model.layers.39.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.60546875]], [[14.6875]]]}, "model.layers.39.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.640625]]]}, "model.layers.39.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0]]]}, "model.layers.39.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.78125]]]}, "model.layers.39.self_attn.attn.impl.k_cache": {"inputs": [[[14.6875]]]}, "model.layers.39.self_attn.attn.impl.v_cache": {"inputs": [[[3.640625]]]}, "model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.84375]], [[13.75]], [[3.640625]]], "outputs": [[[0.70703125]], [[1.0]]]}, "model.layers.39.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.5078125]]}}, "model.layers.39.mlp.down_proj": {"inputs": [[[2.359375]]], "outputs": [[[1.6328125]], [[3.203125]]], "params": {"weight": [[1.0859375]]}}, "model.layers.40.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.32421875]]}}, "model.layers.40.self_attn.o_proj": {"inputs": [[[0.78515625]]], "outputs": [[[0.9609375]], [[2.0625]]], "params": {"weight": [[0.30078125]]}}, "model.layers.40.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91796875]], [[10.5625]]]}, "model.layers.40.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.015625]]]}, "model.layers.40.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.875]]]}, "model.layers.40.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.40.self_attn.attn.impl.k_cache": {"inputs": [[[10.5625]]]}, "model.layers.40.self_attn.attn.impl.v_cache": {"inputs": [[[2.015625]]]}, "model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.3125]], [[10.375]], [[1.140625]]], "outputs": [[[0.400390625]], [[1.0]]]}, "model.layers.40.mlp.gate_up_proj": {"inputs": [[[7.1875]]], "params": {"weight": [[0.404296875]]}}, "model.layers.40.mlp.down_proj": {"inputs": [[[3.40625]]], "outputs": [[[0.68359375]], [[1.34375]]], "params": {"weight": [[1.2734375]]}}, "model.layers.41.self_attn.qkv_proj": {"inputs": [[[16.25]]], "params": {"weight": [[0.384765625]]}}, "model.layers.41.self_attn.o_proj": {"inputs": [[[0.71875]]], "outputs": [[[0.2255859375]], [[1.078125]]], "params": {"weight": [[0.37890625]]}}, "model.layers.41.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8828125]], [[15.0]]]}, "model.layers.41.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.4609375]]]}, "model.layers.41.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[29.75]]]}, "model.layers.41.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.375]]]}, "model.layers.41.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.41.self_attn.attn.impl.v_cache": {"inputs": [[[1.4609375]]]}, "model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.6875]], [[14.0625]], [[1.0703125]]], "outputs": [[[0.63671875]], [[1.0]]]}, "model.layers.41.mlp.gate_up_proj": {"inputs": [[[7.28125]]], "params": {"weight": [[0.357421875]]}}, "model.layers.41.mlp.down_proj": {"inputs": [[[2.65625]]], "outputs": [[[0.9921875]], [[1.3984375]]], "params": {"weight": [[0.384765625]]}}, "model.layers.42.self_attn.qkv_proj": {"inputs": [[[14.8125]]], "params": {"weight": [[0.451171875]]}}, "model.layers.42.self_attn.o_proj": {"inputs": [[[0.2578125]]], "outputs": [[[0.1474609375]], [[0.5]]], "params": {"weight": [[0.2314453125]]}}, "model.layers.42.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.515625]], [[12.375]]]}, "model.layers.42.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.7890625]]]}, "model.layers.42.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.5625]]]}, "model.layers.42.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.84375]]]}, "model.layers.42.self_attn.attn.impl.k_cache": {"inputs": [[[12.375]]]}, "model.layers.42.self_attn.attn.impl.v_cache": {"inputs": [[[0.7890625]]]}, "model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.4375]], [[11.5]], [[0.8125]]], "outputs": [[[0.2578125]], [[1.0]]]}, "model.layers.42.mlp.gate_up_proj": {"inputs": [[[6.75]]], "params": {"weight": [[0.427734375]]}}, "model.layers.42.mlp.down_proj": {"inputs": [[[2.984375]]], "outputs": [[[0.85546875]], [[2.046875]]], "params": {"weight": [[0.267578125]]}}, "model.layers.43.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.388671875]]}}, "model.layers.43.self_attn.o_proj": {"inputs": [[[0.76171875]]], "outputs": [[[0.357421875]], [[0.734375]]], "params": {"weight": [[0.2333984375]]}}, "model.layers.43.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6875]], [[18.25]]]}, "model.layers.43.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.34375]]]}, "model.layers.43.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.75]]]}, "model.layers.43.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.6875]]]}, "model.layers.43.self_attn.attn.impl.k_cache": {"inputs": [[[18.25]]]}, "model.layers.43.self_attn.attn.impl.v_cache": {"inputs": [[[1.34375]]]}, "model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.4375]], [[15.0]], [[1.234375]]], "outputs": [[[0.546875]], [[1.0]]]}, "model.layers.43.mlp.gate_up_proj": {"inputs": [[[6.625]]], "params": {"weight": [[0.78125]]}}, "model.layers.43.mlp.down_proj": {"inputs": [[[3.03125]]], "outputs": [[[0.60546875]], [[0.81640625]]], "params": {"weight": [[0.384765625]]}}, "model.layers.44.self_attn.qkv_proj": {"inputs": [[[13.625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.44.self_attn.o_proj": {"inputs": [[[0.94140625]]], "outputs": [[[0.67578125]], [[0.59375]]], "params": {"weight": [[0.21484375]]}}, "model.layers.44.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.91796875]], [[14.75]]]}, "model.layers.44.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.6796875]]]}, "model.layers.44.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.125]]]}, "model.layers.44.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.875]]]}, "model.layers.44.self_attn.attn.impl.k_cache": {"inputs": [[[14.75]]]}, "model.layers.44.self_attn.attn.impl.v_cache": {"inputs": [[[1.6796875]]]}, "model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.5]], [[14.1875]], [[1.1484375]]], "outputs": [[[0.76171875]], [[1.0]]]}, "model.layers.44.mlp.gate_up_proj": {"inputs": [[[7.09375]]], "params": {"weight": [[0.5703125]]}}, "model.layers.44.mlp.down_proj": {"inputs": [[[3.828125]]], "outputs": [[[0.486328125]], [[0.984375]]], "params": {"weight": [[0.92578125]]}}, "model.layers.45.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.294921875]]}}, "model.layers.45.self_attn.o_proj": {"inputs": [[[0.6875]]], "outputs": [[[0.546875]], [[0.9921875]]], "params": {"weight": [[0.28125]]}}, "model.layers.45.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.56640625]], [[15.0]]]}, "model.layers.45.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3828125]]]}, "model.layers.45.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.75]]]}, "model.layers.45.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.375]]]}, "model.layers.45.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.45.self_attn.attn.impl.v_cache": {"inputs": [[[1.3828125]]]}, "model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.875]], [[13.9375]], [[0.90625]]], "outputs": [[[0.47265625]], [[1.0]]]}, "model.layers.45.mlp.gate_up_proj": {"inputs": [[[7.15625]]], "params": {"weight": [[0.46875]]}}, "model.layers.45.mlp.down_proj": {"inputs": [[[4.25]]], "outputs": [[[1.515625]], [[2.4375]]], "params": {"weight": [[1.5703125]]}}, "model.layers.46.self_attn.qkv_proj": {"inputs": [[[12.9375]]], "params": {"weight": [[0.71875]]}}, "model.layers.46.self_attn.o_proj": {"inputs": [[[0.359375]]], "outputs": [[[0.14453125]], [[0.2099609375]]], "params": {"weight": [[0.14453125]]}}, "model.layers.46.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.87109375]], [[16.75]]]}, "model.layers.46.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.5703125]]]}, "model.layers.46.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.75]]]}, "model.layers.46.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.625]]]}, "model.layers.46.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.46.self_attn.attn.impl.v_cache": {"inputs": [[[0.5703125]]]}, "model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.125]], [[16.75]], [[0.49609375]]], "outputs": [[[0.33203125]], [[1.0]]]}, "model.layers.46.mlp.gate_up_proj": {"inputs": [[[6.4375]]], "params": {"weight": [[0.462890625]]}}, "model.layers.46.mlp.down_proj": {"inputs": [[[4.0625]]], "outputs": [[[0.359375]], [[0.671875]]], "params": {"weight": [[0.408203125]]}}, "model.layers.47.self_attn.qkv_proj": {"inputs": [[[11.9375]]], "params": {"weight": [[0.412109375]]}}, "model.layers.47.self_attn.o_proj": {"inputs": [[[0.3984375]]], "outputs": [[[0.625]], [[0.64453125]]], "params": {"weight": [[0.2333984375]]}}, "model.layers.47.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55859375]], [[14.8125]]]}, "model.layers.47.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.0625]]]}, "model.layers.47.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.47.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.34375]]]}, "model.layers.47.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.47.self_attn.attn.impl.v_cache": {"inputs": [[[2.0625]]]}, "model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.96875]], [[13.625]], [[2.0625]]], "outputs": [[[0.369140625]], [[1.0]]]}, "model.layers.47.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.392578125]]}}, "model.layers.47.mlp.down_proj": {"inputs": [[[4.28125]]], "outputs": [[[0.5234375]], [[1.21875]]], "params": {"weight": [[1.4375]]}}, "model.layers.48.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.52734375]]}}, "model.layers.48.self_attn.o_proj": {"inputs": [[[0.60546875]]], "outputs": [[[0.3984375]], [[0.515625]]], "params": {"weight": [[0.259765625]]}}, "model.layers.48.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[12.625]]]}, "model.layers.48.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3515625]]]}, "model.layers.48.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[30.625]]]}, "model.layers.48.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.6875]]]}, "model.layers.48.self_attn.attn.impl.k_cache": {"inputs": [[[12.625]]]}, "model.layers.48.self_attn.attn.impl.v_cache": {"inputs": [[[1.3515625]]]}, "model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.5625]], [[10.0]], [[1.1015625]]], "outputs": [[[0.5703125]], [[1.0]]]}, "model.layers.48.mlp.gate_up_proj": {"inputs": [[[6.84375]]], "params": {"weight": [[0.62890625]]}}, "model.layers.48.mlp.down_proj": {"inputs": [[[4.125]]], "outputs": [[[0.447265625]], [[2.171875]]], "params": {"weight": [[1.2265625]]}}, "model.layers.49.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.37890625]]}}, "model.layers.49.self_attn.o_proj": {"inputs": [[[0.83984375]]], "outputs": [[[0.333984375]], [[0.4140625]]], "params": {"weight": [[0.51953125]]}}, "model.layers.49.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[15.3125]]]}, "model.layers.49.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.49.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.75]]]}, "model.layers.49.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.5625]]]}, "model.layers.49.self_attn.attn.impl.k_cache": {"inputs": [[[15.3125]]]}, "model.layers.49.self_attn.attn.impl.v_cache": {"inputs": [[[6.53125]]]}, "model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.59375]], [[12.9375]], [[6.53125]]], "outputs": [[[0.47265625]], [[1.0]]]}, "model.layers.49.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.60546875]]}}, "model.layers.49.mlp.down_proj": {"inputs": [[[4.40625]]], "outputs": [[[1.15625]], [[3.046875]]], "params": {"weight": [[0.359375]]}}, "model.layers.50.self_attn.qkv_proj": {"inputs": [[[11.125]]], "params": {"weight": [[0.4375]]}}, "model.layers.50.self_attn.o_proj": {"inputs": [[[0.45703125]]], "outputs": [[[0.2080078125]], [[0.4453125]]], "params": {"weight": [[0.1923828125]]}}, "model.layers.50.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5]], [[12.5]]]}, "model.layers.50.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.2578125]]]}, "model.layers.50.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.9375]]]}, "model.layers.50.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[8.0625]]]}, "model.layers.50.self_attn.attn.impl.k_cache": {"inputs": [[[12.5]]]}, "model.layers.50.self_attn.attn.impl.v_cache": {"inputs": [[[1.2578125]]]}, "model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.71875]], [[11.125]], [[1.2578125]]], "outputs": [[[0.45703125]], [[1.0]]]}, "model.layers.50.mlp.gate_up_proj": {"inputs": [[[6.53125]]], "params": {"weight": [[0.46484375]]}}, "model.layers.50.mlp.down_proj": {"inputs": [[[3.6875]]], "outputs": [[[0.92578125]], [[0.8125]]], "params": {"weight": [[0.37109375]]}}, "model.layers.51.self_attn.qkv_proj": {"inputs": [[[10.875]]], "params": {"weight": [[0.53125]]}}, "model.layers.51.self_attn.o_proj": {"inputs": [[[0.40625]]], "outputs": [[[0.396484375]], [[0.578125]]], "params": {"weight": [[0.1630859375]]}}, "model.layers.51.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5390625]], [[15.0]]]}, "model.layers.51.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.8984375]]]}, "model.layers.51.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.0]]]}, "model.layers.51.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.53125]]]}, "model.layers.51.self_attn.attn.impl.k_cache": {"inputs": [[[15.0]]]}, "model.layers.51.self_attn.attn.impl.v_cache": {"inputs": [[[0.8984375]]]}, "model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.03125]], [[14.625]], [[0.83203125]]], "outputs": [[[0.40625]], [[1.0]]]}, "model.layers.51.mlp.gate_up_proj": {"inputs": [[[6.46875]]], "params": {"weight": [[0.515625]]}}, "model.layers.51.mlp.down_proj": {"inputs": [[[4.5625]]], "outputs": [[[0.44921875]], [[2.796875]]], "params": {"weight": [[0.92578125]]}}, "model.layers.52.self_attn.qkv_proj": {"inputs": [[[12.375]]], "params": {"weight": [[0.37109375]]}}, "model.layers.52.self_attn.o_proj": {"inputs": [[[1.3203125]]], "outputs": [[[0.671875]], [[0.9375]]], "params": {"weight": [[0.3359375]]}}, "model.layers.52.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.984375]], [[12.375]]]}, "model.layers.52.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.5625]]]}, "model.layers.52.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[21.875]]]}, "model.layers.52.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.375]]]}, "model.layers.52.self_attn.attn.impl.k_cache": {"inputs": [[[12.375]]]}, "model.layers.52.self_attn.attn.impl.v_cache": {"inputs": [[[1.5625]]]}, "model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.3125]], [[12.25]], [[1.5625]]], "outputs": [[[0.69921875]], [[1.0]]]}, "model.layers.52.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.59375]]}}, "model.layers.52.mlp.down_proj": {"inputs": [[[5.125]]], "outputs": [[[0.85546875]], [[1.9453125]]], "params": {"weight": [[0.419921875]]}}, "model.layers.53.self_attn.qkv_proj": {"inputs": [[[11.25]]], "params": {"weight": [[0.498046875]]}}, "model.layers.53.self_attn.o_proj": {"inputs": [[[0.423828125]]], "outputs": [[[0.279296875]], [[0.63671875]]], "params": {"weight": [[0.3359375]]}}, "model.layers.53.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6171875]], [[14.0]]]}, "model.layers.53.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.859375]]]}, "model.layers.53.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.75]]]}, "model.layers.53.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.8125]]]}, "model.layers.53.self_attn.attn.impl.k_cache": {"inputs": [[[14.0]]]}, "model.layers.53.self_attn.attn.impl.v_cache": {"inputs": [[[3.859375]]]}, "model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.9375]], [[14.0]], [[3.859375]]], "outputs": [[[0.423828125]], [[1.0]]]}, "model.layers.53.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.5]]}}, "model.layers.53.mlp.down_proj": {"inputs": [[[4.75]]], "outputs": [[[0.59765625]], [[1.921875]]], "params": {"weight": [[0.5859375]]}}, "model.layers.54.self_attn.qkv_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.53515625]]}}, "model.layers.54.self_attn.o_proj": {"inputs": [[[0.640625]]], "outputs": [[[0.66796875]], [[1.078125]]], "params": {"weight": [[0.55859375]]}}, "model.layers.54.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.47265625]], [[13.125]]]}, "model.layers.54.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.484375]]]}, "model.layers.54.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[17.625]]]}, "model.layers.54.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[13.75]]]}, "model.layers.54.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.54.self_attn.attn.impl.v_cache": {"inputs": [[[3.484375]]]}, "model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.875]], [[13.125]], [[3.484375]]], "outputs": [[[0.60546875]], [[1.0]]]}, "model.layers.54.mlp.gate_up_proj": {"inputs": [[[6.5625]]], "params": {"weight": [[0.490234375]]}}, "model.layers.54.mlp.down_proj": {"inputs": [[[9.6875]]], "outputs": [[[0.6171875]], [[1.2734375]]], "params": {"weight": [[0.22265625]]}}, "model.layers.55.self_attn.qkv_proj": {"inputs": [[[10.3125]]], "params": {"weight": [[0.61328125]]}}, "model.layers.55.self_attn.o_proj": {"inputs": [[[0.50390625]]], "outputs": [[[0.9765625]], [[1.28125]]], "params": {"weight": [[1.578125]]}}, "model.layers.55.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.48828125]], [[13.125]]]}, "model.layers.55.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.546875]]]}, "model.layers.55.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[13.4375]]]}, "model.layers.55.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.0]]]}, "model.layers.55.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.55.self_attn.attn.impl.v_cache": {"inputs": [[[1.546875]]]}, "model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[12.75]], [[1.546875]]], "outputs": [[[0.50390625]], [[1.0]]]}, "model.layers.55.mlp.gate_up_proj": {"inputs": [[[6.6875]]], "params": {"weight": [[0.458984375]]}}, "model.layers.55.mlp.down_proj": {"inputs": [[[6.0]]], "outputs": [[[1.59375]], [[3.078125]]], "params": {"weight": [[0.52734375]]}}, "model.layers.56.self_attn.qkv_proj": {"inputs": [[[13.6875]]], "params": {"weight": [[0.38671875]]}}, "model.layers.56.self_attn.o_proj": {"inputs": [[[0.57421875]]], "outputs": [[[0.72265625]], [[1.0546875]]], "params": {"weight": [[0.2080078125]]}}, "model.layers.56.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.55078125]], [[14.4375]]]}, "model.layers.56.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.078125]]]}, "model.layers.56.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[14.125]]]}, "model.layers.56.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.8125]]]}, "model.layers.56.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.56.self_attn.attn.impl.v_cache": {"inputs": [[[2.078125]]]}, "model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.78125]], [[14.4375]], [[2.078125]]], "outputs": [[[0.546875]], [[1.0]]]}, "model.layers.56.mlp.gate_up_proj": {"inputs": [[[6.90625]]], "params": {"weight": [[0.58984375]]}}, "model.layers.56.mlp.down_proj": {"inputs": [[[4.84375]]], "outputs": [[[2.109375]], [[2.296875]]], "params": {"weight": [[1.46875]]}}, "model.layers.57.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.396484375]]}}, "model.layers.57.self_attn.o_proj": {"inputs": [[[0.7890625]]], "outputs": [[[0.306640625]], [[0.7578125]]], "params": {"weight": [[0.185546875]]}}, "model.layers.57.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.6640625]], [[13.625]]]}, "model.layers.57.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.0625]]]}, "model.layers.57.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[15.6875]]]}, "model.layers.57.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.3125]]]}, "model.layers.57.self_attn.attn.impl.k_cache": {"inputs": [[[13.625]]]}, "model.layers.57.self_attn.attn.impl.v_cache": {"inputs": [[[1.0625]]]}, "model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.5]], [[12.625]], [[1.0625]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.57.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.384765625]]}}, "model.layers.57.mlp.down_proj": {"inputs": [[[4.3125]]], "outputs": [[[0.66015625]], [[1.9609375]]], "params": {"weight": [[0.275390625]]}}, "model.layers.58.self_attn.qkv_proj": {"inputs": [[[12.1875]]], "params": {"weight": [[0.578125]]}}, "model.layers.58.self_attn.o_proj": {"inputs": [[[0.482421875]]], "outputs": [[[0.298828125]], [[0.66796875]]], "params": {"weight": [[0.2041015625]]}}, "model.layers.58.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.466796875]], [[13.0625]]]}, "model.layers.58.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.80859375]]]}, "model.layers.58.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[8.75]]]}, "model.layers.58.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.4375]]]}, "model.layers.58.self_attn.attn.impl.k_cache": {"inputs": [[[13.0625]]]}, "model.layers.58.self_attn.attn.impl.v_cache": {"inputs": [[[0.80859375]]]}, "model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.65625]], [[12.75]], [[0.67578125]]], "outputs": [[[0.326171875]], [[1.0]]]}, "model.layers.58.mlp.gate_up_proj": {"inputs": [[[6.875]]], "params": {"weight": [[0.4140625]]}}, "model.layers.58.mlp.down_proj": {"inputs": [[[9.625]]], "outputs": [[[0.423828125]], [[0.734375]]], "params": {"weight": [[0.392578125]]}}, "model.layers.59.self_attn.qkv_proj": {"inputs": [[[10.8125]]], "params": {"weight": [[0.58203125]]}}, "model.layers.59.self_attn.o_proj": {"inputs": [[[0.73828125]]], "outputs": [[[0.251953125]], [[1.0625]]], "params": {"weight": [[0.1611328125]]}}, "model.layers.59.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.47265625]], [[17.75]]]}, "model.layers.59.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.3359375]]]}, "model.layers.59.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.59.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.375]]]}, "model.layers.59.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.59.self_attn.attn.impl.v_cache": {"inputs": [[[1.3359375]]]}, "model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.5625]], [[13.375]], [[1.2734375]]], "outputs": [[[0.73828125]], [[1.0]]]}, "model.layers.59.mlp.gate_up_proj": {"inputs": [[[7.21875]]], "params": {"weight": [[0.53125]]}}, "model.layers.59.mlp.down_proj": {"inputs": [[[5.78125]]], "outputs": [[[0.578125]], [[7.1875]]], "params": {"weight": [[1.6484375]]}}, "model.layers.60.self_attn.qkv_proj": {"inputs": [[[13.3125]]], "params": {"weight": [[0.349609375]]}}, "model.layers.60.self_attn.o_proj": {"inputs": [[[1.09375]]], "outputs": [[[0.484375]], [[0.58984375]]], "params": {"weight": [[0.1298828125]]}}, "model.layers.60.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0390625]], [[15.75]]]}, "model.layers.60.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9140625]]]}, "model.layers.60.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[16.25]]]}, "model.layers.60.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[9.1875]]]}, "model.layers.60.self_attn.attn.impl.k_cache": {"inputs": [[[15.75]]]}, "model.layers.60.self_attn.attn.impl.v_cache": {"inputs": [[[1.9140625]]]}, "model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.25]], [[15.75]], [[1.8359375]]], "outputs": [[[0.6953125]], [[1.0]]]}, "model.layers.60.mlp.gate_up_proj": {"inputs": [[[7.34375]]], "params": {"weight": [[0.380859375]]}}, "model.layers.60.mlp.down_proj": {"inputs": [[[7.375]]], "outputs": [[[2.296875]], [[3.671875]]], "params": {"weight": [[0.498046875]]}}, "model.layers.61.self_attn.qkv_proj": {"inputs": [[[11.5]]], "params": {"weight": [[0.59375]]}}, "model.layers.61.self_attn.o_proj": {"inputs": [[[0.703125]]], "outputs": [[[0.26953125]], [[0.62109375]]], "params": {"weight": [[0.07763671875]]}}, "model.layers.61.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.53515625]], [[14.125]]]}, "model.layers.61.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.1328125]]]}, "model.layers.61.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[12.125]]]}, "model.layers.61.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.09375]]]}, "model.layers.61.self_attn.attn.impl.k_cache": {"inputs": [[[14.125]]]}, "model.layers.61.self_attn.attn.impl.v_cache": {"inputs": [[[1.1328125]]]}, "model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.625]], [[12.9375]], [[0.890625]]], "outputs": [[[0.61328125]], [[1.0]]]}, "model.layers.61.mlp.gate_up_proj": {"inputs": [[[7.46875]]], "params": {"weight": [[0.373046875]]}}, "model.layers.61.mlp.down_proj": {"inputs": [[[6.5]]], "outputs": [[[0.7421875]], [[2.421875]]], "params": {"weight": [[0.474609375]]}}, "model.layers.62.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.76953125]]}}, "model.layers.62.self_attn.o_proj": {"inputs": [[[0.291015625]]], "outputs": [[[0.75]], [[0.76171875]]], "params": {"weight": [[0.0927734375]]}}, "model.layers.62.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76171875]], [[16.75]]]}, "model.layers.62.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[0.5234375]]]}, "model.layers.62.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[7.53125]]]}, "model.layers.62.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.375]]]}, "model.layers.62.self_attn.attn.impl.k_cache": {"inputs": [[[16.75]]]}, "model.layers.62.self_attn.attn.impl.v_cache": {"inputs": [[[0.5234375]]]}, "model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.1875]], [[16.75]], [[0.5625]]], "outputs": [[[0.291015625]], [[1.0]]]}, "model.layers.62.mlp.gate_up_proj": {"inputs": [[[7.625]]], "params": {"weight": [[0.5]]}}, "model.layers.62.mlp.down_proj": {"inputs": [[[9.0]]], "outputs": [[[1.0078125]], [[1.3359375]]], "params": {"weight": [[1.1953125]]}}, "model.layers.63.self_attn.qkv_proj": {"inputs": [[[10.1875]]], "params": {"weight": [[0.8125]]}}, "model.layers.63.self_attn.o_proj": {"inputs": [[[0.9296875]]], "outputs": [[[0.259765625]], [[1.1875]]], "params": {"weight": [[0.25390625]]}}, "model.layers.63.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.5703125]], [[12.0]]]}, "model.layers.63.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.421875]]]}, "model.layers.63.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[27.625]]]}, "model.layers.63.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.8125]]]}, "model.layers.63.self_attn.attn.impl.k_cache": {"inputs": [[[12.0]]]}, "model.layers.63.self_attn.attn.impl.v_cache": {"inputs": [[[1.421875]]]}, "model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.5]], [[10.3125]], [[1.3203125]]], "outputs": [[[0.69140625]], [[1.0]]]}, "model.layers.63.mlp.gate_up_proj": {"inputs": [[[7.9375]]], "params": {"weight": [[0.58203125]]}}, "model.layers.63.mlp.down_proj": {"inputs": [[[6.9375]]], "outputs": [[[0.73828125]], [[1.640625]]], "params": {"weight": [[0.28125]]}}, "model.layers.64.self_attn.qkv_proj": {"inputs": [[[13.0]]], "params": {"weight": [[0.337890625]]}}, "model.layers.64.self_attn.o_proj": {"inputs": [[[1.1875]]], "outputs": [[[0.341796875]], [[1.5]]], "params": {"weight": [[0.14453125]]}}, "model.layers.64.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.1953125]], [[12.9375]]]}, "model.layers.64.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.453125]]]}, "model.layers.64.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[5.78125]]]}, "model.layers.64.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.64.self_attn.attn.impl.k_cache": {"inputs": [[[12.9375]]]}, "model.layers.64.self_attn.attn.impl.v_cache": {"inputs": [[[2.453125]]]}, "model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.25]], [[12.75]], [[2.09375]]], "outputs": [[[1.1171875]], [[1.0]]]}, "model.layers.64.mlp.gate_up_proj": {"inputs": [[[8.3125]]], "params": {"weight": [[0.423828125]]}}, "model.layers.64.mlp.down_proj": {"inputs": [[[9.1875]]], "outputs": [[[0.578125]], [[2.578125]]], "params": {"weight": [[0.98046875]]}}, "model.layers.65.self_attn.qkv_proj": {"inputs": [[[14.6875]]], "params": {"weight": [[0.81640625]]}}, "model.layers.65.self_attn.o_proj": {"inputs": [[[0.5234375]]], "outputs": [[[1.75]], [[1.6875]]], "params": {"weight": [[0.42578125]]}}, "model.layers.65.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.494140625]], [[20.125]]]}, "model.layers.65.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.9375]]]}, "model.layers.65.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.5625]]]}, "model.layers.65.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.75]]]}, "model.layers.65.self_attn.attn.impl.k_cache": {"inputs": [[[20.125]]]}, "model.layers.65.self_attn.attn.impl.v_cache": {"inputs": [[[4.9375]]]}, "model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[5.28125]], [[20.125]], [[4.9375]]], "outputs": [[[0.5234375]], [[1.0]]]}, "model.layers.65.mlp.gate_up_proj": {"inputs": [[[8.125]]], "params": {"weight": [[0.375]]}}, "model.layers.65.mlp.down_proj": {"inputs": [[[14.9375]]], "outputs": [[[0.76171875]], [[2.015625]]], "params": {"weight": [[0.6640625]]}}, "model.layers.66.self_attn.qkv_proj": {"inputs": [[[11.375]]], "params": {"weight": [[0.71484375]]}}, "model.layers.66.self_attn.o_proj": {"inputs": [[[0.59375]]], "outputs": [[[1.109375]], [[1.3359375]]], "params": {"weight": [[0.208984375]]}}, "model.layers.66.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.44140625]], [[14.375]]]}, "model.layers.66.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.66.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[9.0625]]]}, "model.layers.66.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.75]]]}, "model.layers.66.self_attn.attn.impl.k_cache": {"inputs": [[[14.375]]]}, "model.layers.66.self_attn.attn.impl.v_cache": {"inputs": [[[2.46875]]]}, "model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[4.71875]], [[14.375]], [[2.46875]]], "outputs": [[[0.4921875]], [[1.0]]]}, "model.layers.66.mlp.gate_up_proj": {"inputs": [[[7.78125]]], "params": {"weight": [[0.49609375]]}}, "model.layers.66.mlp.down_proj": {"inputs": [[[7.125]]], "outputs": [[[2.5625]], [[3.5]]], "params": {"weight": [[0.50390625]]}}, "model.layers.67.self_attn.qkv_proj": {"inputs": [[[12.6875]]], "params": {"weight": [[0.427734375]]}}, "model.layers.67.self_attn.o_proj": {"inputs": [[[1.3515625]]], "outputs": [[[0.62890625]], [[1.453125]]], "params": {"weight": [[0.1962890625]]}}, "model.layers.67.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.921875]], [[17.75]]]}, "model.layers.67.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.09375]]]}, "model.layers.67.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.75]]]}, "model.layers.67.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[15.25]]]}, "model.layers.67.self_attn.attn.impl.k_cache": {"inputs": [[[17.75]]]}, "model.layers.67.self_attn.attn.impl.v_cache": {"inputs": [[[2.09375]]]}, "model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.1875]], [[17.75]], [[1.9453125]]], "outputs": [[[1.015625]], [[1.0]]]}, "model.layers.67.mlp.gate_up_proj": {"inputs": [[[8.1875]]], "params": {"weight": [[0.390625]]}}, "model.layers.67.mlp.down_proj": {"inputs": [[[8.375]]], "outputs": [[[0.68359375]], [[1.5546875]]], "params": {"weight": [[0.427734375]]}}, "model.layers.68.self_attn.qkv_proj": {"inputs": [[[13.75]]], "params": {"weight": [[0.384765625]]}}, "model.layers.68.self_attn.o_proj": {"inputs": [[[1.046875]]], "outputs": [[[0.294921875]], [[2.09375]]], "params": {"weight": [[0.49609375]]}}, "model.layers.68.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.8671875]], [[15.0625]]]}, "model.layers.68.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.46875]]]}, "model.layers.68.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.5]]]}, "model.layers.68.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.125]]]}, "model.layers.68.self_attn.attn.impl.k_cache": {"inputs": [[[15.0625]]]}, "model.layers.68.self_attn.attn.impl.v_cache": {"inputs": [[[2.46875]]]}, "model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[8.375]], [[14.0625]], [[2.21875]]], "outputs": [[[1.015625]], [[1.0]]]}, "model.layers.68.mlp.gate_up_proj": {"inputs": [[[9.0625]]], "params": {"weight": [[0.369140625]]}}, "model.layers.68.mlp.down_proj": {"inputs": [[[11.75]]], "outputs": [[[1.6171875]], [[3.953125]]], "params": {"weight": [[1.34375]]}}, "model.layers.69.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.2578125]]}}, "model.layers.69.self_attn.o_proj": {"inputs": [[[1.390625]]], "outputs": [[[0.58203125]], [[2.109375]]], "params": {"weight": [[0.1435546875]]}}, "model.layers.69.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.59765625]], [[13.4375]]]}, "model.layers.69.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.828125]]]}, "model.layers.69.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[6.125]]]}, "model.layers.69.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[5.28125]]]}, "model.layers.69.self_attn.attn.impl.k_cache": {"inputs": [[[13.4375]]]}, "model.layers.69.self_attn.attn.impl.v_cache": {"inputs": [[[1.828125]]]}, "model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[6.0625]], [[13.4375]], [[1.78125]]], "outputs": [[[0.921875]], [[1.0]]]}, "model.layers.69.mlp.gate_up_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.5625]]}}, "model.layers.69.mlp.down_proj": {"inputs": [[[7.8125]]], "outputs": [[[0.875]], [[1.1015625]]], "params": {"weight": [[0.4375]]}}, "model.layers.70.self_attn.qkv_proj": {"inputs": [[[12.625]]], "params": {"weight": [[0.435546875]]}}, "model.layers.70.self_attn.o_proj": {"inputs": [[[0.9609375]]], "outputs": [[[0.484375]], [[2.5]]], "params": {"weight": [[0.255859375]]}}, "model.layers.70.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.70703125]], [[14.1875]]]}, "model.layers.70.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.9921875]]]}, "model.layers.70.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.25]]]}, "model.layers.70.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.15625]]]}, "model.layers.70.self_attn.attn.impl.k_cache": {"inputs": [[[14.1875]]]}, "model.layers.70.self_attn.attn.impl.v_cache": {"inputs": [[[1.9921875]]]}, "model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.625]], [[12.875]], [[1.453125]]], "outputs": [[[0.85546875]], [[1.0]]]}, "model.layers.70.mlp.gate_up_proj": {"inputs": [[[8.875]]], "params": {"weight": [[0.53125]]}}, "model.layers.70.mlp.down_proj": {"inputs": [[[8.3125]]], "outputs": [[[1.625]], [[4.875]]], "params": {"weight": [[0.337890625]]}}, "model.layers.71.self_attn.qkv_proj": {"inputs": [[[13.0625]]], "params": {"weight": [[0.28125]]}}, "model.layers.71.self_attn.o_proj": {"inputs": [[[1.1875]]], "outputs": [[[1.125]], [[5.34375]]], "params": {"weight": [[0.11767578125]]}}, "model.layers.71.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.73828125]], [[16.125]]]}, "model.layers.71.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.890625]]]}, "model.layers.71.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.0625]]]}, "model.layers.71.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[7.4375]]]}, "model.layers.71.self_attn.attn.impl.k_cache": {"inputs": [[[16.125]]]}, "model.layers.71.self_attn.attn.impl.v_cache": {"inputs": [[[1.890625]]]}, "model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.90625]], [[13.5625]], [[1.890625]]], "outputs": [[[0.8671875]], [[1.0]]]}, "model.layers.71.mlp.gate_up_proj": {"inputs": [[[9.4375]]], "params": {"weight": [[0.46484375]]}}, "model.layers.71.mlp.down_proj": {"inputs": [[[9.9375]]], "outputs": [[[1.703125]], [[3.953125]]], "params": {"weight": [[0.328125]]}}, "model.layers.72.self_attn.qkv_proj": {"inputs": [[[11.6875]]], "params": {"weight": [[0.302734375]]}}, "model.layers.72.self_attn.o_proj": {"inputs": [[[1.8125]]], "outputs": [[[0.81640625]], [[3.484375]]], "params": {"weight": [[1.0]]}}, "model.layers.72.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9375]], [[14.8125]]]}, "model.layers.72.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.484375]]]}, "model.layers.72.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.72.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.65625]]]}, "model.layers.72.self_attn.attn.impl.k_cache": {"inputs": [[[14.8125]]]}, "model.layers.72.self_attn.attn.impl.v_cache": {"inputs": [[[2.484375]]]}, "model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.3125]], [[12.8125]], [[2.46875]]], "outputs": [[[1.0625]], [[1.0]]]}, "model.layers.72.mlp.gate_up_proj": {"inputs": [[[9.75]]], "params": {"weight": [[0.5234375]]}}, "model.layers.72.mlp.down_proj": {"inputs": [[[9.5]]], "outputs": [[[1.40625]], [[2.53125]]], "params": {"weight": [[1.203125]]}}, "model.layers.73.self_attn.qkv_proj": {"inputs": [[[12.0]]], "params": {"weight": [[0.248046875]]}}, "model.layers.73.self_attn.o_proj": {"inputs": [[[1.4609375]]], "outputs": [[[2.40625]], [[3.78125]]], "params": {"weight": [[0.6953125]]}}, "model.layers.73.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.828125]], [[19.125]]]}, "model.layers.73.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.515625]]]}, "model.layers.73.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[25.625]]]}, "model.layers.73.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.73.self_attn.attn.impl.k_cache": {"inputs": [[[19.125]]]}, "model.layers.73.self_attn.attn.impl.v_cache": {"inputs": [[[2.515625]]]}, "model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.75]], [[18.375]], [[2.65625]]], "outputs": [[[1.1328125]], [[1.0]]]}, "model.layers.73.mlp.gate_up_proj": {"inputs": [[[9.9375]]], "params": {"weight": [[0.474609375]]}}, "model.layers.73.mlp.down_proj": {"inputs": [[[9.75]]], "outputs": [[[2.78125]], [[4.25]]], "params": {"weight": [[0.91796875]]}}, "model.layers.74.self_attn.qkv_proj": {"inputs": [[[11.625]]], "params": {"weight": [[0.1611328125]]}}, "model.layers.74.self_attn.o_proj": {"inputs": [[[3.40625]]], "outputs": [[[3.15625]], [[5.59375]]], "params": {"weight": [[0.29296875]]}}, "model.layers.74.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.76953125]], [[17.5]]]}, "model.layers.74.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[5.125]]]}, "model.layers.74.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.74.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[6.625]]]}, "model.layers.74.self_attn.attn.impl.k_cache": {"inputs": [[[17.5]]]}, "model.layers.74.self_attn.attn.impl.v_cache": {"inputs": [[[5.125]]]}, "model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[10.875]], [[17.25]], [[3.265625]]], "outputs": [[[1.6484375]], [[1.0]]]}, "model.layers.74.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.27734375]]}}, "model.layers.74.mlp.down_proj": {"inputs": [[[11.5]]], "outputs": [[[2.53125]], [[6.9375]]], "params": {"weight": [[0.90234375]]}}, "model.layers.75.self_attn.qkv_proj": {"inputs": [[[11.5625]]], "params": {"weight": [[0.1904296875]]}}, "model.layers.75.self_attn.o_proj": {"inputs": [[[2.6875]]], "outputs": [[[1.25]], [[6.65625]]], "params": {"weight": [[0.431640625]]}}, "model.layers.75.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.0078125]], [[15.875]]]}, "model.layers.75.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[3.578125]]]}, "model.layers.75.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[18.75]]]}, "model.layers.75.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[11.125]]]}, "model.layers.75.self_attn.attn.impl.k_cache": {"inputs": [[[15.875]]]}, "model.layers.75.self_attn.attn.impl.v_cache": {"inputs": [[[3.578125]]]}, "model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.3125]], [[14.4375]], [[2.984375]]], "outputs": [[[2.15625]], [[1.0]]]}, "model.layers.75.mlp.gate_up_proj": {"inputs": [[[8.8125]]], "params": {"weight": [[0.427734375]]}}, "model.layers.75.mlp.down_proj": {"inputs": [[[10.5625]]], "outputs": [[[9.875]], [[12.4375]]], "params": {"weight": [[0.63671875]]}}, "model.layers.76.self_attn.qkv_proj": {"inputs": [[[9.0]]], "params": {"weight": [[0.263671875]]}}, "model.layers.76.self_attn.o_proj": {"inputs": [[[1.84375]]], "outputs": [[[3.03125]], [[5.3125]]], "params": {"weight": [[0.58984375]]}}, "model.layers.76.self_attn.attn.impl.matmul_qk": {"inputs": [[[1.296875]], [[14.4375]]]}, "model.layers.76.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.546875]]]}, "model.layers.76.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[22.5]]]}, "model.layers.76.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[10.1875]]]}, "model.layers.76.self_attn.attn.impl.k_cache": {"inputs": [[[14.4375]]]}, "model.layers.76.self_attn.attn.impl.v_cache": {"inputs": [[[2.546875]]]}, "model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.5]], [[13.125]], [[2.546875]]], "outputs": [[[1.6953125]], [[1.0]]]}, "model.layers.76.mlp.gate_up_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.38671875]]}}, "model.layers.76.mlp.down_proj": {"inputs": [[[8.75]]], "outputs": [[[2.078125]], [[4.90625]]], "params": {"weight": [[0.72265625]]}}, "model.layers.77.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.287109375]]}}, "model.layers.77.self_attn.o_proj": {"inputs": [[[2.375]]], "outputs": [[[2.703125]], [[3.96875]]], "params": {"weight": [[0.31640625]]}}, "model.layers.77.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.9453125]], [[14.6875]]]}, "model.layers.77.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[4.59375]]]}, "model.layers.77.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[24.375]]]}, "model.layers.77.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[14.0]]]}, "model.layers.77.self_attn.attn.impl.k_cache": {"inputs": [[[14.6875]]]}, "model.layers.77.self_attn.attn.impl.v_cache": {"inputs": [[[4.59375]]]}, "model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[9.75]], [[13.3125]], [[4.3125]]], "outputs": [[[2.375]], [[1.0]]]}, "model.layers.77.mlp.gate_up_proj": {"inputs": [[[11.0625]]], "params": {"weight": [[0.345703125]]}}, "model.layers.77.mlp.down_proj": {"inputs": [[[13.6875]]], "outputs": [[[4.03125]], [[6.8125]]], "params": {"weight": [[0.50390625]]}}, "model.layers.78.self_attn.qkv_proj": {"inputs": [[[8.625]]], "params": {"weight": [[0.365234375]]}}, "model.layers.78.self_attn.o_proj": {"inputs": [[[1.7890625]]], "outputs": [[[2.75]], [[4.03125]]], "params": {"weight": [[0.283203125]]}}, "model.layers.78.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.921875]], [[13.5625]]]}, "model.layers.78.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[2.65625]]]}, "model.layers.78.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[49.0]]]}, "model.layers.78.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[16.125]]]}, "model.layers.78.self_attn.attn.impl.k_cache": {"inputs": [[[13.5625]]]}, "model.layers.78.self_attn.attn.impl.v_cache": {"inputs": [[[2.65625]]]}, "model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[12.1875]], [[11.3125]], [[2.5]]], "outputs": [[[1.5078125]], [[1.0]]]}, "model.layers.78.mlp.gate_up_proj": {"inputs": [[[14.0]]], "params": {"weight": [[0.6640625]]}}, "model.layers.78.mlp.down_proj": {"inputs": [[[82.5]]], "outputs": [[[86.5]], [[125.0]]], "params": {"weight": [[0.58203125]]}}, "model.layers.79.self_attn.qkv_proj": {"inputs": [[[9.375]]], "params": {"weight": [[0.4296875]]}}, "model.layers.79.self_attn.o_proj": {"inputs": [[[1.1484375]]], "outputs": [[[4.125]], [[5.15625]]], "params": {"weight": [[0.2412109375]]}}, "model.layers.79.self_attn.attn.impl.matmul_qk": {"inputs": [[[0.63671875]], [[13.125]]]}, "model.layers.79.self_attn.attn.impl.matmul_av": {"inputs": [[[1.0]], [[1.8671875]]]}, "model.layers.79.self_attn.attn.impl.batch2block_matmul": {"inputs": [[[1.0]], [[34.25]]]}, "model.layers.79.self_attn.attn.impl.block2batch_matmul": {"inputs": [[[1.0]], [[20.75]]]}, "model.layers.79.self_attn.attn.impl.k_cache": {"inputs": [[[13.125]]]}, "model.layers.79.self_attn.attn.impl.v_cache": {"inputs": [[[1.8671875]]]}, "model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention": {"inputs": [[[7.125]], [[12.9375]], [[1.9609375]]], "outputs": [[[0.95703125]], [[1.0]]]}, "model.layers.79.mlp.gate_up_proj": {"inputs": [[[17.25]]], "params": {"weight": [[0.5078125]]}}, "model.layers.79.mlp.down_proj": {"inputs": [[[44.25]]], "outputs": [[[155.0]], [[402.0]]], "params": {"weight": [[0.6796875]]}}, "lm_head": {"inputs": [[[81.0]]], "params": {"weight": [[0.251953125]]}}}}
|
quant/g3/inc_output_hooks_maxabs_3_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8011c1c1bc44ac18ac30a7148905c6d88a49653d9609b3be41ce2425f9c917e
|
| 3 |
+
size 206298
|
quant/g3/inc_output_hooks_maxabs_3_4_mod_list.json
ADDED
|
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
"model.layers.0.self_attn.qkv_proj",
|
| 3 |
+
"model.layers.0.self_attn.o_proj",
|
| 4 |
+
"model.layers.0.self_attn.attn.impl.matmul_qk",
|
| 5 |
+
"model.layers.0.self_attn.attn.impl.softmax",
|
| 6 |
+
"model.layers.0.self_attn.attn.impl.matmul_av",
|
| 7 |
+
"model.layers.0.self_attn.attn.impl.batch2block_matmul",
|
| 8 |
+
"model.layers.0.self_attn.attn.impl.block2batch_matmul",
|
| 9 |
+
"model.layers.0.self_attn.attn.impl.k_cache",
|
| 10 |
+
"model.layers.0.self_attn.attn.impl.v_cache",
|
| 11 |
+
"model.layers.0.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 12 |
+
"model.layers.0.mlp.gate_up_proj",
|
| 13 |
+
"model.layers.0.mlp.down_proj",
|
| 14 |
+
"model.layers.1.self_attn.qkv_proj",
|
| 15 |
+
"model.layers.1.self_attn.o_proj",
|
| 16 |
+
"model.layers.1.self_attn.attn.impl.matmul_qk",
|
| 17 |
+
"model.layers.1.self_attn.attn.impl.softmax",
|
| 18 |
+
"model.layers.1.self_attn.attn.impl.matmul_av",
|
| 19 |
+
"model.layers.1.self_attn.attn.impl.batch2block_matmul",
|
| 20 |
+
"model.layers.1.self_attn.attn.impl.block2batch_matmul",
|
| 21 |
+
"model.layers.1.self_attn.attn.impl.k_cache",
|
| 22 |
+
"model.layers.1.self_attn.attn.impl.v_cache",
|
| 23 |
+
"model.layers.1.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 24 |
+
"model.layers.1.mlp.gate_up_proj",
|
| 25 |
+
"model.layers.1.mlp.down_proj",
|
| 26 |
+
"model.layers.2.self_attn.qkv_proj",
|
| 27 |
+
"model.layers.2.self_attn.o_proj",
|
| 28 |
+
"model.layers.2.self_attn.attn.impl.matmul_qk",
|
| 29 |
+
"model.layers.2.self_attn.attn.impl.softmax",
|
| 30 |
+
"model.layers.2.self_attn.attn.impl.matmul_av",
|
| 31 |
+
"model.layers.2.self_attn.attn.impl.batch2block_matmul",
|
| 32 |
+
"model.layers.2.self_attn.attn.impl.block2batch_matmul",
|
| 33 |
+
"model.layers.2.self_attn.attn.impl.k_cache",
|
| 34 |
+
"model.layers.2.self_attn.attn.impl.v_cache",
|
| 35 |
+
"model.layers.2.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 36 |
+
"model.layers.2.mlp.gate_up_proj",
|
| 37 |
+
"model.layers.2.mlp.down_proj",
|
| 38 |
+
"model.layers.3.self_attn.qkv_proj",
|
| 39 |
+
"model.layers.3.self_attn.o_proj",
|
| 40 |
+
"model.layers.3.self_attn.attn.impl.matmul_qk",
|
| 41 |
+
"model.layers.3.self_attn.attn.impl.softmax",
|
| 42 |
+
"model.layers.3.self_attn.attn.impl.matmul_av",
|
| 43 |
+
"model.layers.3.self_attn.attn.impl.batch2block_matmul",
|
| 44 |
+
"model.layers.3.self_attn.attn.impl.block2batch_matmul",
|
| 45 |
+
"model.layers.3.self_attn.attn.impl.k_cache",
|
| 46 |
+
"model.layers.3.self_attn.attn.impl.v_cache",
|
| 47 |
+
"model.layers.3.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 48 |
+
"model.layers.3.mlp.gate_up_proj",
|
| 49 |
+
"model.layers.3.mlp.down_proj",
|
| 50 |
+
"model.layers.4.self_attn.qkv_proj",
|
| 51 |
+
"model.layers.4.self_attn.o_proj",
|
| 52 |
+
"model.layers.4.self_attn.attn.impl.matmul_qk",
|
| 53 |
+
"model.layers.4.self_attn.attn.impl.softmax",
|
| 54 |
+
"model.layers.4.self_attn.attn.impl.matmul_av",
|
| 55 |
+
"model.layers.4.self_attn.attn.impl.batch2block_matmul",
|
| 56 |
+
"model.layers.4.self_attn.attn.impl.block2batch_matmul",
|
| 57 |
+
"model.layers.4.self_attn.attn.impl.k_cache",
|
| 58 |
+
"model.layers.4.self_attn.attn.impl.v_cache",
|
| 59 |
+
"model.layers.4.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 60 |
+
"model.layers.4.mlp.gate_up_proj",
|
| 61 |
+
"model.layers.4.mlp.down_proj",
|
| 62 |
+
"model.layers.5.self_attn.qkv_proj",
|
| 63 |
+
"model.layers.5.self_attn.o_proj",
|
| 64 |
+
"model.layers.5.self_attn.attn.impl.matmul_qk",
|
| 65 |
+
"model.layers.5.self_attn.attn.impl.softmax",
|
| 66 |
+
"model.layers.5.self_attn.attn.impl.matmul_av",
|
| 67 |
+
"model.layers.5.self_attn.attn.impl.batch2block_matmul",
|
| 68 |
+
"model.layers.5.self_attn.attn.impl.block2batch_matmul",
|
| 69 |
+
"model.layers.5.self_attn.attn.impl.k_cache",
|
| 70 |
+
"model.layers.5.self_attn.attn.impl.v_cache",
|
| 71 |
+
"model.layers.5.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 72 |
+
"model.layers.5.mlp.gate_up_proj",
|
| 73 |
+
"model.layers.5.mlp.down_proj",
|
| 74 |
+
"model.layers.6.self_attn.qkv_proj",
|
| 75 |
+
"model.layers.6.self_attn.o_proj",
|
| 76 |
+
"model.layers.6.self_attn.attn.impl.matmul_qk",
|
| 77 |
+
"model.layers.6.self_attn.attn.impl.softmax",
|
| 78 |
+
"model.layers.6.self_attn.attn.impl.matmul_av",
|
| 79 |
+
"model.layers.6.self_attn.attn.impl.batch2block_matmul",
|
| 80 |
+
"model.layers.6.self_attn.attn.impl.block2batch_matmul",
|
| 81 |
+
"model.layers.6.self_attn.attn.impl.k_cache",
|
| 82 |
+
"model.layers.6.self_attn.attn.impl.v_cache",
|
| 83 |
+
"model.layers.6.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 84 |
+
"model.layers.6.mlp.gate_up_proj",
|
| 85 |
+
"model.layers.6.mlp.down_proj",
|
| 86 |
+
"model.layers.7.self_attn.qkv_proj",
|
| 87 |
+
"model.layers.7.self_attn.o_proj",
|
| 88 |
+
"model.layers.7.self_attn.attn.impl.matmul_qk",
|
| 89 |
+
"model.layers.7.self_attn.attn.impl.softmax",
|
| 90 |
+
"model.layers.7.self_attn.attn.impl.matmul_av",
|
| 91 |
+
"model.layers.7.self_attn.attn.impl.batch2block_matmul",
|
| 92 |
+
"model.layers.7.self_attn.attn.impl.block2batch_matmul",
|
| 93 |
+
"model.layers.7.self_attn.attn.impl.k_cache",
|
| 94 |
+
"model.layers.7.self_attn.attn.impl.v_cache",
|
| 95 |
+
"model.layers.7.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 96 |
+
"model.layers.7.mlp.gate_up_proj",
|
| 97 |
+
"model.layers.7.mlp.down_proj",
|
| 98 |
+
"model.layers.8.self_attn.qkv_proj",
|
| 99 |
+
"model.layers.8.self_attn.o_proj",
|
| 100 |
+
"model.layers.8.self_attn.attn.impl.matmul_qk",
|
| 101 |
+
"model.layers.8.self_attn.attn.impl.softmax",
|
| 102 |
+
"model.layers.8.self_attn.attn.impl.matmul_av",
|
| 103 |
+
"model.layers.8.self_attn.attn.impl.batch2block_matmul",
|
| 104 |
+
"model.layers.8.self_attn.attn.impl.block2batch_matmul",
|
| 105 |
+
"model.layers.8.self_attn.attn.impl.k_cache",
|
| 106 |
+
"model.layers.8.self_attn.attn.impl.v_cache",
|
| 107 |
+
"model.layers.8.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 108 |
+
"model.layers.8.mlp.gate_up_proj",
|
| 109 |
+
"model.layers.8.mlp.down_proj",
|
| 110 |
+
"model.layers.9.self_attn.qkv_proj",
|
| 111 |
+
"model.layers.9.self_attn.o_proj",
|
| 112 |
+
"model.layers.9.self_attn.attn.impl.matmul_qk",
|
| 113 |
+
"model.layers.9.self_attn.attn.impl.softmax",
|
| 114 |
+
"model.layers.9.self_attn.attn.impl.matmul_av",
|
| 115 |
+
"model.layers.9.self_attn.attn.impl.batch2block_matmul",
|
| 116 |
+
"model.layers.9.self_attn.attn.impl.block2batch_matmul",
|
| 117 |
+
"model.layers.9.self_attn.attn.impl.k_cache",
|
| 118 |
+
"model.layers.9.self_attn.attn.impl.v_cache",
|
| 119 |
+
"model.layers.9.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 120 |
+
"model.layers.9.mlp.gate_up_proj",
|
| 121 |
+
"model.layers.9.mlp.down_proj",
|
| 122 |
+
"model.layers.10.self_attn.qkv_proj",
|
| 123 |
+
"model.layers.10.self_attn.o_proj",
|
| 124 |
+
"model.layers.10.self_attn.attn.impl.matmul_qk",
|
| 125 |
+
"model.layers.10.self_attn.attn.impl.softmax",
|
| 126 |
+
"model.layers.10.self_attn.attn.impl.matmul_av",
|
| 127 |
+
"model.layers.10.self_attn.attn.impl.batch2block_matmul",
|
| 128 |
+
"model.layers.10.self_attn.attn.impl.block2batch_matmul",
|
| 129 |
+
"model.layers.10.self_attn.attn.impl.k_cache",
|
| 130 |
+
"model.layers.10.self_attn.attn.impl.v_cache",
|
| 131 |
+
"model.layers.10.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 132 |
+
"model.layers.10.mlp.gate_up_proj",
|
| 133 |
+
"model.layers.10.mlp.down_proj",
|
| 134 |
+
"model.layers.11.self_attn.qkv_proj",
|
| 135 |
+
"model.layers.11.self_attn.o_proj",
|
| 136 |
+
"model.layers.11.self_attn.attn.impl.matmul_qk",
|
| 137 |
+
"model.layers.11.self_attn.attn.impl.softmax",
|
| 138 |
+
"model.layers.11.self_attn.attn.impl.matmul_av",
|
| 139 |
+
"model.layers.11.self_attn.attn.impl.batch2block_matmul",
|
| 140 |
+
"model.layers.11.self_attn.attn.impl.block2batch_matmul",
|
| 141 |
+
"model.layers.11.self_attn.attn.impl.k_cache",
|
| 142 |
+
"model.layers.11.self_attn.attn.impl.v_cache",
|
| 143 |
+
"model.layers.11.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 144 |
+
"model.layers.11.mlp.gate_up_proj",
|
| 145 |
+
"model.layers.11.mlp.down_proj",
|
| 146 |
+
"model.layers.12.self_attn.qkv_proj",
|
| 147 |
+
"model.layers.12.self_attn.o_proj",
|
| 148 |
+
"model.layers.12.self_attn.attn.impl.matmul_qk",
|
| 149 |
+
"model.layers.12.self_attn.attn.impl.softmax",
|
| 150 |
+
"model.layers.12.self_attn.attn.impl.matmul_av",
|
| 151 |
+
"model.layers.12.self_attn.attn.impl.batch2block_matmul",
|
| 152 |
+
"model.layers.12.self_attn.attn.impl.block2batch_matmul",
|
| 153 |
+
"model.layers.12.self_attn.attn.impl.k_cache",
|
| 154 |
+
"model.layers.12.self_attn.attn.impl.v_cache",
|
| 155 |
+
"model.layers.12.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 156 |
+
"model.layers.12.mlp.gate_up_proj",
|
| 157 |
+
"model.layers.12.mlp.down_proj",
|
| 158 |
+
"model.layers.13.self_attn.qkv_proj",
|
| 159 |
+
"model.layers.13.self_attn.o_proj",
|
| 160 |
+
"model.layers.13.self_attn.attn.impl.matmul_qk",
|
| 161 |
+
"model.layers.13.self_attn.attn.impl.softmax",
|
| 162 |
+
"model.layers.13.self_attn.attn.impl.matmul_av",
|
| 163 |
+
"model.layers.13.self_attn.attn.impl.batch2block_matmul",
|
| 164 |
+
"model.layers.13.self_attn.attn.impl.block2batch_matmul",
|
| 165 |
+
"model.layers.13.self_attn.attn.impl.k_cache",
|
| 166 |
+
"model.layers.13.self_attn.attn.impl.v_cache",
|
| 167 |
+
"model.layers.13.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 168 |
+
"model.layers.13.mlp.gate_up_proj",
|
| 169 |
+
"model.layers.13.mlp.down_proj",
|
| 170 |
+
"model.layers.14.self_attn.qkv_proj",
|
| 171 |
+
"model.layers.14.self_attn.o_proj",
|
| 172 |
+
"model.layers.14.self_attn.attn.impl.matmul_qk",
|
| 173 |
+
"model.layers.14.self_attn.attn.impl.softmax",
|
| 174 |
+
"model.layers.14.self_attn.attn.impl.matmul_av",
|
| 175 |
+
"model.layers.14.self_attn.attn.impl.batch2block_matmul",
|
| 176 |
+
"model.layers.14.self_attn.attn.impl.block2batch_matmul",
|
| 177 |
+
"model.layers.14.self_attn.attn.impl.k_cache",
|
| 178 |
+
"model.layers.14.self_attn.attn.impl.v_cache",
|
| 179 |
+
"model.layers.14.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 180 |
+
"model.layers.14.mlp.gate_up_proj",
|
| 181 |
+
"model.layers.14.mlp.down_proj",
|
| 182 |
+
"model.layers.15.self_attn.qkv_proj",
|
| 183 |
+
"model.layers.15.self_attn.o_proj",
|
| 184 |
+
"model.layers.15.self_attn.attn.impl.matmul_qk",
|
| 185 |
+
"model.layers.15.self_attn.attn.impl.softmax",
|
| 186 |
+
"model.layers.15.self_attn.attn.impl.matmul_av",
|
| 187 |
+
"model.layers.15.self_attn.attn.impl.batch2block_matmul",
|
| 188 |
+
"model.layers.15.self_attn.attn.impl.block2batch_matmul",
|
| 189 |
+
"model.layers.15.self_attn.attn.impl.k_cache",
|
| 190 |
+
"model.layers.15.self_attn.attn.impl.v_cache",
|
| 191 |
+
"model.layers.15.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 192 |
+
"model.layers.15.mlp.gate_up_proj",
|
| 193 |
+
"model.layers.15.mlp.down_proj",
|
| 194 |
+
"model.layers.16.self_attn.qkv_proj",
|
| 195 |
+
"model.layers.16.self_attn.o_proj",
|
| 196 |
+
"model.layers.16.self_attn.attn.impl.matmul_qk",
|
| 197 |
+
"model.layers.16.self_attn.attn.impl.softmax",
|
| 198 |
+
"model.layers.16.self_attn.attn.impl.matmul_av",
|
| 199 |
+
"model.layers.16.self_attn.attn.impl.batch2block_matmul",
|
| 200 |
+
"model.layers.16.self_attn.attn.impl.block2batch_matmul",
|
| 201 |
+
"model.layers.16.self_attn.attn.impl.k_cache",
|
| 202 |
+
"model.layers.16.self_attn.attn.impl.v_cache",
|
| 203 |
+
"model.layers.16.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 204 |
+
"model.layers.16.mlp.gate_up_proj",
|
| 205 |
+
"model.layers.16.mlp.down_proj",
|
| 206 |
+
"model.layers.17.self_attn.qkv_proj",
|
| 207 |
+
"model.layers.17.self_attn.o_proj",
|
| 208 |
+
"model.layers.17.self_attn.attn.impl.matmul_qk",
|
| 209 |
+
"model.layers.17.self_attn.attn.impl.softmax",
|
| 210 |
+
"model.layers.17.self_attn.attn.impl.matmul_av",
|
| 211 |
+
"model.layers.17.self_attn.attn.impl.batch2block_matmul",
|
| 212 |
+
"model.layers.17.self_attn.attn.impl.block2batch_matmul",
|
| 213 |
+
"model.layers.17.self_attn.attn.impl.k_cache",
|
| 214 |
+
"model.layers.17.self_attn.attn.impl.v_cache",
|
| 215 |
+
"model.layers.17.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 216 |
+
"model.layers.17.mlp.gate_up_proj",
|
| 217 |
+
"model.layers.17.mlp.down_proj",
|
| 218 |
+
"model.layers.18.self_attn.qkv_proj",
|
| 219 |
+
"model.layers.18.self_attn.o_proj",
|
| 220 |
+
"model.layers.18.self_attn.attn.impl.matmul_qk",
|
| 221 |
+
"model.layers.18.self_attn.attn.impl.softmax",
|
| 222 |
+
"model.layers.18.self_attn.attn.impl.matmul_av",
|
| 223 |
+
"model.layers.18.self_attn.attn.impl.batch2block_matmul",
|
| 224 |
+
"model.layers.18.self_attn.attn.impl.block2batch_matmul",
|
| 225 |
+
"model.layers.18.self_attn.attn.impl.k_cache",
|
| 226 |
+
"model.layers.18.self_attn.attn.impl.v_cache",
|
| 227 |
+
"model.layers.18.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 228 |
+
"model.layers.18.mlp.gate_up_proj",
|
| 229 |
+
"model.layers.18.mlp.down_proj",
|
| 230 |
+
"model.layers.19.self_attn.qkv_proj",
|
| 231 |
+
"model.layers.19.self_attn.o_proj",
|
| 232 |
+
"model.layers.19.self_attn.attn.impl.matmul_qk",
|
| 233 |
+
"model.layers.19.self_attn.attn.impl.softmax",
|
| 234 |
+
"model.layers.19.self_attn.attn.impl.matmul_av",
|
| 235 |
+
"model.layers.19.self_attn.attn.impl.batch2block_matmul",
|
| 236 |
+
"model.layers.19.self_attn.attn.impl.block2batch_matmul",
|
| 237 |
+
"model.layers.19.self_attn.attn.impl.k_cache",
|
| 238 |
+
"model.layers.19.self_attn.attn.impl.v_cache",
|
| 239 |
+
"model.layers.19.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 240 |
+
"model.layers.19.mlp.gate_up_proj",
|
| 241 |
+
"model.layers.19.mlp.down_proj",
|
| 242 |
+
"model.layers.20.self_attn.qkv_proj",
|
| 243 |
+
"model.layers.20.self_attn.o_proj",
|
| 244 |
+
"model.layers.20.self_attn.attn.impl.matmul_qk",
|
| 245 |
+
"model.layers.20.self_attn.attn.impl.softmax",
|
| 246 |
+
"model.layers.20.self_attn.attn.impl.matmul_av",
|
| 247 |
+
"model.layers.20.self_attn.attn.impl.batch2block_matmul",
|
| 248 |
+
"model.layers.20.self_attn.attn.impl.block2batch_matmul",
|
| 249 |
+
"model.layers.20.self_attn.attn.impl.k_cache",
|
| 250 |
+
"model.layers.20.self_attn.attn.impl.v_cache",
|
| 251 |
+
"model.layers.20.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 252 |
+
"model.layers.20.mlp.gate_up_proj",
|
| 253 |
+
"model.layers.20.mlp.down_proj",
|
| 254 |
+
"model.layers.21.self_attn.qkv_proj",
|
| 255 |
+
"model.layers.21.self_attn.o_proj",
|
| 256 |
+
"model.layers.21.self_attn.attn.impl.matmul_qk",
|
| 257 |
+
"model.layers.21.self_attn.attn.impl.softmax",
|
| 258 |
+
"model.layers.21.self_attn.attn.impl.matmul_av",
|
| 259 |
+
"model.layers.21.self_attn.attn.impl.batch2block_matmul",
|
| 260 |
+
"model.layers.21.self_attn.attn.impl.block2batch_matmul",
|
| 261 |
+
"model.layers.21.self_attn.attn.impl.k_cache",
|
| 262 |
+
"model.layers.21.self_attn.attn.impl.v_cache",
|
| 263 |
+
"model.layers.21.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 264 |
+
"model.layers.21.mlp.gate_up_proj",
|
| 265 |
+
"model.layers.21.mlp.down_proj",
|
| 266 |
+
"model.layers.22.self_attn.qkv_proj",
|
| 267 |
+
"model.layers.22.self_attn.o_proj",
|
| 268 |
+
"model.layers.22.self_attn.attn.impl.matmul_qk",
|
| 269 |
+
"model.layers.22.self_attn.attn.impl.softmax",
|
| 270 |
+
"model.layers.22.self_attn.attn.impl.matmul_av",
|
| 271 |
+
"model.layers.22.self_attn.attn.impl.batch2block_matmul",
|
| 272 |
+
"model.layers.22.self_attn.attn.impl.block2batch_matmul",
|
| 273 |
+
"model.layers.22.self_attn.attn.impl.k_cache",
|
| 274 |
+
"model.layers.22.self_attn.attn.impl.v_cache",
|
| 275 |
+
"model.layers.22.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 276 |
+
"model.layers.22.mlp.gate_up_proj",
|
| 277 |
+
"model.layers.22.mlp.down_proj",
|
| 278 |
+
"model.layers.23.self_attn.qkv_proj",
|
| 279 |
+
"model.layers.23.self_attn.o_proj",
|
| 280 |
+
"model.layers.23.self_attn.attn.impl.matmul_qk",
|
| 281 |
+
"model.layers.23.self_attn.attn.impl.softmax",
|
| 282 |
+
"model.layers.23.self_attn.attn.impl.matmul_av",
|
| 283 |
+
"model.layers.23.self_attn.attn.impl.batch2block_matmul",
|
| 284 |
+
"model.layers.23.self_attn.attn.impl.block2batch_matmul",
|
| 285 |
+
"model.layers.23.self_attn.attn.impl.k_cache",
|
| 286 |
+
"model.layers.23.self_attn.attn.impl.v_cache",
|
| 287 |
+
"model.layers.23.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 288 |
+
"model.layers.23.mlp.gate_up_proj",
|
| 289 |
+
"model.layers.23.mlp.down_proj",
|
| 290 |
+
"model.layers.24.self_attn.qkv_proj",
|
| 291 |
+
"model.layers.24.self_attn.o_proj",
|
| 292 |
+
"model.layers.24.self_attn.attn.impl.matmul_qk",
|
| 293 |
+
"model.layers.24.self_attn.attn.impl.softmax",
|
| 294 |
+
"model.layers.24.self_attn.attn.impl.matmul_av",
|
| 295 |
+
"model.layers.24.self_attn.attn.impl.batch2block_matmul",
|
| 296 |
+
"model.layers.24.self_attn.attn.impl.block2batch_matmul",
|
| 297 |
+
"model.layers.24.self_attn.attn.impl.k_cache",
|
| 298 |
+
"model.layers.24.self_attn.attn.impl.v_cache",
|
| 299 |
+
"model.layers.24.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 300 |
+
"model.layers.24.mlp.gate_up_proj",
|
| 301 |
+
"model.layers.24.mlp.down_proj",
|
| 302 |
+
"model.layers.25.self_attn.qkv_proj",
|
| 303 |
+
"model.layers.25.self_attn.o_proj",
|
| 304 |
+
"model.layers.25.self_attn.attn.impl.matmul_qk",
|
| 305 |
+
"model.layers.25.self_attn.attn.impl.softmax",
|
| 306 |
+
"model.layers.25.self_attn.attn.impl.matmul_av",
|
| 307 |
+
"model.layers.25.self_attn.attn.impl.batch2block_matmul",
|
| 308 |
+
"model.layers.25.self_attn.attn.impl.block2batch_matmul",
|
| 309 |
+
"model.layers.25.self_attn.attn.impl.k_cache",
|
| 310 |
+
"model.layers.25.self_attn.attn.impl.v_cache",
|
| 311 |
+
"model.layers.25.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 312 |
+
"model.layers.25.mlp.gate_up_proj",
|
| 313 |
+
"model.layers.25.mlp.down_proj",
|
| 314 |
+
"model.layers.26.self_attn.qkv_proj",
|
| 315 |
+
"model.layers.26.self_attn.o_proj",
|
| 316 |
+
"model.layers.26.self_attn.attn.impl.matmul_qk",
|
| 317 |
+
"model.layers.26.self_attn.attn.impl.softmax",
|
| 318 |
+
"model.layers.26.self_attn.attn.impl.matmul_av",
|
| 319 |
+
"model.layers.26.self_attn.attn.impl.batch2block_matmul",
|
| 320 |
+
"model.layers.26.self_attn.attn.impl.block2batch_matmul",
|
| 321 |
+
"model.layers.26.self_attn.attn.impl.k_cache",
|
| 322 |
+
"model.layers.26.self_attn.attn.impl.v_cache",
|
| 323 |
+
"model.layers.26.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 324 |
+
"model.layers.26.mlp.gate_up_proj",
|
| 325 |
+
"model.layers.26.mlp.down_proj",
|
| 326 |
+
"model.layers.27.self_attn.qkv_proj",
|
| 327 |
+
"model.layers.27.self_attn.o_proj",
|
| 328 |
+
"model.layers.27.self_attn.attn.impl.matmul_qk",
|
| 329 |
+
"model.layers.27.self_attn.attn.impl.softmax",
|
| 330 |
+
"model.layers.27.self_attn.attn.impl.matmul_av",
|
| 331 |
+
"model.layers.27.self_attn.attn.impl.batch2block_matmul",
|
| 332 |
+
"model.layers.27.self_attn.attn.impl.block2batch_matmul",
|
| 333 |
+
"model.layers.27.self_attn.attn.impl.k_cache",
|
| 334 |
+
"model.layers.27.self_attn.attn.impl.v_cache",
|
| 335 |
+
"model.layers.27.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 336 |
+
"model.layers.27.mlp.gate_up_proj",
|
| 337 |
+
"model.layers.27.mlp.down_proj",
|
| 338 |
+
"model.layers.28.self_attn.qkv_proj",
|
| 339 |
+
"model.layers.28.self_attn.o_proj",
|
| 340 |
+
"model.layers.28.self_attn.attn.impl.matmul_qk",
|
| 341 |
+
"model.layers.28.self_attn.attn.impl.softmax",
|
| 342 |
+
"model.layers.28.self_attn.attn.impl.matmul_av",
|
| 343 |
+
"model.layers.28.self_attn.attn.impl.batch2block_matmul",
|
| 344 |
+
"model.layers.28.self_attn.attn.impl.block2batch_matmul",
|
| 345 |
+
"model.layers.28.self_attn.attn.impl.k_cache",
|
| 346 |
+
"model.layers.28.self_attn.attn.impl.v_cache",
|
| 347 |
+
"model.layers.28.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 348 |
+
"model.layers.28.mlp.gate_up_proj",
|
| 349 |
+
"model.layers.28.mlp.down_proj",
|
| 350 |
+
"model.layers.29.self_attn.qkv_proj",
|
| 351 |
+
"model.layers.29.self_attn.o_proj",
|
| 352 |
+
"model.layers.29.self_attn.attn.impl.matmul_qk",
|
| 353 |
+
"model.layers.29.self_attn.attn.impl.softmax",
|
| 354 |
+
"model.layers.29.self_attn.attn.impl.matmul_av",
|
| 355 |
+
"model.layers.29.self_attn.attn.impl.batch2block_matmul",
|
| 356 |
+
"model.layers.29.self_attn.attn.impl.block2batch_matmul",
|
| 357 |
+
"model.layers.29.self_attn.attn.impl.k_cache",
|
| 358 |
+
"model.layers.29.self_attn.attn.impl.v_cache",
|
| 359 |
+
"model.layers.29.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 360 |
+
"model.layers.29.mlp.gate_up_proj",
|
| 361 |
+
"model.layers.29.mlp.down_proj",
|
| 362 |
+
"model.layers.30.self_attn.qkv_proj",
|
| 363 |
+
"model.layers.30.self_attn.o_proj",
|
| 364 |
+
"model.layers.30.self_attn.attn.impl.matmul_qk",
|
| 365 |
+
"model.layers.30.self_attn.attn.impl.softmax",
|
| 366 |
+
"model.layers.30.self_attn.attn.impl.matmul_av",
|
| 367 |
+
"model.layers.30.self_attn.attn.impl.batch2block_matmul",
|
| 368 |
+
"model.layers.30.self_attn.attn.impl.block2batch_matmul",
|
| 369 |
+
"model.layers.30.self_attn.attn.impl.k_cache",
|
| 370 |
+
"model.layers.30.self_attn.attn.impl.v_cache",
|
| 371 |
+
"model.layers.30.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 372 |
+
"model.layers.30.mlp.gate_up_proj",
|
| 373 |
+
"model.layers.30.mlp.down_proj",
|
| 374 |
+
"model.layers.31.self_attn.qkv_proj",
|
| 375 |
+
"model.layers.31.self_attn.o_proj",
|
| 376 |
+
"model.layers.31.self_attn.attn.impl.matmul_qk",
|
| 377 |
+
"model.layers.31.self_attn.attn.impl.softmax",
|
| 378 |
+
"model.layers.31.self_attn.attn.impl.matmul_av",
|
| 379 |
+
"model.layers.31.self_attn.attn.impl.batch2block_matmul",
|
| 380 |
+
"model.layers.31.self_attn.attn.impl.block2batch_matmul",
|
| 381 |
+
"model.layers.31.self_attn.attn.impl.k_cache",
|
| 382 |
+
"model.layers.31.self_attn.attn.impl.v_cache",
|
| 383 |
+
"model.layers.31.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 384 |
+
"model.layers.31.mlp.gate_up_proj",
|
| 385 |
+
"model.layers.31.mlp.down_proj",
|
| 386 |
+
"model.layers.32.self_attn.qkv_proj",
|
| 387 |
+
"model.layers.32.self_attn.o_proj",
|
| 388 |
+
"model.layers.32.self_attn.attn.impl.matmul_qk",
|
| 389 |
+
"model.layers.32.self_attn.attn.impl.softmax",
|
| 390 |
+
"model.layers.32.self_attn.attn.impl.matmul_av",
|
| 391 |
+
"model.layers.32.self_attn.attn.impl.batch2block_matmul",
|
| 392 |
+
"model.layers.32.self_attn.attn.impl.block2batch_matmul",
|
| 393 |
+
"model.layers.32.self_attn.attn.impl.k_cache",
|
| 394 |
+
"model.layers.32.self_attn.attn.impl.v_cache",
|
| 395 |
+
"model.layers.32.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 396 |
+
"model.layers.32.mlp.gate_up_proj",
|
| 397 |
+
"model.layers.32.mlp.down_proj",
|
| 398 |
+
"model.layers.33.self_attn.qkv_proj",
|
| 399 |
+
"model.layers.33.self_attn.o_proj",
|
| 400 |
+
"model.layers.33.self_attn.attn.impl.matmul_qk",
|
| 401 |
+
"model.layers.33.self_attn.attn.impl.softmax",
|
| 402 |
+
"model.layers.33.self_attn.attn.impl.matmul_av",
|
| 403 |
+
"model.layers.33.self_attn.attn.impl.batch2block_matmul",
|
| 404 |
+
"model.layers.33.self_attn.attn.impl.block2batch_matmul",
|
| 405 |
+
"model.layers.33.self_attn.attn.impl.k_cache",
|
| 406 |
+
"model.layers.33.self_attn.attn.impl.v_cache",
|
| 407 |
+
"model.layers.33.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 408 |
+
"model.layers.33.mlp.gate_up_proj",
|
| 409 |
+
"model.layers.33.mlp.down_proj",
|
| 410 |
+
"model.layers.34.self_attn.qkv_proj",
|
| 411 |
+
"model.layers.34.self_attn.o_proj",
|
| 412 |
+
"model.layers.34.self_attn.attn.impl.matmul_qk",
|
| 413 |
+
"model.layers.34.self_attn.attn.impl.softmax",
|
| 414 |
+
"model.layers.34.self_attn.attn.impl.matmul_av",
|
| 415 |
+
"model.layers.34.self_attn.attn.impl.batch2block_matmul",
|
| 416 |
+
"model.layers.34.self_attn.attn.impl.block2batch_matmul",
|
| 417 |
+
"model.layers.34.self_attn.attn.impl.k_cache",
|
| 418 |
+
"model.layers.34.self_attn.attn.impl.v_cache",
|
| 419 |
+
"model.layers.34.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 420 |
+
"model.layers.34.mlp.gate_up_proj",
|
| 421 |
+
"model.layers.34.mlp.down_proj",
|
| 422 |
+
"model.layers.35.self_attn.qkv_proj",
|
| 423 |
+
"model.layers.35.self_attn.o_proj",
|
| 424 |
+
"model.layers.35.self_attn.attn.impl.matmul_qk",
|
| 425 |
+
"model.layers.35.self_attn.attn.impl.softmax",
|
| 426 |
+
"model.layers.35.self_attn.attn.impl.matmul_av",
|
| 427 |
+
"model.layers.35.self_attn.attn.impl.batch2block_matmul",
|
| 428 |
+
"model.layers.35.self_attn.attn.impl.block2batch_matmul",
|
| 429 |
+
"model.layers.35.self_attn.attn.impl.k_cache",
|
| 430 |
+
"model.layers.35.self_attn.attn.impl.v_cache",
|
| 431 |
+
"model.layers.35.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 432 |
+
"model.layers.35.mlp.gate_up_proj",
|
| 433 |
+
"model.layers.35.mlp.down_proj",
|
| 434 |
+
"model.layers.36.self_attn.qkv_proj",
|
| 435 |
+
"model.layers.36.self_attn.o_proj",
|
| 436 |
+
"model.layers.36.self_attn.attn.impl.matmul_qk",
|
| 437 |
+
"model.layers.36.self_attn.attn.impl.softmax",
|
| 438 |
+
"model.layers.36.self_attn.attn.impl.matmul_av",
|
| 439 |
+
"model.layers.36.self_attn.attn.impl.batch2block_matmul",
|
| 440 |
+
"model.layers.36.self_attn.attn.impl.block2batch_matmul",
|
| 441 |
+
"model.layers.36.self_attn.attn.impl.k_cache",
|
| 442 |
+
"model.layers.36.self_attn.attn.impl.v_cache",
|
| 443 |
+
"model.layers.36.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 444 |
+
"model.layers.36.mlp.gate_up_proj",
|
| 445 |
+
"model.layers.36.mlp.down_proj",
|
| 446 |
+
"model.layers.37.self_attn.qkv_proj",
|
| 447 |
+
"model.layers.37.self_attn.o_proj",
|
| 448 |
+
"model.layers.37.self_attn.attn.impl.matmul_qk",
|
| 449 |
+
"model.layers.37.self_attn.attn.impl.softmax",
|
| 450 |
+
"model.layers.37.self_attn.attn.impl.matmul_av",
|
| 451 |
+
"model.layers.37.self_attn.attn.impl.batch2block_matmul",
|
| 452 |
+
"model.layers.37.self_attn.attn.impl.block2batch_matmul",
|
| 453 |
+
"model.layers.37.self_attn.attn.impl.k_cache",
|
| 454 |
+
"model.layers.37.self_attn.attn.impl.v_cache",
|
| 455 |
+
"model.layers.37.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 456 |
+
"model.layers.37.mlp.gate_up_proj",
|
| 457 |
+
"model.layers.37.mlp.down_proj",
|
| 458 |
+
"model.layers.38.self_attn.qkv_proj",
|
| 459 |
+
"model.layers.38.self_attn.o_proj",
|
| 460 |
+
"model.layers.38.self_attn.attn.impl.matmul_qk",
|
| 461 |
+
"model.layers.38.self_attn.attn.impl.softmax",
|
| 462 |
+
"model.layers.38.self_attn.attn.impl.matmul_av",
|
| 463 |
+
"model.layers.38.self_attn.attn.impl.batch2block_matmul",
|
| 464 |
+
"model.layers.38.self_attn.attn.impl.block2batch_matmul",
|
| 465 |
+
"model.layers.38.self_attn.attn.impl.k_cache",
|
| 466 |
+
"model.layers.38.self_attn.attn.impl.v_cache",
|
| 467 |
+
"model.layers.38.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 468 |
+
"model.layers.38.mlp.gate_up_proj",
|
| 469 |
+
"model.layers.38.mlp.down_proj",
|
| 470 |
+
"model.layers.39.self_attn.qkv_proj",
|
| 471 |
+
"model.layers.39.self_attn.o_proj",
|
| 472 |
+
"model.layers.39.self_attn.attn.impl.matmul_qk",
|
| 473 |
+
"model.layers.39.self_attn.attn.impl.softmax",
|
| 474 |
+
"model.layers.39.self_attn.attn.impl.matmul_av",
|
| 475 |
+
"model.layers.39.self_attn.attn.impl.batch2block_matmul",
|
| 476 |
+
"model.layers.39.self_attn.attn.impl.block2batch_matmul",
|
| 477 |
+
"model.layers.39.self_attn.attn.impl.k_cache",
|
| 478 |
+
"model.layers.39.self_attn.attn.impl.v_cache",
|
| 479 |
+
"model.layers.39.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 480 |
+
"model.layers.39.mlp.gate_up_proj",
|
| 481 |
+
"model.layers.39.mlp.down_proj",
|
| 482 |
+
"model.layers.40.self_attn.qkv_proj",
|
| 483 |
+
"model.layers.40.self_attn.o_proj",
|
| 484 |
+
"model.layers.40.self_attn.attn.impl.matmul_qk",
|
| 485 |
+
"model.layers.40.self_attn.attn.impl.softmax",
|
| 486 |
+
"model.layers.40.self_attn.attn.impl.matmul_av",
|
| 487 |
+
"model.layers.40.self_attn.attn.impl.batch2block_matmul",
|
| 488 |
+
"model.layers.40.self_attn.attn.impl.block2batch_matmul",
|
| 489 |
+
"model.layers.40.self_attn.attn.impl.k_cache",
|
| 490 |
+
"model.layers.40.self_attn.attn.impl.v_cache",
|
| 491 |
+
"model.layers.40.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 492 |
+
"model.layers.40.mlp.gate_up_proj",
|
| 493 |
+
"model.layers.40.mlp.down_proj",
|
| 494 |
+
"model.layers.41.self_attn.qkv_proj",
|
| 495 |
+
"model.layers.41.self_attn.o_proj",
|
| 496 |
+
"model.layers.41.self_attn.attn.impl.matmul_qk",
|
| 497 |
+
"model.layers.41.self_attn.attn.impl.softmax",
|
| 498 |
+
"model.layers.41.self_attn.attn.impl.matmul_av",
|
| 499 |
+
"model.layers.41.self_attn.attn.impl.batch2block_matmul",
|
| 500 |
+
"model.layers.41.self_attn.attn.impl.block2batch_matmul",
|
| 501 |
+
"model.layers.41.self_attn.attn.impl.k_cache",
|
| 502 |
+
"model.layers.41.self_attn.attn.impl.v_cache",
|
| 503 |
+
"model.layers.41.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 504 |
+
"model.layers.41.mlp.gate_up_proj",
|
| 505 |
+
"model.layers.41.mlp.down_proj",
|
| 506 |
+
"model.layers.42.self_attn.qkv_proj",
|
| 507 |
+
"model.layers.42.self_attn.o_proj",
|
| 508 |
+
"model.layers.42.self_attn.attn.impl.matmul_qk",
|
| 509 |
+
"model.layers.42.self_attn.attn.impl.softmax",
|
| 510 |
+
"model.layers.42.self_attn.attn.impl.matmul_av",
|
| 511 |
+
"model.layers.42.self_attn.attn.impl.batch2block_matmul",
|
| 512 |
+
"model.layers.42.self_attn.attn.impl.block2batch_matmul",
|
| 513 |
+
"model.layers.42.self_attn.attn.impl.k_cache",
|
| 514 |
+
"model.layers.42.self_attn.attn.impl.v_cache",
|
| 515 |
+
"model.layers.42.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 516 |
+
"model.layers.42.mlp.gate_up_proj",
|
| 517 |
+
"model.layers.42.mlp.down_proj",
|
| 518 |
+
"model.layers.43.self_attn.qkv_proj",
|
| 519 |
+
"model.layers.43.self_attn.o_proj",
|
| 520 |
+
"model.layers.43.self_attn.attn.impl.matmul_qk",
|
| 521 |
+
"model.layers.43.self_attn.attn.impl.softmax",
|
| 522 |
+
"model.layers.43.self_attn.attn.impl.matmul_av",
|
| 523 |
+
"model.layers.43.self_attn.attn.impl.batch2block_matmul",
|
| 524 |
+
"model.layers.43.self_attn.attn.impl.block2batch_matmul",
|
| 525 |
+
"model.layers.43.self_attn.attn.impl.k_cache",
|
| 526 |
+
"model.layers.43.self_attn.attn.impl.v_cache",
|
| 527 |
+
"model.layers.43.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 528 |
+
"model.layers.43.mlp.gate_up_proj",
|
| 529 |
+
"model.layers.43.mlp.down_proj",
|
| 530 |
+
"model.layers.44.self_attn.qkv_proj",
|
| 531 |
+
"model.layers.44.self_attn.o_proj",
|
| 532 |
+
"model.layers.44.self_attn.attn.impl.matmul_qk",
|
| 533 |
+
"model.layers.44.self_attn.attn.impl.softmax",
|
| 534 |
+
"model.layers.44.self_attn.attn.impl.matmul_av",
|
| 535 |
+
"model.layers.44.self_attn.attn.impl.batch2block_matmul",
|
| 536 |
+
"model.layers.44.self_attn.attn.impl.block2batch_matmul",
|
| 537 |
+
"model.layers.44.self_attn.attn.impl.k_cache",
|
| 538 |
+
"model.layers.44.self_attn.attn.impl.v_cache",
|
| 539 |
+
"model.layers.44.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 540 |
+
"model.layers.44.mlp.gate_up_proj",
|
| 541 |
+
"model.layers.44.mlp.down_proj",
|
| 542 |
+
"model.layers.45.self_attn.qkv_proj",
|
| 543 |
+
"model.layers.45.self_attn.o_proj",
|
| 544 |
+
"model.layers.45.self_attn.attn.impl.matmul_qk",
|
| 545 |
+
"model.layers.45.self_attn.attn.impl.softmax",
|
| 546 |
+
"model.layers.45.self_attn.attn.impl.matmul_av",
|
| 547 |
+
"model.layers.45.self_attn.attn.impl.batch2block_matmul",
|
| 548 |
+
"model.layers.45.self_attn.attn.impl.block2batch_matmul",
|
| 549 |
+
"model.layers.45.self_attn.attn.impl.k_cache",
|
| 550 |
+
"model.layers.45.self_attn.attn.impl.v_cache",
|
| 551 |
+
"model.layers.45.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 552 |
+
"model.layers.45.mlp.gate_up_proj",
|
| 553 |
+
"model.layers.45.mlp.down_proj",
|
| 554 |
+
"model.layers.46.self_attn.qkv_proj",
|
| 555 |
+
"model.layers.46.self_attn.o_proj",
|
| 556 |
+
"model.layers.46.self_attn.attn.impl.matmul_qk",
|
| 557 |
+
"model.layers.46.self_attn.attn.impl.softmax",
|
| 558 |
+
"model.layers.46.self_attn.attn.impl.matmul_av",
|
| 559 |
+
"model.layers.46.self_attn.attn.impl.batch2block_matmul",
|
| 560 |
+
"model.layers.46.self_attn.attn.impl.block2batch_matmul",
|
| 561 |
+
"model.layers.46.self_attn.attn.impl.k_cache",
|
| 562 |
+
"model.layers.46.self_attn.attn.impl.v_cache",
|
| 563 |
+
"model.layers.46.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 564 |
+
"model.layers.46.mlp.gate_up_proj",
|
| 565 |
+
"model.layers.46.mlp.down_proj",
|
| 566 |
+
"model.layers.47.self_attn.qkv_proj",
|
| 567 |
+
"model.layers.47.self_attn.o_proj",
|
| 568 |
+
"model.layers.47.self_attn.attn.impl.matmul_qk",
|
| 569 |
+
"model.layers.47.self_attn.attn.impl.softmax",
|
| 570 |
+
"model.layers.47.self_attn.attn.impl.matmul_av",
|
| 571 |
+
"model.layers.47.self_attn.attn.impl.batch2block_matmul",
|
| 572 |
+
"model.layers.47.self_attn.attn.impl.block2batch_matmul",
|
| 573 |
+
"model.layers.47.self_attn.attn.impl.k_cache",
|
| 574 |
+
"model.layers.47.self_attn.attn.impl.v_cache",
|
| 575 |
+
"model.layers.47.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 576 |
+
"model.layers.47.mlp.gate_up_proj",
|
| 577 |
+
"model.layers.47.mlp.down_proj",
|
| 578 |
+
"model.layers.48.self_attn.qkv_proj",
|
| 579 |
+
"model.layers.48.self_attn.o_proj",
|
| 580 |
+
"model.layers.48.self_attn.attn.impl.matmul_qk",
|
| 581 |
+
"model.layers.48.self_attn.attn.impl.softmax",
|
| 582 |
+
"model.layers.48.self_attn.attn.impl.matmul_av",
|
| 583 |
+
"model.layers.48.self_attn.attn.impl.batch2block_matmul",
|
| 584 |
+
"model.layers.48.self_attn.attn.impl.block2batch_matmul",
|
| 585 |
+
"model.layers.48.self_attn.attn.impl.k_cache",
|
| 586 |
+
"model.layers.48.self_attn.attn.impl.v_cache",
|
| 587 |
+
"model.layers.48.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 588 |
+
"model.layers.48.mlp.gate_up_proj",
|
| 589 |
+
"model.layers.48.mlp.down_proj",
|
| 590 |
+
"model.layers.49.self_attn.qkv_proj",
|
| 591 |
+
"model.layers.49.self_attn.o_proj",
|
| 592 |
+
"model.layers.49.self_attn.attn.impl.matmul_qk",
|
| 593 |
+
"model.layers.49.self_attn.attn.impl.softmax",
|
| 594 |
+
"model.layers.49.self_attn.attn.impl.matmul_av",
|
| 595 |
+
"model.layers.49.self_attn.attn.impl.batch2block_matmul",
|
| 596 |
+
"model.layers.49.self_attn.attn.impl.block2batch_matmul",
|
| 597 |
+
"model.layers.49.self_attn.attn.impl.k_cache",
|
| 598 |
+
"model.layers.49.self_attn.attn.impl.v_cache",
|
| 599 |
+
"model.layers.49.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 600 |
+
"model.layers.49.mlp.gate_up_proj",
|
| 601 |
+
"model.layers.49.mlp.down_proj",
|
| 602 |
+
"model.layers.50.self_attn.qkv_proj",
|
| 603 |
+
"model.layers.50.self_attn.o_proj",
|
| 604 |
+
"model.layers.50.self_attn.attn.impl.matmul_qk",
|
| 605 |
+
"model.layers.50.self_attn.attn.impl.softmax",
|
| 606 |
+
"model.layers.50.self_attn.attn.impl.matmul_av",
|
| 607 |
+
"model.layers.50.self_attn.attn.impl.batch2block_matmul",
|
| 608 |
+
"model.layers.50.self_attn.attn.impl.block2batch_matmul",
|
| 609 |
+
"model.layers.50.self_attn.attn.impl.k_cache",
|
| 610 |
+
"model.layers.50.self_attn.attn.impl.v_cache",
|
| 611 |
+
"model.layers.50.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 612 |
+
"model.layers.50.mlp.gate_up_proj",
|
| 613 |
+
"model.layers.50.mlp.down_proj",
|
| 614 |
+
"model.layers.51.self_attn.qkv_proj",
|
| 615 |
+
"model.layers.51.self_attn.o_proj",
|
| 616 |
+
"model.layers.51.self_attn.attn.impl.matmul_qk",
|
| 617 |
+
"model.layers.51.self_attn.attn.impl.softmax",
|
| 618 |
+
"model.layers.51.self_attn.attn.impl.matmul_av",
|
| 619 |
+
"model.layers.51.self_attn.attn.impl.batch2block_matmul",
|
| 620 |
+
"model.layers.51.self_attn.attn.impl.block2batch_matmul",
|
| 621 |
+
"model.layers.51.self_attn.attn.impl.k_cache",
|
| 622 |
+
"model.layers.51.self_attn.attn.impl.v_cache",
|
| 623 |
+
"model.layers.51.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 624 |
+
"model.layers.51.mlp.gate_up_proj",
|
| 625 |
+
"model.layers.51.mlp.down_proj",
|
| 626 |
+
"model.layers.52.self_attn.qkv_proj",
|
| 627 |
+
"model.layers.52.self_attn.o_proj",
|
| 628 |
+
"model.layers.52.self_attn.attn.impl.matmul_qk",
|
| 629 |
+
"model.layers.52.self_attn.attn.impl.softmax",
|
| 630 |
+
"model.layers.52.self_attn.attn.impl.matmul_av",
|
| 631 |
+
"model.layers.52.self_attn.attn.impl.batch2block_matmul",
|
| 632 |
+
"model.layers.52.self_attn.attn.impl.block2batch_matmul",
|
| 633 |
+
"model.layers.52.self_attn.attn.impl.k_cache",
|
| 634 |
+
"model.layers.52.self_attn.attn.impl.v_cache",
|
| 635 |
+
"model.layers.52.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 636 |
+
"model.layers.52.mlp.gate_up_proj",
|
| 637 |
+
"model.layers.52.mlp.down_proj",
|
| 638 |
+
"model.layers.53.self_attn.qkv_proj",
|
| 639 |
+
"model.layers.53.self_attn.o_proj",
|
| 640 |
+
"model.layers.53.self_attn.attn.impl.matmul_qk",
|
| 641 |
+
"model.layers.53.self_attn.attn.impl.softmax",
|
| 642 |
+
"model.layers.53.self_attn.attn.impl.matmul_av",
|
| 643 |
+
"model.layers.53.self_attn.attn.impl.batch2block_matmul",
|
| 644 |
+
"model.layers.53.self_attn.attn.impl.block2batch_matmul",
|
| 645 |
+
"model.layers.53.self_attn.attn.impl.k_cache",
|
| 646 |
+
"model.layers.53.self_attn.attn.impl.v_cache",
|
| 647 |
+
"model.layers.53.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 648 |
+
"model.layers.53.mlp.gate_up_proj",
|
| 649 |
+
"model.layers.53.mlp.down_proj",
|
| 650 |
+
"model.layers.54.self_attn.qkv_proj",
|
| 651 |
+
"model.layers.54.self_attn.o_proj",
|
| 652 |
+
"model.layers.54.self_attn.attn.impl.matmul_qk",
|
| 653 |
+
"model.layers.54.self_attn.attn.impl.softmax",
|
| 654 |
+
"model.layers.54.self_attn.attn.impl.matmul_av",
|
| 655 |
+
"model.layers.54.self_attn.attn.impl.batch2block_matmul",
|
| 656 |
+
"model.layers.54.self_attn.attn.impl.block2batch_matmul",
|
| 657 |
+
"model.layers.54.self_attn.attn.impl.k_cache",
|
| 658 |
+
"model.layers.54.self_attn.attn.impl.v_cache",
|
| 659 |
+
"model.layers.54.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 660 |
+
"model.layers.54.mlp.gate_up_proj",
|
| 661 |
+
"model.layers.54.mlp.down_proj",
|
| 662 |
+
"model.layers.55.self_attn.qkv_proj",
|
| 663 |
+
"model.layers.55.self_attn.o_proj",
|
| 664 |
+
"model.layers.55.self_attn.attn.impl.matmul_qk",
|
| 665 |
+
"model.layers.55.self_attn.attn.impl.softmax",
|
| 666 |
+
"model.layers.55.self_attn.attn.impl.matmul_av",
|
| 667 |
+
"model.layers.55.self_attn.attn.impl.batch2block_matmul",
|
| 668 |
+
"model.layers.55.self_attn.attn.impl.block2batch_matmul",
|
| 669 |
+
"model.layers.55.self_attn.attn.impl.k_cache",
|
| 670 |
+
"model.layers.55.self_attn.attn.impl.v_cache",
|
| 671 |
+
"model.layers.55.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 672 |
+
"model.layers.55.mlp.gate_up_proj",
|
| 673 |
+
"model.layers.55.mlp.down_proj",
|
| 674 |
+
"model.layers.56.self_attn.qkv_proj",
|
| 675 |
+
"model.layers.56.self_attn.o_proj",
|
| 676 |
+
"model.layers.56.self_attn.attn.impl.matmul_qk",
|
| 677 |
+
"model.layers.56.self_attn.attn.impl.softmax",
|
| 678 |
+
"model.layers.56.self_attn.attn.impl.matmul_av",
|
| 679 |
+
"model.layers.56.self_attn.attn.impl.batch2block_matmul",
|
| 680 |
+
"model.layers.56.self_attn.attn.impl.block2batch_matmul",
|
| 681 |
+
"model.layers.56.self_attn.attn.impl.k_cache",
|
| 682 |
+
"model.layers.56.self_attn.attn.impl.v_cache",
|
| 683 |
+
"model.layers.56.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 684 |
+
"model.layers.56.mlp.gate_up_proj",
|
| 685 |
+
"model.layers.56.mlp.down_proj",
|
| 686 |
+
"model.layers.57.self_attn.qkv_proj",
|
| 687 |
+
"model.layers.57.self_attn.o_proj",
|
| 688 |
+
"model.layers.57.self_attn.attn.impl.matmul_qk",
|
| 689 |
+
"model.layers.57.self_attn.attn.impl.softmax",
|
| 690 |
+
"model.layers.57.self_attn.attn.impl.matmul_av",
|
| 691 |
+
"model.layers.57.self_attn.attn.impl.batch2block_matmul",
|
| 692 |
+
"model.layers.57.self_attn.attn.impl.block2batch_matmul",
|
| 693 |
+
"model.layers.57.self_attn.attn.impl.k_cache",
|
| 694 |
+
"model.layers.57.self_attn.attn.impl.v_cache",
|
| 695 |
+
"model.layers.57.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 696 |
+
"model.layers.57.mlp.gate_up_proj",
|
| 697 |
+
"model.layers.57.mlp.down_proj",
|
| 698 |
+
"model.layers.58.self_attn.qkv_proj",
|
| 699 |
+
"model.layers.58.self_attn.o_proj",
|
| 700 |
+
"model.layers.58.self_attn.attn.impl.matmul_qk",
|
| 701 |
+
"model.layers.58.self_attn.attn.impl.softmax",
|
| 702 |
+
"model.layers.58.self_attn.attn.impl.matmul_av",
|
| 703 |
+
"model.layers.58.self_attn.attn.impl.batch2block_matmul",
|
| 704 |
+
"model.layers.58.self_attn.attn.impl.block2batch_matmul",
|
| 705 |
+
"model.layers.58.self_attn.attn.impl.k_cache",
|
| 706 |
+
"model.layers.58.self_attn.attn.impl.v_cache",
|
| 707 |
+
"model.layers.58.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 708 |
+
"model.layers.58.mlp.gate_up_proj",
|
| 709 |
+
"model.layers.58.mlp.down_proj",
|
| 710 |
+
"model.layers.59.self_attn.qkv_proj",
|
| 711 |
+
"model.layers.59.self_attn.o_proj",
|
| 712 |
+
"model.layers.59.self_attn.attn.impl.matmul_qk",
|
| 713 |
+
"model.layers.59.self_attn.attn.impl.softmax",
|
| 714 |
+
"model.layers.59.self_attn.attn.impl.matmul_av",
|
| 715 |
+
"model.layers.59.self_attn.attn.impl.batch2block_matmul",
|
| 716 |
+
"model.layers.59.self_attn.attn.impl.block2batch_matmul",
|
| 717 |
+
"model.layers.59.self_attn.attn.impl.k_cache",
|
| 718 |
+
"model.layers.59.self_attn.attn.impl.v_cache",
|
| 719 |
+
"model.layers.59.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 720 |
+
"model.layers.59.mlp.gate_up_proj",
|
| 721 |
+
"model.layers.59.mlp.down_proj",
|
| 722 |
+
"model.layers.60.self_attn.qkv_proj",
|
| 723 |
+
"model.layers.60.self_attn.o_proj",
|
| 724 |
+
"model.layers.60.self_attn.attn.impl.matmul_qk",
|
| 725 |
+
"model.layers.60.self_attn.attn.impl.softmax",
|
| 726 |
+
"model.layers.60.self_attn.attn.impl.matmul_av",
|
| 727 |
+
"model.layers.60.self_attn.attn.impl.batch2block_matmul",
|
| 728 |
+
"model.layers.60.self_attn.attn.impl.block2batch_matmul",
|
| 729 |
+
"model.layers.60.self_attn.attn.impl.k_cache",
|
| 730 |
+
"model.layers.60.self_attn.attn.impl.v_cache",
|
| 731 |
+
"model.layers.60.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 732 |
+
"model.layers.60.mlp.gate_up_proj",
|
| 733 |
+
"model.layers.60.mlp.down_proj",
|
| 734 |
+
"model.layers.61.self_attn.qkv_proj",
|
| 735 |
+
"model.layers.61.self_attn.o_proj",
|
| 736 |
+
"model.layers.61.self_attn.attn.impl.matmul_qk",
|
| 737 |
+
"model.layers.61.self_attn.attn.impl.softmax",
|
| 738 |
+
"model.layers.61.self_attn.attn.impl.matmul_av",
|
| 739 |
+
"model.layers.61.self_attn.attn.impl.batch2block_matmul",
|
| 740 |
+
"model.layers.61.self_attn.attn.impl.block2batch_matmul",
|
| 741 |
+
"model.layers.61.self_attn.attn.impl.k_cache",
|
| 742 |
+
"model.layers.61.self_attn.attn.impl.v_cache",
|
| 743 |
+
"model.layers.61.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 744 |
+
"model.layers.61.mlp.gate_up_proj",
|
| 745 |
+
"model.layers.61.mlp.down_proj",
|
| 746 |
+
"model.layers.62.self_attn.qkv_proj",
|
| 747 |
+
"model.layers.62.self_attn.o_proj",
|
| 748 |
+
"model.layers.62.self_attn.attn.impl.matmul_qk",
|
| 749 |
+
"model.layers.62.self_attn.attn.impl.softmax",
|
| 750 |
+
"model.layers.62.self_attn.attn.impl.matmul_av",
|
| 751 |
+
"model.layers.62.self_attn.attn.impl.batch2block_matmul",
|
| 752 |
+
"model.layers.62.self_attn.attn.impl.block2batch_matmul",
|
| 753 |
+
"model.layers.62.self_attn.attn.impl.k_cache",
|
| 754 |
+
"model.layers.62.self_attn.attn.impl.v_cache",
|
| 755 |
+
"model.layers.62.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 756 |
+
"model.layers.62.mlp.gate_up_proj",
|
| 757 |
+
"model.layers.62.mlp.down_proj",
|
| 758 |
+
"model.layers.63.self_attn.qkv_proj",
|
| 759 |
+
"model.layers.63.self_attn.o_proj",
|
| 760 |
+
"model.layers.63.self_attn.attn.impl.matmul_qk",
|
| 761 |
+
"model.layers.63.self_attn.attn.impl.softmax",
|
| 762 |
+
"model.layers.63.self_attn.attn.impl.matmul_av",
|
| 763 |
+
"model.layers.63.self_attn.attn.impl.batch2block_matmul",
|
| 764 |
+
"model.layers.63.self_attn.attn.impl.block2batch_matmul",
|
| 765 |
+
"model.layers.63.self_attn.attn.impl.k_cache",
|
| 766 |
+
"model.layers.63.self_attn.attn.impl.v_cache",
|
| 767 |
+
"model.layers.63.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 768 |
+
"model.layers.63.mlp.gate_up_proj",
|
| 769 |
+
"model.layers.63.mlp.down_proj",
|
| 770 |
+
"model.layers.64.self_attn.qkv_proj",
|
| 771 |
+
"model.layers.64.self_attn.o_proj",
|
| 772 |
+
"model.layers.64.self_attn.attn.impl.matmul_qk",
|
| 773 |
+
"model.layers.64.self_attn.attn.impl.softmax",
|
| 774 |
+
"model.layers.64.self_attn.attn.impl.matmul_av",
|
| 775 |
+
"model.layers.64.self_attn.attn.impl.batch2block_matmul",
|
| 776 |
+
"model.layers.64.self_attn.attn.impl.block2batch_matmul",
|
| 777 |
+
"model.layers.64.self_attn.attn.impl.k_cache",
|
| 778 |
+
"model.layers.64.self_attn.attn.impl.v_cache",
|
| 779 |
+
"model.layers.64.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 780 |
+
"model.layers.64.mlp.gate_up_proj",
|
| 781 |
+
"model.layers.64.mlp.down_proj",
|
| 782 |
+
"model.layers.65.self_attn.qkv_proj",
|
| 783 |
+
"model.layers.65.self_attn.o_proj",
|
| 784 |
+
"model.layers.65.self_attn.attn.impl.matmul_qk",
|
| 785 |
+
"model.layers.65.self_attn.attn.impl.softmax",
|
| 786 |
+
"model.layers.65.self_attn.attn.impl.matmul_av",
|
| 787 |
+
"model.layers.65.self_attn.attn.impl.batch2block_matmul",
|
| 788 |
+
"model.layers.65.self_attn.attn.impl.block2batch_matmul",
|
| 789 |
+
"model.layers.65.self_attn.attn.impl.k_cache",
|
| 790 |
+
"model.layers.65.self_attn.attn.impl.v_cache",
|
| 791 |
+
"model.layers.65.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 792 |
+
"model.layers.65.mlp.gate_up_proj",
|
| 793 |
+
"model.layers.65.mlp.down_proj",
|
| 794 |
+
"model.layers.66.self_attn.qkv_proj",
|
| 795 |
+
"model.layers.66.self_attn.o_proj",
|
| 796 |
+
"model.layers.66.self_attn.attn.impl.matmul_qk",
|
| 797 |
+
"model.layers.66.self_attn.attn.impl.softmax",
|
| 798 |
+
"model.layers.66.self_attn.attn.impl.matmul_av",
|
| 799 |
+
"model.layers.66.self_attn.attn.impl.batch2block_matmul",
|
| 800 |
+
"model.layers.66.self_attn.attn.impl.block2batch_matmul",
|
| 801 |
+
"model.layers.66.self_attn.attn.impl.k_cache",
|
| 802 |
+
"model.layers.66.self_attn.attn.impl.v_cache",
|
| 803 |
+
"model.layers.66.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 804 |
+
"model.layers.66.mlp.gate_up_proj",
|
| 805 |
+
"model.layers.66.mlp.down_proj",
|
| 806 |
+
"model.layers.67.self_attn.qkv_proj",
|
| 807 |
+
"model.layers.67.self_attn.o_proj",
|
| 808 |
+
"model.layers.67.self_attn.attn.impl.matmul_qk",
|
| 809 |
+
"model.layers.67.self_attn.attn.impl.softmax",
|
| 810 |
+
"model.layers.67.self_attn.attn.impl.matmul_av",
|
| 811 |
+
"model.layers.67.self_attn.attn.impl.batch2block_matmul",
|
| 812 |
+
"model.layers.67.self_attn.attn.impl.block2batch_matmul",
|
| 813 |
+
"model.layers.67.self_attn.attn.impl.k_cache",
|
| 814 |
+
"model.layers.67.self_attn.attn.impl.v_cache",
|
| 815 |
+
"model.layers.67.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 816 |
+
"model.layers.67.mlp.gate_up_proj",
|
| 817 |
+
"model.layers.67.mlp.down_proj",
|
| 818 |
+
"model.layers.68.self_attn.qkv_proj",
|
| 819 |
+
"model.layers.68.self_attn.o_proj",
|
| 820 |
+
"model.layers.68.self_attn.attn.impl.matmul_qk",
|
| 821 |
+
"model.layers.68.self_attn.attn.impl.softmax",
|
| 822 |
+
"model.layers.68.self_attn.attn.impl.matmul_av",
|
| 823 |
+
"model.layers.68.self_attn.attn.impl.batch2block_matmul",
|
| 824 |
+
"model.layers.68.self_attn.attn.impl.block2batch_matmul",
|
| 825 |
+
"model.layers.68.self_attn.attn.impl.k_cache",
|
| 826 |
+
"model.layers.68.self_attn.attn.impl.v_cache",
|
| 827 |
+
"model.layers.68.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 828 |
+
"model.layers.68.mlp.gate_up_proj",
|
| 829 |
+
"model.layers.68.mlp.down_proj",
|
| 830 |
+
"model.layers.69.self_attn.qkv_proj",
|
| 831 |
+
"model.layers.69.self_attn.o_proj",
|
| 832 |
+
"model.layers.69.self_attn.attn.impl.matmul_qk",
|
| 833 |
+
"model.layers.69.self_attn.attn.impl.softmax",
|
| 834 |
+
"model.layers.69.self_attn.attn.impl.matmul_av",
|
| 835 |
+
"model.layers.69.self_attn.attn.impl.batch2block_matmul",
|
| 836 |
+
"model.layers.69.self_attn.attn.impl.block2batch_matmul",
|
| 837 |
+
"model.layers.69.self_attn.attn.impl.k_cache",
|
| 838 |
+
"model.layers.69.self_attn.attn.impl.v_cache",
|
| 839 |
+
"model.layers.69.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 840 |
+
"model.layers.69.mlp.gate_up_proj",
|
| 841 |
+
"model.layers.69.mlp.down_proj",
|
| 842 |
+
"model.layers.70.self_attn.qkv_proj",
|
| 843 |
+
"model.layers.70.self_attn.o_proj",
|
| 844 |
+
"model.layers.70.self_attn.attn.impl.matmul_qk",
|
| 845 |
+
"model.layers.70.self_attn.attn.impl.softmax",
|
| 846 |
+
"model.layers.70.self_attn.attn.impl.matmul_av",
|
| 847 |
+
"model.layers.70.self_attn.attn.impl.batch2block_matmul",
|
| 848 |
+
"model.layers.70.self_attn.attn.impl.block2batch_matmul",
|
| 849 |
+
"model.layers.70.self_attn.attn.impl.k_cache",
|
| 850 |
+
"model.layers.70.self_attn.attn.impl.v_cache",
|
| 851 |
+
"model.layers.70.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 852 |
+
"model.layers.70.mlp.gate_up_proj",
|
| 853 |
+
"model.layers.70.mlp.down_proj",
|
| 854 |
+
"model.layers.71.self_attn.qkv_proj",
|
| 855 |
+
"model.layers.71.self_attn.o_proj",
|
| 856 |
+
"model.layers.71.self_attn.attn.impl.matmul_qk",
|
| 857 |
+
"model.layers.71.self_attn.attn.impl.softmax",
|
| 858 |
+
"model.layers.71.self_attn.attn.impl.matmul_av",
|
| 859 |
+
"model.layers.71.self_attn.attn.impl.batch2block_matmul",
|
| 860 |
+
"model.layers.71.self_attn.attn.impl.block2batch_matmul",
|
| 861 |
+
"model.layers.71.self_attn.attn.impl.k_cache",
|
| 862 |
+
"model.layers.71.self_attn.attn.impl.v_cache",
|
| 863 |
+
"model.layers.71.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 864 |
+
"model.layers.71.mlp.gate_up_proj",
|
| 865 |
+
"model.layers.71.mlp.down_proj",
|
| 866 |
+
"model.layers.72.self_attn.qkv_proj",
|
| 867 |
+
"model.layers.72.self_attn.o_proj",
|
| 868 |
+
"model.layers.72.self_attn.attn.impl.matmul_qk",
|
| 869 |
+
"model.layers.72.self_attn.attn.impl.softmax",
|
| 870 |
+
"model.layers.72.self_attn.attn.impl.matmul_av",
|
| 871 |
+
"model.layers.72.self_attn.attn.impl.batch2block_matmul",
|
| 872 |
+
"model.layers.72.self_attn.attn.impl.block2batch_matmul",
|
| 873 |
+
"model.layers.72.self_attn.attn.impl.k_cache",
|
| 874 |
+
"model.layers.72.self_attn.attn.impl.v_cache",
|
| 875 |
+
"model.layers.72.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 876 |
+
"model.layers.72.mlp.gate_up_proj",
|
| 877 |
+
"model.layers.72.mlp.down_proj",
|
| 878 |
+
"model.layers.73.self_attn.qkv_proj",
|
| 879 |
+
"model.layers.73.self_attn.o_proj",
|
| 880 |
+
"model.layers.73.self_attn.attn.impl.matmul_qk",
|
| 881 |
+
"model.layers.73.self_attn.attn.impl.softmax",
|
| 882 |
+
"model.layers.73.self_attn.attn.impl.matmul_av",
|
| 883 |
+
"model.layers.73.self_attn.attn.impl.batch2block_matmul",
|
| 884 |
+
"model.layers.73.self_attn.attn.impl.block2batch_matmul",
|
| 885 |
+
"model.layers.73.self_attn.attn.impl.k_cache",
|
| 886 |
+
"model.layers.73.self_attn.attn.impl.v_cache",
|
| 887 |
+
"model.layers.73.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 888 |
+
"model.layers.73.mlp.gate_up_proj",
|
| 889 |
+
"model.layers.73.mlp.down_proj",
|
| 890 |
+
"model.layers.74.self_attn.qkv_proj",
|
| 891 |
+
"model.layers.74.self_attn.o_proj",
|
| 892 |
+
"model.layers.74.self_attn.attn.impl.matmul_qk",
|
| 893 |
+
"model.layers.74.self_attn.attn.impl.softmax",
|
| 894 |
+
"model.layers.74.self_attn.attn.impl.matmul_av",
|
| 895 |
+
"model.layers.74.self_attn.attn.impl.batch2block_matmul",
|
| 896 |
+
"model.layers.74.self_attn.attn.impl.block2batch_matmul",
|
| 897 |
+
"model.layers.74.self_attn.attn.impl.k_cache",
|
| 898 |
+
"model.layers.74.self_attn.attn.impl.v_cache",
|
| 899 |
+
"model.layers.74.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 900 |
+
"model.layers.74.mlp.gate_up_proj",
|
| 901 |
+
"model.layers.74.mlp.down_proj",
|
| 902 |
+
"model.layers.75.self_attn.qkv_proj",
|
| 903 |
+
"model.layers.75.self_attn.o_proj",
|
| 904 |
+
"model.layers.75.self_attn.attn.impl.matmul_qk",
|
| 905 |
+
"model.layers.75.self_attn.attn.impl.softmax",
|
| 906 |
+
"model.layers.75.self_attn.attn.impl.matmul_av",
|
| 907 |
+
"model.layers.75.self_attn.attn.impl.batch2block_matmul",
|
| 908 |
+
"model.layers.75.self_attn.attn.impl.block2batch_matmul",
|
| 909 |
+
"model.layers.75.self_attn.attn.impl.k_cache",
|
| 910 |
+
"model.layers.75.self_attn.attn.impl.v_cache",
|
| 911 |
+
"model.layers.75.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 912 |
+
"model.layers.75.mlp.gate_up_proj",
|
| 913 |
+
"model.layers.75.mlp.down_proj",
|
| 914 |
+
"model.layers.76.self_attn.qkv_proj",
|
| 915 |
+
"model.layers.76.self_attn.o_proj",
|
| 916 |
+
"model.layers.76.self_attn.attn.impl.matmul_qk",
|
| 917 |
+
"model.layers.76.self_attn.attn.impl.softmax",
|
| 918 |
+
"model.layers.76.self_attn.attn.impl.matmul_av",
|
| 919 |
+
"model.layers.76.self_attn.attn.impl.batch2block_matmul",
|
| 920 |
+
"model.layers.76.self_attn.attn.impl.block2batch_matmul",
|
| 921 |
+
"model.layers.76.self_attn.attn.impl.k_cache",
|
| 922 |
+
"model.layers.76.self_attn.attn.impl.v_cache",
|
| 923 |
+
"model.layers.76.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 924 |
+
"model.layers.76.mlp.gate_up_proj",
|
| 925 |
+
"model.layers.76.mlp.down_proj",
|
| 926 |
+
"model.layers.77.self_attn.qkv_proj",
|
| 927 |
+
"model.layers.77.self_attn.o_proj",
|
| 928 |
+
"model.layers.77.self_attn.attn.impl.matmul_qk",
|
| 929 |
+
"model.layers.77.self_attn.attn.impl.softmax",
|
| 930 |
+
"model.layers.77.self_attn.attn.impl.matmul_av",
|
| 931 |
+
"model.layers.77.self_attn.attn.impl.batch2block_matmul",
|
| 932 |
+
"model.layers.77.self_attn.attn.impl.block2batch_matmul",
|
| 933 |
+
"model.layers.77.self_attn.attn.impl.k_cache",
|
| 934 |
+
"model.layers.77.self_attn.attn.impl.v_cache",
|
| 935 |
+
"model.layers.77.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 936 |
+
"model.layers.77.mlp.gate_up_proj",
|
| 937 |
+
"model.layers.77.mlp.down_proj",
|
| 938 |
+
"model.layers.78.self_attn.qkv_proj",
|
| 939 |
+
"model.layers.78.self_attn.o_proj",
|
| 940 |
+
"model.layers.78.self_attn.attn.impl.matmul_qk",
|
| 941 |
+
"model.layers.78.self_attn.attn.impl.softmax",
|
| 942 |
+
"model.layers.78.self_attn.attn.impl.matmul_av",
|
| 943 |
+
"model.layers.78.self_attn.attn.impl.batch2block_matmul",
|
| 944 |
+
"model.layers.78.self_attn.attn.impl.block2batch_matmul",
|
| 945 |
+
"model.layers.78.self_attn.attn.impl.k_cache",
|
| 946 |
+
"model.layers.78.self_attn.attn.impl.v_cache",
|
| 947 |
+
"model.layers.78.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 948 |
+
"model.layers.78.mlp.gate_up_proj",
|
| 949 |
+
"model.layers.78.mlp.down_proj",
|
| 950 |
+
"model.layers.79.self_attn.qkv_proj",
|
| 951 |
+
"model.layers.79.self_attn.o_proj",
|
| 952 |
+
"model.layers.79.self_attn.attn.impl.matmul_qk",
|
| 953 |
+
"model.layers.79.self_attn.attn.impl.softmax",
|
| 954 |
+
"model.layers.79.self_attn.attn.impl.matmul_av",
|
| 955 |
+
"model.layers.79.self_attn.attn.impl.batch2block_matmul",
|
| 956 |
+
"model.layers.79.self_attn.attn.impl.block2batch_matmul",
|
| 957 |
+
"model.layers.79.self_attn.attn.impl.k_cache",
|
| 958 |
+
"model.layers.79.self_attn.attn.impl.v_cache",
|
| 959 |
+
"model.layers.79.self_attn.attn.impl.fused_scaled_dot_product_attention",
|
| 960 |
+
"model.layers.79.mlp.gate_up_proj",
|
| 961 |
+
"model.layers.79.mlp.down_proj",
|
| 962 |
+
"lm_head"
|
| 963 |
+
]
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_0_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:28fa12b482230e0d765930aafc5fba653d6b91b841c13d05f9164ead90cf96c7
|
| 3 |
+
size 212484
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_1_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8167b2ca512756adc9b4e6968ec6f2cdc4c3afc0716a857d454d11164991cff5
|
| 3 |
+
size 212484
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_2_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:898204590d3b3131975f00346d70a2a9dbaee039786bb635a8c76cda9592e38b
|
| 3 |
+
size 212484
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
quant/g3/inc_output_hooks_maxabs_MAXABS_HW_3_4.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d9fc1daf3e06aa809f4c006efdbb55f1e36d66f09ab9a635223ad2a27d7a904
|
| 3 |
+
size 212484
|
quant/maxabs_measure_g3.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"method": "HOOKS","mode": "MEASURE","observer": "maxabs","allowlist": {"types": [], "names": []},"blocklist": {"types": [], "names": []},"quantize_weight": false,"dump_stats_path": "/software/ae/fmwork/inc/1.21.0/llama-3.3-70b-instruct/g3/inc_output"}
|
quant/maxabs_quant_g3.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mode": "QUANTIZE","observer": "maxabs","scale_method": "maxabs_hw","allowlist": {"types": [],"names": []},"blocklist": {"types": [],"names": []},"dump_stats_path": "/mnt/models/Llama-3.3-70B/quant/g3/inc_output"}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|begin_of_text|>",
|
| 3 |
+
"eos_token": "<|eot_id|>"
|
| 4 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
| 3 |
+
size 17209920
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"128000": {
|
| 4 |
+
"content": "<|begin_of_text|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"128001": {
|
| 12 |
+
"content": "<|end_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"128002": {
|
| 20 |
+
"content": "<|reserved_special_token_0|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"128003": {
|
| 28 |
+
"content": "<|reserved_special_token_1|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128004": {
|
| 36 |
+
"content": "<|finetune_right_pad_id|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128005": {
|
| 44 |
+
"content": "<|reserved_special_token_2|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"128006": {
|
| 52 |
+
"content": "<|start_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"128007": {
|
| 60 |
+
"content": "<|end_header_id|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"128008": {
|
| 68 |
+
"content": "<|eom_id|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"128009": {
|
| 76 |
+
"content": "<|eot_id|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"128010": {
|
| 84 |
+
"content": "<|python_tag|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"128011": {
|
| 92 |
+
"content": "<|reserved_special_token_3|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"128012": {
|
| 100 |
+
"content": "<|reserved_special_token_4|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"128013": {
|
| 108 |
+
"content": "<|reserved_special_token_5|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"128014": {
|
| 116 |
+
"content": "<|reserved_special_token_6|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"128015": {
|
| 124 |
+
"content": "<|reserved_special_token_7|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"128016": {
|
| 132 |
+
"content": "<|reserved_special_token_8|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"128017": {
|
| 140 |
+
"content": "<|reserved_special_token_9|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"128018": {
|
| 148 |
+
"content": "<|reserved_special_token_10|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"128019": {
|
| 156 |
+
"content": "<|reserved_special_token_11|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"128020": {
|
| 164 |
+
"content": "<|reserved_special_token_12|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"128021": {
|
| 172 |
+
"content": "<|reserved_special_token_13|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"128022": {
|
| 180 |
+
"content": "<|reserved_special_token_14|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"128023": {
|
| 188 |
+
"content": "<|reserved_special_token_15|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"128024": {
|
| 196 |
+
"content": "<|reserved_special_token_16|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"128025": {
|
| 204 |
+
"content": "<|reserved_special_token_17|>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"128026": {
|
| 212 |
+
"content": "<|reserved_special_token_18|>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"128027": {
|
| 220 |
+
"content": "<|reserved_special_token_19|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"128028": {
|
| 228 |
+
"content": "<|reserved_special_token_20|>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"128029": {
|
| 236 |
+
"content": "<|reserved_special_token_21|>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"128030": {
|
| 244 |
+
"content": "<|reserved_special_token_22|>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"128031": {
|
| 252 |
+
"content": "<|reserved_special_token_23|>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"128032": {
|
| 260 |
+
"content": "<|reserved_special_token_24|>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"128033": {
|
| 268 |
+
"content": "<|reserved_special_token_25|>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"128034": {
|
| 276 |
+
"content": "<|reserved_special_token_26|>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"128035": {
|
| 284 |
+
"content": "<|reserved_special_token_27|>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"128036": {
|
| 292 |
+
"content": "<|reserved_special_token_28|>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"128037": {
|
| 300 |
+
"content": "<|reserved_special_token_29|>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"128038": {
|
| 308 |
+
"content": "<|reserved_special_token_30|>",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"128039": {
|
| 316 |
+
"content": "<|reserved_special_token_31|>",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"128040": {
|
| 324 |
+
"content": "<|reserved_special_token_32|>",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"128041": {
|
| 332 |
+
"content": "<|reserved_special_token_33|>",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"128042": {
|
| 340 |
+
"content": "<|reserved_special_token_34|>",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"128043": {
|
| 348 |
+
"content": "<|reserved_special_token_35|>",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"128044": {
|
| 356 |
+
"content": "<|reserved_special_token_36|>",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"128045": {
|
| 364 |
+
"content": "<|reserved_special_token_37|>",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"128046": {
|
| 372 |
+
"content": "<|reserved_special_token_38|>",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"128047": {
|
| 380 |
+
"content": "<|reserved_special_token_39|>",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"128048": {
|
| 388 |
+
"content": "<|reserved_special_token_40|>",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"128049": {
|
| 396 |
+
"content": "<|reserved_special_token_41|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"128050": {
|
| 404 |
+
"content": "<|reserved_special_token_42|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"128051": {
|
| 412 |
+
"content": "<|reserved_special_token_43|>",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"128052": {
|
| 420 |
+
"content": "<|reserved_special_token_44|>",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"128053": {
|
| 428 |
+
"content": "<|reserved_special_token_45|>",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"128054": {
|
| 436 |
+
"content": "<|reserved_special_token_46|>",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"128055": {
|
| 444 |
+
"content": "<|reserved_special_token_47|>",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"128056": {
|
| 452 |
+
"content": "<|reserved_special_token_48|>",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"128057": {
|
| 460 |
+
"content": "<|reserved_special_token_49|>",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"128058": {
|
| 468 |
+
"content": "<|reserved_special_token_50|>",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"128059": {
|
| 476 |
+
"content": "<|reserved_special_token_51|>",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"128060": {
|
| 484 |
+
"content": "<|reserved_special_token_52|>",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"128061": {
|
| 492 |
+
"content": "<|reserved_special_token_53|>",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"128062": {
|
| 500 |
+
"content": "<|reserved_special_token_54|>",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"128063": {
|
| 508 |
+
"content": "<|reserved_special_token_55|>",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"128064": {
|
| 516 |
+
"content": "<|reserved_special_token_56|>",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"128065": {
|
| 524 |
+
"content": "<|reserved_special_token_57|>",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"128066": {
|
| 532 |
+
"content": "<|reserved_special_token_58|>",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"128067": {
|
| 540 |
+
"content": "<|reserved_special_token_59|>",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"128068": {
|
| 548 |
+
"content": "<|reserved_special_token_60|>",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"128069": {
|
| 556 |
+
"content": "<|reserved_special_token_61|>",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"128070": {
|
| 564 |
+
"content": "<|reserved_special_token_62|>",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"128071": {
|
| 572 |
+
"content": "<|reserved_special_token_63|>",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"128072": {
|
| 580 |
+
"content": "<|reserved_special_token_64|>",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"128073": {
|
| 588 |
+
"content": "<|reserved_special_token_65|>",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"128074": {
|
| 596 |
+
"content": "<|reserved_special_token_66|>",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"128075": {
|
| 604 |
+
"content": "<|reserved_special_token_67|>",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"128076": {
|
| 612 |
+
"content": "<|reserved_special_token_68|>",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"128077": {
|
| 620 |
+
"content": "<|reserved_special_token_69|>",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"128078": {
|
| 628 |
+
"content": "<|reserved_special_token_70|>",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"128079": {
|
| 636 |
+
"content": "<|reserved_special_token_71|>",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"128080": {
|
| 644 |
+
"content": "<|reserved_special_token_72|>",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"128081": {
|
| 652 |
+
"content": "<|reserved_special_token_73|>",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"128082": {
|
| 660 |
+
"content": "<|reserved_special_token_74|>",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"128083": {
|
| 668 |
+
"content": "<|reserved_special_token_75|>",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"128084": {
|
| 676 |
+
"content": "<|reserved_special_token_76|>",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"128085": {
|
| 684 |
+
"content": "<|reserved_special_token_77|>",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"128086": {
|
| 692 |
+
"content": "<|reserved_special_token_78|>",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"128087": {
|
| 700 |
+
"content": "<|reserved_special_token_79|>",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"128088": {
|
| 708 |
+
"content": "<|reserved_special_token_80|>",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"128089": {
|
| 716 |
+
"content": "<|reserved_special_token_81|>",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"128090": {
|
| 724 |
+
"content": "<|reserved_special_token_82|>",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"128091": {
|
| 732 |
+
"content": "<|reserved_special_token_83|>",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"128092": {
|
| 740 |
+
"content": "<|reserved_special_token_84|>",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"128093": {
|
| 748 |
+
"content": "<|reserved_special_token_85|>",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"128094": {
|
| 756 |
+
"content": "<|reserved_special_token_86|>",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"128095": {
|
| 764 |
+
"content": "<|reserved_special_token_87|>",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"128096": {
|
| 772 |
+
"content": "<|reserved_special_token_88|>",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"128097": {
|
| 780 |
+
"content": "<|reserved_special_token_89|>",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"128098": {
|
| 788 |
+
"content": "<|reserved_special_token_90|>",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"128099": {
|
| 796 |
+
"content": "<|reserved_special_token_91|>",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"128100": {
|
| 804 |
+
"content": "<|reserved_special_token_92|>",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"128101": {
|
| 812 |
+
"content": "<|reserved_special_token_93|>",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"128102": {
|
| 820 |
+
"content": "<|reserved_special_token_94|>",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
},
|
| 827 |
+
"128103": {
|
| 828 |
+
"content": "<|reserved_special_token_95|>",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": false,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": true
|
| 834 |
+
},
|
| 835 |
+
"128104": {
|
| 836 |
+
"content": "<|reserved_special_token_96|>",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": false,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": true
|
| 842 |
+
},
|
| 843 |
+
"128105": {
|
| 844 |
+
"content": "<|reserved_special_token_97|>",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": true
|
| 850 |
+
},
|
| 851 |
+
"128106": {
|
| 852 |
+
"content": "<|reserved_special_token_98|>",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": false,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": true
|
| 858 |
+
},
|
| 859 |
+
"128107": {
|
| 860 |
+
"content": "<|reserved_special_token_99|>",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": false,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": true
|
| 866 |
+
},
|
| 867 |
+
"128108": {
|
| 868 |
+
"content": "<|reserved_special_token_100|>",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": false,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": true
|
| 874 |
+
},
|
| 875 |
+
"128109": {
|
| 876 |
+
"content": "<|reserved_special_token_101|>",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": false,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": true
|
| 882 |
+
},
|
| 883 |
+
"128110": {
|
| 884 |
+
"content": "<|reserved_special_token_102|>",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": false,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": true
|
| 890 |
+
},
|
| 891 |
+
"128111": {
|
| 892 |
+
"content": "<|reserved_special_token_103|>",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": false,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": true
|
| 898 |
+
},
|
| 899 |
+
"128112": {
|
| 900 |
+
"content": "<|reserved_special_token_104|>",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": true
|
| 906 |
+
},
|
| 907 |
+
"128113": {
|
| 908 |
+
"content": "<|reserved_special_token_105|>",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": false,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": true
|
| 914 |
+
},
|
| 915 |
+
"128114": {
|
| 916 |
+
"content": "<|reserved_special_token_106|>",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": false,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": true
|
| 922 |
+
},
|
| 923 |
+
"128115": {
|
| 924 |
+
"content": "<|reserved_special_token_107|>",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": false,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": true
|
| 930 |
+
},
|
| 931 |
+
"128116": {
|
| 932 |
+
"content": "<|reserved_special_token_108|>",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": false,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": true
|
| 938 |
+
},
|
| 939 |
+
"128117": {
|
| 940 |
+
"content": "<|reserved_special_token_109|>",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": false,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": true
|
| 946 |
+
},
|
| 947 |
+
"128118": {
|
| 948 |
+
"content": "<|reserved_special_token_110|>",
|
| 949 |
+
"lstrip": false,
|
| 950 |
+
"normalized": false,
|
| 951 |
+
"rstrip": false,
|
| 952 |
+
"single_word": false,
|
| 953 |
+
"special": true
|
| 954 |
+
},
|
| 955 |
+
"128119": {
|
| 956 |
+
"content": "<|reserved_special_token_111|>",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false,
|
| 961 |
+
"special": true
|
| 962 |
+
},
|
| 963 |
+
"128120": {
|
| 964 |
+
"content": "<|reserved_special_token_112|>",
|
| 965 |
+
"lstrip": false,
|
| 966 |
+
"normalized": false,
|
| 967 |
+
"rstrip": false,
|
| 968 |
+
"single_word": false,
|
| 969 |
+
"special": true
|
| 970 |
+
},
|
| 971 |
+
"128121": {
|
| 972 |
+
"content": "<|reserved_special_token_113|>",
|
| 973 |
+
"lstrip": false,
|
| 974 |
+
"normalized": false,
|
| 975 |
+
"rstrip": false,
|
| 976 |
+
"single_word": false,
|
| 977 |
+
"special": true
|
| 978 |
+
},
|
| 979 |
+
"128122": {
|
| 980 |
+
"content": "<|reserved_special_token_114|>",
|
| 981 |
+
"lstrip": false,
|
| 982 |
+
"normalized": false,
|
| 983 |
+
"rstrip": false,
|
| 984 |
+
"single_word": false,
|
| 985 |
+
"special": true
|
| 986 |
+
},
|
| 987 |
+
"128123": {
|
| 988 |
+
"content": "<|reserved_special_token_115|>",
|
| 989 |
+
"lstrip": false,
|
| 990 |
+
"normalized": false,
|
| 991 |
+
"rstrip": false,
|
| 992 |
+
"single_word": false,
|
| 993 |
+
"special": true
|
| 994 |
+
},
|
| 995 |
+
"128124": {
|
| 996 |
+
"content": "<|reserved_special_token_116|>",
|
| 997 |
+
"lstrip": false,
|
| 998 |
+
"normalized": false,
|
| 999 |
+
"rstrip": false,
|
| 1000 |
+
"single_word": false,
|
| 1001 |
+
"special": true
|
| 1002 |
+
},
|
| 1003 |
+
"128125": {
|
| 1004 |
+
"content": "<|reserved_special_token_117|>",
|
| 1005 |
+
"lstrip": false,
|
| 1006 |
+
"normalized": false,
|
| 1007 |
+
"rstrip": false,
|
| 1008 |
+
"single_word": false,
|
| 1009 |
+
"special": true
|
| 1010 |
+
},
|
| 1011 |
+
"128126": {
|
| 1012 |
+
"content": "<|reserved_special_token_118|>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false,
|
| 1017 |
+
"special": true
|
| 1018 |
+
},
|
| 1019 |
+
"128127": {
|
| 1020 |
+
"content": "<|reserved_special_token_119|>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false,
|
| 1025 |
+
"special": true
|
| 1026 |
+
},
|
| 1027 |
+
"128128": {
|
| 1028 |
+
"content": "<|reserved_special_token_120|>",
|
| 1029 |
+
"lstrip": false,
|
| 1030 |
+
"normalized": false,
|
| 1031 |
+
"rstrip": false,
|
| 1032 |
+
"single_word": false,
|
| 1033 |
+
"special": true
|
| 1034 |
+
},
|
| 1035 |
+
"128129": {
|
| 1036 |
+
"content": "<|reserved_special_token_121|>",
|
| 1037 |
+
"lstrip": false,
|
| 1038 |
+
"normalized": false,
|
| 1039 |
+
"rstrip": false,
|
| 1040 |
+
"single_word": false,
|
| 1041 |
+
"special": true
|
| 1042 |
+
},
|
| 1043 |
+
"128130": {
|
| 1044 |
+
"content": "<|reserved_special_token_122|>",
|
| 1045 |
+
"lstrip": false,
|
| 1046 |
+
"normalized": false,
|
| 1047 |
+
"rstrip": false,
|
| 1048 |
+
"single_word": false,
|
| 1049 |
+
"special": true
|
| 1050 |
+
},
|
| 1051 |
+
"128131": {
|
| 1052 |
+
"content": "<|reserved_special_token_123|>",
|
| 1053 |
+
"lstrip": false,
|
| 1054 |
+
"normalized": false,
|
| 1055 |
+
"rstrip": false,
|
| 1056 |
+
"single_word": false,
|
| 1057 |
+
"special": true
|
| 1058 |
+
},
|
| 1059 |
+
"128132": {
|
| 1060 |
+
"content": "<|reserved_special_token_124|>",
|
| 1061 |
+
"lstrip": false,
|
| 1062 |
+
"normalized": false,
|
| 1063 |
+
"rstrip": false,
|
| 1064 |
+
"single_word": false,
|
| 1065 |
+
"special": true
|
| 1066 |
+
},
|
| 1067 |
+
"128133": {
|
| 1068 |
+
"content": "<|reserved_special_token_125|>",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false,
|
| 1073 |
+
"special": true
|
| 1074 |
+
},
|
| 1075 |
+
"128134": {
|
| 1076 |
+
"content": "<|reserved_special_token_126|>",
|
| 1077 |
+
"lstrip": false,
|
| 1078 |
+
"normalized": false,
|
| 1079 |
+
"rstrip": false,
|
| 1080 |
+
"single_word": false,
|
| 1081 |
+
"special": true
|
| 1082 |
+
},
|
| 1083 |
+
"128135": {
|
| 1084 |
+
"content": "<|reserved_special_token_127|>",
|
| 1085 |
+
"lstrip": false,
|
| 1086 |
+
"normalized": false,
|
| 1087 |
+
"rstrip": false,
|
| 1088 |
+
"single_word": false,
|
| 1089 |
+
"special": true
|
| 1090 |
+
},
|
| 1091 |
+
"128136": {
|
| 1092 |
+
"content": "<|reserved_special_token_128|>",
|
| 1093 |
+
"lstrip": false,
|
| 1094 |
+
"normalized": false,
|
| 1095 |
+
"rstrip": false,
|
| 1096 |
+
"single_word": false,
|
| 1097 |
+
"special": true
|
| 1098 |
+
},
|
| 1099 |
+
"128137": {
|
| 1100 |
+
"content": "<|reserved_special_token_129|>",
|
| 1101 |
+
"lstrip": false,
|
| 1102 |
+
"normalized": false,
|
| 1103 |
+
"rstrip": false,
|
| 1104 |
+
"single_word": false,
|
| 1105 |
+
"special": true
|
| 1106 |
+
},
|
| 1107 |
+
"128138": {
|
| 1108 |
+
"content": "<|reserved_special_token_130|>",
|
| 1109 |
+
"lstrip": false,
|
| 1110 |
+
"normalized": false,
|
| 1111 |
+
"rstrip": false,
|
| 1112 |
+
"single_word": false,
|
| 1113 |
+
"special": true
|
| 1114 |
+
},
|
| 1115 |
+
"128139": {
|
| 1116 |
+
"content": "<|reserved_special_token_131|>",
|
| 1117 |
+
"lstrip": false,
|
| 1118 |
+
"normalized": false,
|
| 1119 |
+
"rstrip": false,
|
| 1120 |
+
"single_word": false,
|
| 1121 |
+
"special": true
|
| 1122 |
+
},
|
| 1123 |
+
"128140": {
|
| 1124 |
+
"content": "<|reserved_special_token_132|>",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false,
|
| 1129 |
+
"special": true
|
| 1130 |
+
},
|
| 1131 |
+
"128141": {
|
| 1132 |
+
"content": "<|reserved_special_token_133|>",
|
| 1133 |
+
"lstrip": false,
|
| 1134 |
+
"normalized": false,
|
| 1135 |
+
"rstrip": false,
|
| 1136 |
+
"single_word": false,
|
| 1137 |
+
"special": true
|
| 1138 |
+
},
|
| 1139 |
+
"128142": {
|
| 1140 |
+
"content": "<|reserved_special_token_134|>",
|
| 1141 |
+
"lstrip": false,
|
| 1142 |
+
"normalized": false,
|
| 1143 |
+
"rstrip": false,
|
| 1144 |
+
"single_word": false,
|
| 1145 |
+
"special": true
|
| 1146 |
+
},
|
| 1147 |
+
"128143": {
|
| 1148 |
+
"content": "<|reserved_special_token_135|>",
|
| 1149 |
+
"lstrip": false,
|
| 1150 |
+
"normalized": false,
|
| 1151 |
+
"rstrip": false,
|
| 1152 |
+
"single_word": false,
|
| 1153 |
+
"special": true
|
| 1154 |
+
},
|
| 1155 |
+
"128144": {
|
| 1156 |
+
"content": "<|reserved_special_token_136|>",
|
| 1157 |
+
"lstrip": false,
|
| 1158 |
+
"normalized": false,
|
| 1159 |
+
"rstrip": false,
|
| 1160 |
+
"single_word": false,
|
| 1161 |
+
"special": true
|
| 1162 |
+
},
|
| 1163 |
+
"128145": {
|
| 1164 |
+
"content": "<|reserved_special_token_137|>",
|
| 1165 |
+
"lstrip": false,
|
| 1166 |
+
"normalized": false,
|
| 1167 |
+
"rstrip": false,
|
| 1168 |
+
"single_word": false,
|
| 1169 |
+
"special": true
|
| 1170 |
+
},
|
| 1171 |
+
"128146": {
|
| 1172 |
+
"content": "<|reserved_special_token_138|>",
|
| 1173 |
+
"lstrip": false,
|
| 1174 |
+
"normalized": false,
|
| 1175 |
+
"rstrip": false,
|
| 1176 |
+
"single_word": false,
|
| 1177 |
+
"special": true
|
| 1178 |
+
},
|
| 1179 |
+
"128147": {
|
| 1180 |
+
"content": "<|reserved_special_token_139|>",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false,
|
| 1185 |
+
"special": true
|
| 1186 |
+
},
|
| 1187 |
+
"128148": {
|
| 1188 |
+
"content": "<|reserved_special_token_140|>",
|
| 1189 |
+
"lstrip": false,
|
| 1190 |
+
"normalized": false,
|
| 1191 |
+
"rstrip": false,
|
| 1192 |
+
"single_word": false,
|
| 1193 |
+
"special": true
|
| 1194 |
+
},
|
| 1195 |
+
"128149": {
|
| 1196 |
+
"content": "<|reserved_special_token_141|>",
|
| 1197 |
+
"lstrip": false,
|
| 1198 |
+
"normalized": false,
|
| 1199 |
+
"rstrip": false,
|
| 1200 |
+
"single_word": false,
|
| 1201 |
+
"special": true
|
| 1202 |
+
},
|
| 1203 |
+
"128150": {
|
| 1204 |
+
"content": "<|reserved_special_token_142|>",
|
| 1205 |
+
"lstrip": false,
|
| 1206 |
+
"normalized": false,
|
| 1207 |
+
"rstrip": false,
|
| 1208 |
+
"single_word": false,
|
| 1209 |
+
"special": true
|
| 1210 |
+
},
|
| 1211 |
+
"128151": {
|
| 1212 |
+
"content": "<|reserved_special_token_143|>",
|
| 1213 |
+
"lstrip": false,
|
| 1214 |
+
"normalized": false,
|
| 1215 |
+
"rstrip": false,
|
| 1216 |
+
"single_word": false,
|
| 1217 |
+
"special": true
|
| 1218 |
+
},
|
| 1219 |
+
"128152": {
|
| 1220 |
+
"content": "<|reserved_special_token_144|>",
|
| 1221 |
+
"lstrip": false,
|
| 1222 |
+
"normalized": false,
|
| 1223 |
+
"rstrip": false,
|
| 1224 |
+
"single_word": false,
|
| 1225 |
+
"special": true
|
| 1226 |
+
},
|
| 1227 |
+
"128153": {
|
| 1228 |
+
"content": "<|reserved_special_token_145|>",
|
| 1229 |
+
"lstrip": false,
|
| 1230 |
+
"normalized": false,
|
| 1231 |
+
"rstrip": false,
|
| 1232 |
+
"single_word": false,
|
| 1233 |
+
"special": true
|
| 1234 |
+
},
|
| 1235 |
+
"128154": {
|
| 1236 |
+
"content": "<|reserved_special_token_146|>",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false,
|
| 1241 |
+
"special": true
|
| 1242 |
+
},
|
| 1243 |
+
"128155": {
|
| 1244 |
+
"content": "<|reserved_special_token_147|>",
|
| 1245 |
+
"lstrip": false,
|
| 1246 |
+
"normalized": false,
|
| 1247 |
+
"rstrip": false,
|
| 1248 |
+
"single_word": false,
|
| 1249 |
+
"special": true
|
| 1250 |
+
},
|
| 1251 |
+
"128156": {
|
| 1252 |
+
"content": "<|reserved_special_token_148|>",
|
| 1253 |
+
"lstrip": false,
|
| 1254 |
+
"normalized": false,
|
| 1255 |
+
"rstrip": false,
|
| 1256 |
+
"single_word": false,
|
| 1257 |
+
"special": true
|
| 1258 |
+
},
|
| 1259 |
+
"128157": {
|
| 1260 |
+
"content": "<|reserved_special_token_149|>",
|
| 1261 |
+
"lstrip": false,
|
| 1262 |
+
"normalized": false,
|
| 1263 |
+
"rstrip": false,
|
| 1264 |
+
"single_word": false,
|
| 1265 |
+
"special": true
|
| 1266 |
+
},
|
| 1267 |
+
"128158": {
|
| 1268 |
+
"content": "<|reserved_special_token_150|>",
|
| 1269 |
+
"lstrip": false,
|
| 1270 |
+
"normalized": false,
|
| 1271 |
+
"rstrip": false,
|
| 1272 |
+
"single_word": false,
|
| 1273 |
+
"special": true
|
| 1274 |
+
},
|
| 1275 |
+
"128159": {
|
| 1276 |
+
"content": "<|reserved_special_token_151|>",
|
| 1277 |
+
"lstrip": false,
|
| 1278 |
+
"normalized": false,
|
| 1279 |
+
"rstrip": false,
|
| 1280 |
+
"single_word": false,
|
| 1281 |
+
"special": true
|
| 1282 |
+
},
|
| 1283 |
+
"128160": {
|
| 1284 |
+
"content": "<|reserved_special_token_152|>",
|
| 1285 |
+
"lstrip": false,
|
| 1286 |
+
"normalized": false,
|
| 1287 |
+
"rstrip": false,
|
| 1288 |
+
"single_word": false,
|
| 1289 |
+
"special": true
|
| 1290 |
+
},
|
| 1291 |
+
"128161": {
|
| 1292 |
+
"content": "<|reserved_special_token_153|>",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false,
|
| 1297 |
+
"special": true
|
| 1298 |
+
},
|
| 1299 |
+
"128162": {
|
| 1300 |
+
"content": "<|reserved_special_token_154|>",
|
| 1301 |
+
"lstrip": false,
|
| 1302 |
+
"normalized": false,
|
| 1303 |
+
"rstrip": false,
|
| 1304 |
+
"single_word": false,
|
| 1305 |
+
"special": true
|
| 1306 |
+
},
|
| 1307 |
+
"128163": {
|
| 1308 |
+
"content": "<|reserved_special_token_155|>",
|
| 1309 |
+
"lstrip": false,
|
| 1310 |
+
"normalized": false,
|
| 1311 |
+
"rstrip": false,
|
| 1312 |
+
"single_word": false,
|
| 1313 |
+
"special": true
|
| 1314 |
+
},
|
| 1315 |
+
"128164": {
|
| 1316 |
+
"content": "<|reserved_special_token_156|>",
|
| 1317 |
+
"lstrip": false,
|
| 1318 |
+
"normalized": false,
|
| 1319 |
+
"rstrip": false,
|
| 1320 |
+
"single_word": false,
|
| 1321 |
+
"special": true
|
| 1322 |
+
},
|
| 1323 |
+
"128165": {
|
| 1324 |
+
"content": "<|reserved_special_token_157|>",
|
| 1325 |
+
"lstrip": false,
|
| 1326 |
+
"normalized": false,
|
| 1327 |
+
"rstrip": false,
|
| 1328 |
+
"single_word": false,
|
| 1329 |
+
"special": true
|
| 1330 |
+
},
|
| 1331 |
+
"128166": {
|
| 1332 |
+
"content": "<|reserved_special_token_158|>",
|
| 1333 |
+
"lstrip": false,
|
| 1334 |
+
"normalized": false,
|
| 1335 |
+
"rstrip": false,
|
| 1336 |
+
"single_word": false,
|
| 1337 |
+
"special": true
|
| 1338 |
+
},
|
| 1339 |
+
"128167": {
|
| 1340 |
+
"content": "<|reserved_special_token_159|>",
|
| 1341 |
+
"lstrip": false,
|
| 1342 |
+
"normalized": false,
|
| 1343 |
+
"rstrip": false,
|
| 1344 |
+
"single_word": false,
|
| 1345 |
+
"special": true
|
| 1346 |
+
},
|
| 1347 |
+
"128168": {
|
| 1348 |
+
"content": "<|reserved_special_token_160|>",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false,
|
| 1353 |
+
"special": true
|
| 1354 |
+
},
|
| 1355 |
+
"128169": {
|
| 1356 |
+
"content": "<|reserved_special_token_161|>",
|
| 1357 |
+
"lstrip": false,
|
| 1358 |
+
"normalized": false,
|
| 1359 |
+
"rstrip": false,
|
| 1360 |
+
"single_word": false,
|
| 1361 |
+
"special": true
|
| 1362 |
+
},
|
| 1363 |
+
"128170": {
|
| 1364 |
+
"content": "<|reserved_special_token_162|>",
|
| 1365 |
+
"lstrip": false,
|
| 1366 |
+
"normalized": false,
|
| 1367 |
+
"rstrip": false,
|
| 1368 |
+
"single_word": false,
|
| 1369 |
+
"special": true
|
| 1370 |
+
},
|
| 1371 |
+
"128171": {
|
| 1372 |
+
"content": "<|reserved_special_token_163|>",
|
| 1373 |
+
"lstrip": false,
|
| 1374 |
+
"normalized": false,
|
| 1375 |
+
"rstrip": false,
|
| 1376 |
+
"single_word": false,
|
| 1377 |
+
"special": true
|
| 1378 |
+
},
|
| 1379 |
+
"128172": {
|
| 1380 |
+
"content": "<|reserved_special_token_164|>",
|
| 1381 |
+
"lstrip": false,
|
| 1382 |
+
"normalized": false,
|
| 1383 |
+
"rstrip": false,
|
| 1384 |
+
"single_word": false,
|
| 1385 |
+
"special": true
|
| 1386 |
+
},
|
| 1387 |
+
"128173": {
|
| 1388 |
+
"content": "<|reserved_special_token_165|>",
|
| 1389 |
+
"lstrip": false,
|
| 1390 |
+
"normalized": false,
|
| 1391 |
+
"rstrip": false,
|
| 1392 |
+
"single_word": false,
|
| 1393 |
+
"special": true
|
| 1394 |
+
},
|
| 1395 |
+
"128174": {
|
| 1396 |
+
"content": "<|reserved_special_token_166|>",
|
| 1397 |
+
"lstrip": false,
|
| 1398 |
+
"normalized": false,
|
| 1399 |
+
"rstrip": false,
|
| 1400 |
+
"single_word": false,
|
| 1401 |
+
"special": true
|
| 1402 |
+
},
|
| 1403 |
+
"128175": {
|
| 1404 |
+
"content": "<|reserved_special_token_167|>",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false,
|
| 1409 |
+
"special": true
|
| 1410 |
+
},
|
| 1411 |
+
"128176": {
|
| 1412 |
+
"content": "<|reserved_special_token_168|>",
|
| 1413 |
+
"lstrip": false,
|
| 1414 |
+
"normalized": false,
|
| 1415 |
+
"rstrip": false,
|
| 1416 |
+
"single_word": false,
|
| 1417 |
+
"special": true
|
| 1418 |
+
},
|
| 1419 |
+
"128177": {
|
| 1420 |
+
"content": "<|reserved_special_token_169|>",
|
| 1421 |
+
"lstrip": false,
|
| 1422 |
+
"normalized": false,
|
| 1423 |
+
"rstrip": false,
|
| 1424 |
+
"single_word": false,
|
| 1425 |
+
"special": true
|
| 1426 |
+
},
|
| 1427 |
+
"128178": {
|
| 1428 |
+
"content": "<|reserved_special_token_170|>",
|
| 1429 |
+
"lstrip": false,
|
| 1430 |
+
"normalized": false,
|
| 1431 |
+
"rstrip": false,
|
| 1432 |
+
"single_word": false,
|
| 1433 |
+
"special": true
|
| 1434 |
+
},
|
| 1435 |
+
"128179": {
|
| 1436 |
+
"content": "<|reserved_special_token_171|>",
|
| 1437 |
+
"lstrip": false,
|
| 1438 |
+
"normalized": false,
|
| 1439 |
+
"rstrip": false,
|
| 1440 |
+
"single_word": false,
|
| 1441 |
+
"special": true
|
| 1442 |
+
},
|
| 1443 |
+
"128180": {
|
| 1444 |
+
"content": "<|reserved_special_token_172|>",
|
| 1445 |
+
"lstrip": false,
|
| 1446 |
+
"normalized": false,
|
| 1447 |
+
"rstrip": false,
|
| 1448 |
+
"single_word": false,
|
| 1449 |
+
"special": true
|
| 1450 |
+
},
|
| 1451 |
+
"128181": {
|
| 1452 |
+
"content": "<|reserved_special_token_173|>",
|
| 1453 |
+
"lstrip": false,
|
| 1454 |
+
"normalized": false,
|
| 1455 |
+
"rstrip": false,
|
| 1456 |
+
"single_word": false,
|
| 1457 |
+
"special": true
|
| 1458 |
+
},
|
| 1459 |
+
"128182": {
|
| 1460 |
+
"content": "<|reserved_special_token_174|>",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false,
|
| 1465 |
+
"special": true
|
| 1466 |
+
},
|
| 1467 |
+
"128183": {
|
| 1468 |
+
"content": "<|reserved_special_token_175|>",
|
| 1469 |
+
"lstrip": false,
|
| 1470 |
+
"normalized": false,
|
| 1471 |
+
"rstrip": false,
|
| 1472 |
+
"single_word": false,
|
| 1473 |
+
"special": true
|
| 1474 |
+
},
|
| 1475 |
+
"128184": {
|
| 1476 |
+
"content": "<|reserved_special_token_176|>",
|
| 1477 |
+
"lstrip": false,
|
| 1478 |
+
"normalized": false,
|
| 1479 |
+
"rstrip": false,
|
| 1480 |
+
"single_word": false,
|
| 1481 |
+
"special": true
|
| 1482 |
+
},
|
| 1483 |
+
"128185": {
|
| 1484 |
+
"content": "<|reserved_special_token_177|>",
|
| 1485 |
+
"lstrip": false,
|
| 1486 |
+
"normalized": false,
|
| 1487 |
+
"rstrip": false,
|
| 1488 |
+
"single_word": false,
|
| 1489 |
+
"special": true
|
| 1490 |
+
},
|
| 1491 |
+
"128186": {
|
| 1492 |
+
"content": "<|reserved_special_token_178|>",
|
| 1493 |
+
"lstrip": false,
|
| 1494 |
+
"normalized": false,
|
| 1495 |
+
"rstrip": false,
|
| 1496 |
+
"single_word": false,
|
| 1497 |
+
"special": true
|
| 1498 |
+
},
|
| 1499 |
+
"128187": {
|
| 1500 |
+
"content": "<|reserved_special_token_179|>",
|
| 1501 |
+
"lstrip": false,
|
| 1502 |
+
"normalized": false,
|
| 1503 |
+
"rstrip": false,
|
| 1504 |
+
"single_word": false,
|
| 1505 |
+
"special": true
|
| 1506 |
+
},
|
| 1507 |
+
"128188": {
|
| 1508 |
+
"content": "<|reserved_special_token_180|>",
|
| 1509 |
+
"lstrip": false,
|
| 1510 |
+
"normalized": false,
|
| 1511 |
+
"rstrip": false,
|
| 1512 |
+
"single_word": false,
|
| 1513 |
+
"special": true
|
| 1514 |
+
},
|
| 1515 |
+
"128189": {
|
| 1516 |
+
"content": "<|reserved_special_token_181|>",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false,
|
| 1521 |
+
"special": true
|
| 1522 |
+
},
|
| 1523 |
+
"128190": {
|
| 1524 |
+
"content": "<|reserved_special_token_182|>",
|
| 1525 |
+
"lstrip": false,
|
| 1526 |
+
"normalized": false,
|
| 1527 |
+
"rstrip": false,
|
| 1528 |
+
"single_word": false,
|
| 1529 |
+
"special": true
|
| 1530 |
+
},
|
| 1531 |
+
"128191": {
|
| 1532 |
+
"content": "<|reserved_special_token_183|>",
|
| 1533 |
+
"lstrip": false,
|
| 1534 |
+
"normalized": false,
|
| 1535 |
+
"rstrip": false,
|
| 1536 |
+
"single_word": false,
|
| 1537 |
+
"special": true
|
| 1538 |
+
},
|
| 1539 |
+
"128192": {
|
| 1540 |
+
"content": "<|reserved_special_token_184|>",
|
| 1541 |
+
"lstrip": false,
|
| 1542 |
+
"normalized": false,
|
| 1543 |
+
"rstrip": false,
|
| 1544 |
+
"single_word": false,
|
| 1545 |
+
"special": true
|
| 1546 |
+
},
|
| 1547 |
+
"128193": {
|
| 1548 |
+
"content": "<|reserved_special_token_185|>",
|
| 1549 |
+
"lstrip": false,
|
| 1550 |
+
"normalized": false,
|
| 1551 |
+
"rstrip": false,
|
| 1552 |
+
"single_word": false,
|
| 1553 |
+
"special": true
|
| 1554 |
+
},
|
| 1555 |
+
"128194": {
|
| 1556 |
+
"content": "<|reserved_special_token_186|>",
|
| 1557 |
+
"lstrip": false,
|
| 1558 |
+
"normalized": false,
|
| 1559 |
+
"rstrip": false,
|
| 1560 |
+
"single_word": false,
|
| 1561 |
+
"special": true
|
| 1562 |
+
},
|
| 1563 |
+
"128195": {
|
| 1564 |
+
"content": "<|reserved_special_token_187|>",
|
| 1565 |
+
"lstrip": false,
|
| 1566 |
+
"normalized": false,
|
| 1567 |
+
"rstrip": false,
|
| 1568 |
+
"single_word": false,
|
| 1569 |
+
"special": true
|
| 1570 |
+
},
|
| 1571 |
+
"128196": {
|
| 1572 |
+
"content": "<|reserved_special_token_188|>",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false,
|
| 1577 |
+
"special": true
|
| 1578 |
+
},
|
| 1579 |
+
"128197": {
|
| 1580 |
+
"content": "<|reserved_special_token_189|>",
|
| 1581 |
+
"lstrip": false,
|
| 1582 |
+
"normalized": false,
|
| 1583 |
+
"rstrip": false,
|
| 1584 |
+
"single_word": false,
|
| 1585 |
+
"special": true
|
| 1586 |
+
},
|
| 1587 |
+
"128198": {
|
| 1588 |
+
"content": "<|reserved_special_token_190|>",
|
| 1589 |
+
"lstrip": false,
|
| 1590 |
+
"normalized": false,
|
| 1591 |
+
"rstrip": false,
|
| 1592 |
+
"single_word": false,
|
| 1593 |
+
"special": true
|
| 1594 |
+
},
|
| 1595 |
+
"128199": {
|
| 1596 |
+
"content": "<|reserved_special_token_191|>",
|
| 1597 |
+
"lstrip": false,
|
| 1598 |
+
"normalized": false,
|
| 1599 |
+
"rstrip": false,
|
| 1600 |
+
"single_word": false,
|
| 1601 |
+
"special": true
|
| 1602 |
+
},
|
| 1603 |
+
"128200": {
|
| 1604 |
+
"content": "<|reserved_special_token_192|>",
|
| 1605 |
+
"lstrip": false,
|
| 1606 |
+
"normalized": false,
|
| 1607 |
+
"rstrip": false,
|
| 1608 |
+
"single_word": false,
|
| 1609 |
+
"special": true
|
| 1610 |
+
},
|
| 1611 |
+
"128201": {
|
| 1612 |
+
"content": "<|reserved_special_token_193|>",
|
| 1613 |
+
"lstrip": false,
|
| 1614 |
+
"normalized": false,
|
| 1615 |
+
"rstrip": false,
|
| 1616 |
+
"single_word": false,
|
| 1617 |
+
"special": true
|
| 1618 |
+
},
|
| 1619 |
+
"128202": {
|
| 1620 |
+
"content": "<|reserved_special_token_194|>",
|
| 1621 |
+
"lstrip": false,
|
| 1622 |
+
"normalized": false,
|
| 1623 |
+
"rstrip": false,
|
| 1624 |
+
"single_word": false,
|
| 1625 |
+
"special": true
|
| 1626 |
+
},
|
| 1627 |
+
"128203": {
|
| 1628 |
+
"content": "<|reserved_special_token_195|>",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false,
|
| 1633 |
+
"special": true
|
| 1634 |
+
},
|
| 1635 |
+
"128204": {
|
| 1636 |
+
"content": "<|reserved_special_token_196|>",
|
| 1637 |
+
"lstrip": false,
|
| 1638 |
+
"normalized": false,
|
| 1639 |
+
"rstrip": false,
|
| 1640 |
+
"single_word": false,
|
| 1641 |
+
"special": true
|
| 1642 |
+
},
|
| 1643 |
+
"128205": {
|
| 1644 |
+
"content": "<|reserved_special_token_197|>",
|
| 1645 |
+
"lstrip": false,
|
| 1646 |
+
"normalized": false,
|
| 1647 |
+
"rstrip": false,
|
| 1648 |
+
"single_word": false,
|
| 1649 |
+
"special": true
|
| 1650 |
+
},
|
| 1651 |
+
"128206": {
|
| 1652 |
+
"content": "<|reserved_special_token_198|>",
|
| 1653 |
+
"lstrip": false,
|
| 1654 |
+
"normalized": false,
|
| 1655 |
+
"rstrip": false,
|
| 1656 |
+
"single_word": false,
|
| 1657 |
+
"special": true
|
| 1658 |
+
},
|
| 1659 |
+
"128207": {
|
| 1660 |
+
"content": "<|reserved_special_token_199|>",
|
| 1661 |
+
"lstrip": false,
|
| 1662 |
+
"normalized": false,
|
| 1663 |
+
"rstrip": false,
|
| 1664 |
+
"single_word": false,
|
| 1665 |
+
"special": true
|
| 1666 |
+
},
|
| 1667 |
+
"128208": {
|
| 1668 |
+
"content": "<|reserved_special_token_200|>",
|
| 1669 |
+
"lstrip": false,
|
| 1670 |
+
"normalized": false,
|
| 1671 |
+
"rstrip": false,
|
| 1672 |
+
"single_word": false,
|
| 1673 |
+
"special": true
|
| 1674 |
+
},
|
| 1675 |
+
"128209": {
|
| 1676 |
+
"content": "<|reserved_special_token_201|>",
|
| 1677 |
+
"lstrip": false,
|
| 1678 |
+
"normalized": false,
|
| 1679 |
+
"rstrip": false,
|
| 1680 |
+
"single_word": false,
|
| 1681 |
+
"special": true
|
| 1682 |
+
},
|
| 1683 |
+
"128210": {
|
| 1684 |
+
"content": "<|reserved_special_token_202|>",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false,
|
| 1689 |
+
"special": true
|
| 1690 |
+
},
|
| 1691 |
+
"128211": {
|
| 1692 |
+
"content": "<|reserved_special_token_203|>",
|
| 1693 |
+
"lstrip": false,
|
| 1694 |
+
"normalized": false,
|
| 1695 |
+
"rstrip": false,
|
| 1696 |
+
"single_word": false,
|
| 1697 |
+
"special": true
|
| 1698 |
+
},
|
| 1699 |
+
"128212": {
|
| 1700 |
+
"content": "<|reserved_special_token_204|>",
|
| 1701 |
+
"lstrip": false,
|
| 1702 |
+
"normalized": false,
|
| 1703 |
+
"rstrip": false,
|
| 1704 |
+
"single_word": false,
|
| 1705 |
+
"special": true
|
| 1706 |
+
},
|
| 1707 |
+
"128213": {
|
| 1708 |
+
"content": "<|reserved_special_token_205|>",
|
| 1709 |
+
"lstrip": false,
|
| 1710 |
+
"normalized": false,
|
| 1711 |
+
"rstrip": false,
|
| 1712 |
+
"single_word": false,
|
| 1713 |
+
"special": true
|
| 1714 |
+
},
|
| 1715 |
+
"128214": {
|
| 1716 |
+
"content": "<|reserved_special_token_206|>",
|
| 1717 |
+
"lstrip": false,
|
| 1718 |
+
"normalized": false,
|
| 1719 |
+
"rstrip": false,
|
| 1720 |
+
"single_word": false,
|
| 1721 |
+
"special": true
|
| 1722 |
+
},
|
| 1723 |
+
"128215": {
|
| 1724 |
+
"content": "<|reserved_special_token_207|>",
|
| 1725 |
+
"lstrip": false,
|
| 1726 |
+
"normalized": false,
|
| 1727 |
+
"rstrip": false,
|
| 1728 |
+
"single_word": false,
|
| 1729 |
+
"special": true
|
| 1730 |
+
},
|
| 1731 |
+
"128216": {
|
| 1732 |
+
"content": "<|reserved_special_token_208|>",
|
| 1733 |
+
"lstrip": false,
|
| 1734 |
+
"normalized": false,
|
| 1735 |
+
"rstrip": false,
|
| 1736 |
+
"single_word": false,
|
| 1737 |
+
"special": true
|
| 1738 |
+
},
|
| 1739 |
+
"128217": {
|
| 1740 |
+
"content": "<|reserved_special_token_209|>",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false,
|
| 1745 |
+
"special": true
|
| 1746 |
+
},
|
| 1747 |
+
"128218": {
|
| 1748 |
+
"content": "<|reserved_special_token_210|>",
|
| 1749 |
+
"lstrip": false,
|
| 1750 |
+
"normalized": false,
|
| 1751 |
+
"rstrip": false,
|
| 1752 |
+
"single_word": false,
|
| 1753 |
+
"special": true
|
| 1754 |
+
},
|
| 1755 |
+
"128219": {
|
| 1756 |
+
"content": "<|reserved_special_token_211|>",
|
| 1757 |
+
"lstrip": false,
|
| 1758 |
+
"normalized": false,
|
| 1759 |
+
"rstrip": false,
|
| 1760 |
+
"single_word": false,
|
| 1761 |
+
"special": true
|
| 1762 |
+
},
|
| 1763 |
+
"128220": {
|
| 1764 |
+
"content": "<|reserved_special_token_212|>",
|
| 1765 |
+
"lstrip": false,
|
| 1766 |
+
"normalized": false,
|
| 1767 |
+
"rstrip": false,
|
| 1768 |
+
"single_word": false,
|
| 1769 |
+
"special": true
|
| 1770 |
+
},
|
| 1771 |
+
"128221": {
|
| 1772 |
+
"content": "<|reserved_special_token_213|>",
|
| 1773 |
+
"lstrip": false,
|
| 1774 |
+
"normalized": false,
|
| 1775 |
+
"rstrip": false,
|
| 1776 |
+
"single_word": false,
|
| 1777 |
+
"special": true
|
| 1778 |
+
},
|
| 1779 |
+
"128222": {
|
| 1780 |
+
"content": "<|reserved_special_token_214|>",
|
| 1781 |
+
"lstrip": false,
|
| 1782 |
+
"normalized": false,
|
| 1783 |
+
"rstrip": false,
|
| 1784 |
+
"single_word": false,
|
| 1785 |
+
"special": true
|
| 1786 |
+
},
|
| 1787 |
+
"128223": {
|
| 1788 |
+
"content": "<|reserved_special_token_215|>",
|
| 1789 |
+
"lstrip": false,
|
| 1790 |
+
"normalized": false,
|
| 1791 |
+
"rstrip": false,
|
| 1792 |
+
"single_word": false,
|
| 1793 |
+
"special": true
|
| 1794 |
+
},
|
| 1795 |
+
"128224": {
|
| 1796 |
+
"content": "<|reserved_special_token_216|>",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false,
|
| 1801 |
+
"special": true
|
| 1802 |
+
},
|
| 1803 |
+
"128225": {
|
| 1804 |
+
"content": "<|reserved_special_token_217|>",
|
| 1805 |
+
"lstrip": false,
|
| 1806 |
+
"normalized": false,
|
| 1807 |
+
"rstrip": false,
|
| 1808 |
+
"single_word": false,
|
| 1809 |
+
"special": true
|
| 1810 |
+
},
|
| 1811 |
+
"128226": {
|
| 1812 |
+
"content": "<|reserved_special_token_218|>",
|
| 1813 |
+
"lstrip": false,
|
| 1814 |
+
"normalized": false,
|
| 1815 |
+
"rstrip": false,
|
| 1816 |
+
"single_word": false,
|
| 1817 |
+
"special": true
|
| 1818 |
+
},
|
| 1819 |
+
"128227": {
|
| 1820 |
+
"content": "<|reserved_special_token_219|>",
|
| 1821 |
+
"lstrip": false,
|
| 1822 |
+
"normalized": false,
|
| 1823 |
+
"rstrip": false,
|
| 1824 |
+
"single_word": false,
|
| 1825 |
+
"special": true
|
| 1826 |
+
},
|
| 1827 |
+
"128228": {
|
| 1828 |
+
"content": "<|reserved_special_token_220|>",
|
| 1829 |
+
"lstrip": false,
|
| 1830 |
+
"normalized": false,
|
| 1831 |
+
"rstrip": false,
|
| 1832 |
+
"single_word": false,
|
| 1833 |
+
"special": true
|
| 1834 |
+
},
|
| 1835 |
+
"128229": {
|
| 1836 |
+
"content": "<|reserved_special_token_221|>",
|
| 1837 |
+
"lstrip": false,
|
| 1838 |
+
"normalized": false,
|
| 1839 |
+
"rstrip": false,
|
| 1840 |
+
"single_word": false,
|
| 1841 |
+
"special": true
|
| 1842 |
+
},
|
| 1843 |
+
"128230": {
|
| 1844 |
+
"content": "<|reserved_special_token_222|>",
|
| 1845 |
+
"lstrip": false,
|
| 1846 |
+
"normalized": false,
|
| 1847 |
+
"rstrip": false,
|
| 1848 |
+
"single_word": false,
|
| 1849 |
+
"special": true
|
| 1850 |
+
},
|
| 1851 |
+
"128231": {
|
| 1852 |
+
"content": "<|reserved_special_token_223|>",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false,
|
| 1857 |
+
"special": true
|
| 1858 |
+
},
|
| 1859 |
+
"128232": {
|
| 1860 |
+
"content": "<|reserved_special_token_224|>",
|
| 1861 |
+
"lstrip": false,
|
| 1862 |
+
"normalized": false,
|
| 1863 |
+
"rstrip": false,
|
| 1864 |
+
"single_word": false,
|
| 1865 |
+
"special": true
|
| 1866 |
+
},
|
| 1867 |
+
"128233": {
|
| 1868 |
+
"content": "<|reserved_special_token_225|>",
|
| 1869 |
+
"lstrip": false,
|
| 1870 |
+
"normalized": false,
|
| 1871 |
+
"rstrip": false,
|
| 1872 |
+
"single_word": false,
|
| 1873 |
+
"special": true
|
| 1874 |
+
},
|
| 1875 |
+
"128234": {
|
| 1876 |
+
"content": "<|reserved_special_token_226|>",
|
| 1877 |
+
"lstrip": false,
|
| 1878 |
+
"normalized": false,
|
| 1879 |
+
"rstrip": false,
|
| 1880 |
+
"single_word": false,
|
| 1881 |
+
"special": true
|
| 1882 |
+
},
|
| 1883 |
+
"128235": {
|
| 1884 |
+
"content": "<|reserved_special_token_227|>",
|
| 1885 |
+
"lstrip": false,
|
| 1886 |
+
"normalized": false,
|
| 1887 |
+
"rstrip": false,
|
| 1888 |
+
"single_word": false,
|
| 1889 |
+
"special": true
|
| 1890 |
+
},
|
| 1891 |
+
"128236": {
|
| 1892 |
+
"content": "<|reserved_special_token_228|>",
|
| 1893 |
+
"lstrip": false,
|
| 1894 |
+
"normalized": false,
|
| 1895 |
+
"rstrip": false,
|
| 1896 |
+
"single_word": false,
|
| 1897 |
+
"special": true
|
| 1898 |
+
},
|
| 1899 |
+
"128237": {
|
| 1900 |
+
"content": "<|reserved_special_token_229|>",
|
| 1901 |
+
"lstrip": false,
|
| 1902 |
+
"normalized": false,
|
| 1903 |
+
"rstrip": false,
|
| 1904 |
+
"single_word": false,
|
| 1905 |
+
"special": true
|
| 1906 |
+
},
|
| 1907 |
+
"128238": {
|
| 1908 |
+
"content": "<|reserved_special_token_230|>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false,
|
| 1913 |
+
"special": true
|
| 1914 |
+
},
|
| 1915 |
+
"128239": {
|
| 1916 |
+
"content": "<|reserved_special_token_231|>",
|
| 1917 |
+
"lstrip": false,
|
| 1918 |
+
"normalized": false,
|
| 1919 |
+
"rstrip": false,
|
| 1920 |
+
"single_word": false,
|
| 1921 |
+
"special": true
|
| 1922 |
+
},
|
| 1923 |
+
"128240": {
|
| 1924 |
+
"content": "<|reserved_special_token_232|>",
|
| 1925 |
+
"lstrip": false,
|
| 1926 |
+
"normalized": false,
|
| 1927 |
+
"rstrip": false,
|
| 1928 |
+
"single_word": false,
|
| 1929 |
+
"special": true
|
| 1930 |
+
},
|
| 1931 |
+
"128241": {
|
| 1932 |
+
"content": "<|reserved_special_token_233|>",
|
| 1933 |
+
"lstrip": false,
|
| 1934 |
+
"normalized": false,
|
| 1935 |
+
"rstrip": false,
|
| 1936 |
+
"single_word": false,
|
| 1937 |
+
"special": true
|
| 1938 |
+
},
|
| 1939 |
+
"128242": {
|
| 1940 |
+
"content": "<|reserved_special_token_234|>",
|
| 1941 |
+
"lstrip": false,
|
| 1942 |
+
"normalized": false,
|
| 1943 |
+
"rstrip": false,
|
| 1944 |
+
"single_word": false,
|
| 1945 |
+
"special": true
|
| 1946 |
+
},
|
| 1947 |
+
"128243": {
|
| 1948 |
+
"content": "<|reserved_special_token_235|>",
|
| 1949 |
+
"lstrip": false,
|
| 1950 |
+
"normalized": false,
|
| 1951 |
+
"rstrip": false,
|
| 1952 |
+
"single_word": false,
|
| 1953 |
+
"special": true
|
| 1954 |
+
},
|
| 1955 |
+
"128244": {
|
| 1956 |
+
"content": "<|reserved_special_token_236|>",
|
| 1957 |
+
"lstrip": false,
|
| 1958 |
+
"normalized": false,
|
| 1959 |
+
"rstrip": false,
|
| 1960 |
+
"single_word": false,
|
| 1961 |
+
"special": true
|
| 1962 |
+
},
|
| 1963 |
+
"128245": {
|
| 1964 |
+
"content": "<|reserved_special_token_237|>",
|
| 1965 |
+
"lstrip": false,
|
| 1966 |
+
"normalized": false,
|
| 1967 |
+
"rstrip": false,
|
| 1968 |
+
"single_word": false,
|
| 1969 |
+
"special": true
|
| 1970 |
+
},
|
| 1971 |
+
"128246": {
|
| 1972 |
+
"content": "<|reserved_special_token_238|>",
|
| 1973 |
+
"lstrip": false,
|
| 1974 |
+
"normalized": false,
|
| 1975 |
+
"rstrip": false,
|
| 1976 |
+
"single_word": false,
|
| 1977 |
+
"special": true
|
| 1978 |
+
},
|
| 1979 |
+
"128247": {
|
| 1980 |
+
"content": "<|reserved_special_token_239|>",
|
| 1981 |
+
"lstrip": false,
|
| 1982 |
+
"normalized": false,
|
| 1983 |
+
"rstrip": false,
|
| 1984 |
+
"single_word": false,
|
| 1985 |
+
"special": true
|
| 1986 |
+
},
|
| 1987 |
+
"128248": {
|
| 1988 |
+
"content": "<|reserved_special_token_240|>",
|
| 1989 |
+
"lstrip": false,
|
| 1990 |
+
"normalized": false,
|
| 1991 |
+
"rstrip": false,
|
| 1992 |
+
"single_word": false,
|
| 1993 |
+
"special": true
|
| 1994 |
+
},
|
| 1995 |
+
"128249": {
|
| 1996 |
+
"content": "<|reserved_special_token_241|>",
|
| 1997 |
+
"lstrip": false,
|
| 1998 |
+
"normalized": false,
|
| 1999 |
+
"rstrip": false,
|
| 2000 |
+
"single_word": false,
|
| 2001 |
+
"special": true
|
| 2002 |
+
},
|
| 2003 |
+
"128250": {
|
| 2004 |
+
"content": "<|reserved_special_token_242|>",
|
| 2005 |
+
"lstrip": false,
|
| 2006 |
+
"normalized": false,
|
| 2007 |
+
"rstrip": false,
|
| 2008 |
+
"single_word": false,
|
| 2009 |
+
"special": true
|
| 2010 |
+
},
|
| 2011 |
+
"128251": {
|
| 2012 |
+
"content": "<|reserved_special_token_243|>",
|
| 2013 |
+
"lstrip": false,
|
| 2014 |
+
"normalized": false,
|
| 2015 |
+
"rstrip": false,
|
| 2016 |
+
"single_word": false,
|
| 2017 |
+
"special": true
|
| 2018 |
+
},
|
| 2019 |
+
"128252": {
|
| 2020 |
+
"content": "<|reserved_special_token_244|>",
|
| 2021 |
+
"lstrip": false,
|
| 2022 |
+
"normalized": false,
|
| 2023 |
+
"rstrip": false,
|
| 2024 |
+
"single_word": false,
|
| 2025 |
+
"special": true
|
| 2026 |
+
},
|
| 2027 |
+
"128253": {
|
| 2028 |
+
"content": "<|reserved_special_token_245|>",
|
| 2029 |
+
"lstrip": false,
|
| 2030 |
+
"normalized": false,
|
| 2031 |
+
"rstrip": false,
|
| 2032 |
+
"single_word": false,
|
| 2033 |
+
"special": true
|
| 2034 |
+
},
|
| 2035 |
+
"128254": {
|
| 2036 |
+
"content": "<|reserved_special_token_246|>",
|
| 2037 |
+
"lstrip": false,
|
| 2038 |
+
"normalized": false,
|
| 2039 |
+
"rstrip": false,
|
| 2040 |
+
"single_word": false,
|
| 2041 |
+
"special": true
|
| 2042 |
+
},
|
| 2043 |
+
"128255": {
|
| 2044 |
+
"content": "<|reserved_special_token_247|>",
|
| 2045 |
+
"lstrip": false,
|
| 2046 |
+
"normalized": false,
|
| 2047 |
+
"rstrip": false,
|
| 2048 |
+
"single_word": false,
|
| 2049 |
+
"special": true
|
| 2050 |
+
}
|
| 2051 |
+
},
|
| 2052 |
+
"bos_token": "<|begin_of_text|>",
|
| 2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
| 2054 |
+
"clean_up_tokenization_spaces": true,
|
| 2055 |
+
"eos_token": "<|eot_id|>",
|
| 2056 |
+
"extra_special_tokens": {},
|
| 2057 |
+
"model_input_names": [
|
| 2058 |
+
"input_ids",
|
| 2059 |
+
"attention_mask"
|
| 2060 |
+
],
|
| 2061 |
+
"model_max_length": 131072,
|
| 2062 |
+
"pad_token": "<|finetune_right_pad_id|>",
|
| 2063 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 2064 |
+
}
|