surajvbangera commited on
Commit
29a1291
·
verified ·
1 Parent(s): 716c88c

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:942069
10
+ - loss:CoSENTLoss
11
+ base_model: microsoft/mpnet-base
12
+ widget:
13
+ - source_sentence: Three women in dress suits walk by a building.
14
+ sentences:
15
+ - Three women are traveling by foot.
16
+ - Two kids are flying on a hovercraft.
17
+ - A man jumps in the ocean.
18
+ - source_sentence: A man wearing sunglasses is sitting on the steps outside, reading
19
+ a magazine.
20
+ sentences:
21
+ - Men are walking in different directions.
22
+ - There is a man running.
23
+ - The man is reading a spoon with the words "HELP ME" on it.
24
+ - source_sentence: A middle-aged man is sitting indian style outside holding a folded
25
+ paper in his hands.
26
+ sentences:
27
+ - A man and woman are looking at produce.
28
+ - A middle aged man is showing off his origami creation.
29
+ - The boy is sitting
30
+ - source_sentence: Two men playing baseball with the one in the black and red jersey
31
+ running toward base.
32
+ sentences:
33
+ - The person is cooking a hamburger.
34
+ - The man in black and red is sitting in the bleachers.
35
+ - A player fighting in a soccer game.
36
+ - source_sentence: Two men are in an electronics workshop, working on computers or
37
+ equipment.
38
+ sentences:
39
+ - The men are experts when it comes to electronics.
40
+ - A tall person sitting
41
+ - A man is chasing an SUV that is going in the same direction as him.
42
+ datasets:
43
+ - sentence-transformers/all-nli
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - pearson_cosine
48
+ - spearman_cosine
49
+ model-index:
50
+ - name: SentenceTransformer based on microsoft/mpnet-base
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: basemodel evaluator
57
+ type: basemodel_evaluator
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.573397130206215
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.5954429501396288
64
+ name: Spearman Cosine
65
+ - task:
66
+ type: semantic-similarity
67
+ name: Semantic Similarity
68
+ dataset:
69
+ name: finetunedmodel evaluator
70
+ type: finetunedmodel_evaluator
71
+ metrics:
72
+ - type: pearson_cosine
73
+ value: 0.5716395027559762
74
+ name: Pearson Cosine
75
+ - type: spearman_cosine
76
+ value: 0.6003777834660847
77
+ name: Spearman Cosine
78
+ - type: pearson_cosine
79
+ value: 0.5716395027559762
80
+ name: Pearson Cosine
81
+ - type: spearman_cosine
82
+ value: 0.6003777834660847
83
+ name: Spearman Cosine
84
+ ---
85
+
86
+ # SentenceTransformer based on microsoft/mpnet-base
87
+
88
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
89
+
90
+ ## Model Details
91
+
92
+ ### Model Description
93
+ - **Model Type:** Sentence Transformer
94
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
95
+ - **Maximum Sequence Length:** 512 tokens
96
+ - **Output Dimensionality:** 768 dimensions
97
+ - **Similarity Function:** Cosine Similarity
98
+ - **Training Dataset:**
99
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
100
+ - **Language:** en
101
+ <!-- - **License:** Unknown -->
102
+
103
+ ### Model Sources
104
+
105
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
106
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
107
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
108
+
109
+ ### Full Model Architecture
110
+
111
+ ```
112
+ SentenceTransformer(
113
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
114
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
115
+ )
116
+ ```
117
+
118
+ ## Usage
119
+
120
+ ### Direct Usage (Sentence Transformers)
121
+
122
+ First install the Sentence Transformers library:
123
+
124
+ ```bash
125
+ pip install -U sentence-transformers
126
+ ```
127
+
128
+ Then you can load this model and run inference.
129
+ ```python
130
+ from sentence_transformers import SentenceTransformer
131
+
132
+ # Download from the 🤗 Hub
133
+ model = SentenceTransformer("surajvbangera/mediclaim_embedding")
134
+ # Run inference
135
+ sentences = [
136
+ 'Two men are in an electronics workshop, working on computers or equipment.',
137
+ 'The men are experts when it comes to electronics.',
138
+ 'A tall person sitting',
139
+ ]
140
+ embeddings = model.encode(sentences)
141
+ print(embeddings.shape)
142
+ # [3, 768]
143
+
144
+ # Get the similarity scores for the embeddings
145
+ similarities = model.similarity(embeddings, embeddings)
146
+ print(similarities.shape)
147
+ # [3, 3]
148
+ ```
149
+
150
+ <!--
151
+ ### Direct Usage (Transformers)
152
+
153
+ <details><summary>Click to see the direct usage in Transformers</summary>
154
+
155
+ </details>
156
+ -->
157
+
158
+ <!--
159
+ ### Downstream Usage (Sentence Transformers)
160
+
161
+ You can finetune this model on your own dataset.
162
+
163
+ <details><summary>Click to expand</summary>
164
+
165
+ </details>
166
+ -->
167
+
168
+ <!--
169
+ ### Out-of-Scope Use
170
+
171
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
172
+ -->
173
+
174
+ ## Evaluation
175
+
176
+ ### Metrics
177
+
178
+ #### Semantic Similarity
179
+
180
+ * Datasets: `basemodel_evaluator`, `finetunedmodel_evaluator` and `finetunedmodel_evaluator`
181
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
182
+
183
+ | Metric | basemodel_evaluator | finetunedmodel_evaluator |
184
+ |:--------------------|:--------------------|:-------------------------|
185
+ | pearson_cosine | 0.5734 | 0.5716 |
186
+ | **spearman_cosine** | **0.5954** | **0.6004** |
187
+
188
+ <!--
189
+ ## Bias, Risks and Limitations
190
+
191
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
192
+ -->
193
+
194
+ <!--
195
+ ### Recommendations
196
+
197
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
198
+ -->
199
+
200
+ ## Training Details
201
+
202
+ ### Training Dataset
203
+
204
+ #### all-nli
205
+
206
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
207
+ * Size: 942,069 training samples
208
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
209
+ * Approximate statistics based on the first 1000 samples:
210
+ | | sentence1 | sentence2 | score |
211
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|
212
+ | type | string | string | float |
213
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
214
+ * Samples:
215
+ | sentence1 | sentence2 | score |
216
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:-----------------|
217
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>0.5</code> |
218
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>0.0</code> |
219
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>1.0</code> |
220
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
221
+ ```json
222
+ {
223
+ "scale": 20.0,
224
+ "similarity_fct": "pairwise_cos_sim"
225
+ }
226
+ ```
227
+
228
+ ### Evaluation Dataset
229
+
230
+ #### all-nli
231
+
232
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
233
+ * Size: 19,657 evaluation samples
234
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
235
+ * Approximate statistics based on the first 1000 samples:
236
+ | | sentence1 | sentence2 | score |
237
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
238
+ | type | string | string | float |
239
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.56 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.51 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
240
+ * Samples:
241
+ | sentence1 | sentence2 | score |
242
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:-----------------|
243
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>0.5</code> |
244
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>1.0</code> |
245
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>0.0</code> |
246
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
247
+ ```json
248
+ {
249
+ "scale": 20.0,
250
+ "similarity_fct": "pairwise_cos_sim"
251
+ }
252
+ ```
253
+
254
+ ### Training Hyperparameters
255
+ #### Non-Default Hyperparameters
256
+
257
+ - `eval_strategy`: steps
258
+ - `per_device_train_batch_size`: 16
259
+ - `per_device_eval_batch_size`: 16
260
+ - `num_train_epochs`: 1
261
+ - `warmup_ratio`: 0.1
262
+ - `fp16`: True
263
+ - `batch_sampler`: no_duplicates
264
+
265
+ #### All Hyperparameters
266
+ <details><summary>Click to expand</summary>
267
+
268
+ - `overwrite_output_dir`: False
269
+ - `do_predict`: False
270
+ - `eval_strategy`: steps
271
+ - `prediction_loss_only`: True
272
+ - `per_device_train_batch_size`: 16
273
+ - `per_device_eval_batch_size`: 16
274
+ - `per_gpu_train_batch_size`: None
275
+ - `per_gpu_eval_batch_size`: None
276
+ - `gradient_accumulation_steps`: 1
277
+ - `eval_accumulation_steps`: None
278
+ - `torch_empty_cache_steps`: None
279
+ - `learning_rate`: 5e-05
280
+ - `weight_decay`: 0.0
281
+ - `adam_beta1`: 0.9
282
+ - `adam_beta2`: 0.999
283
+ - `adam_epsilon`: 1e-08
284
+ - `max_grad_norm`: 1.0
285
+ - `num_train_epochs`: 1
286
+ - `max_steps`: -1
287
+ - `lr_scheduler_type`: linear
288
+ - `lr_scheduler_kwargs`: {}
289
+ - `warmup_ratio`: 0.1
290
+ - `warmup_steps`: 0
291
+ - `log_level`: passive
292
+ - `log_level_replica`: warning
293
+ - `log_on_each_node`: True
294
+ - `logging_nan_inf_filter`: True
295
+ - `save_safetensors`: True
296
+ - `save_on_each_node`: False
297
+ - `save_only_model`: False
298
+ - `restore_callback_states_from_checkpoint`: False
299
+ - `no_cuda`: False
300
+ - `use_cpu`: False
301
+ - `use_mps_device`: False
302
+ - `seed`: 42
303
+ - `data_seed`: None
304
+ - `jit_mode_eval`: False
305
+ - `use_ipex`: False
306
+ - `bf16`: False
307
+ - `fp16`: True
308
+ - `fp16_opt_level`: O1
309
+ - `half_precision_backend`: auto
310
+ - `bf16_full_eval`: False
311
+ - `fp16_full_eval`: False
312
+ - `tf32`: None
313
+ - `local_rank`: 0
314
+ - `ddp_backend`: None
315
+ - `tpu_num_cores`: None
316
+ - `tpu_metrics_debug`: False
317
+ - `debug`: []
318
+ - `dataloader_drop_last`: False
319
+ - `dataloader_num_workers`: 0
320
+ - `dataloader_prefetch_factor`: None
321
+ - `past_index`: -1
322
+ - `disable_tqdm`: False
323
+ - `remove_unused_columns`: True
324
+ - `label_names`: None
325
+ - `load_best_model_at_end`: False
326
+ - `ignore_data_skip`: False
327
+ - `fsdp`: []
328
+ - `fsdp_min_num_params`: 0
329
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
330
+ - `fsdp_transformer_layer_cls_to_wrap`: None
331
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
332
+ - `deepspeed`: None
333
+ - `label_smoothing_factor`: 0.0
334
+ - `optim`: adamw_torch
335
+ - `optim_args`: None
336
+ - `adafactor`: False
337
+ - `group_by_length`: False
338
+ - `length_column_name`: length
339
+ - `ddp_find_unused_parameters`: None
340
+ - `ddp_bucket_cap_mb`: None
341
+ - `ddp_broadcast_buffers`: False
342
+ - `dataloader_pin_memory`: True
343
+ - `dataloader_persistent_workers`: False
344
+ - `skip_memory_metrics`: True
345
+ - `use_legacy_prediction_loop`: False
346
+ - `push_to_hub`: False
347
+ - `resume_from_checkpoint`: None
348
+ - `hub_model_id`: None
349
+ - `hub_strategy`: every_save
350
+ - `hub_private_repo`: None
351
+ - `hub_always_push`: False
352
+ - `gradient_checkpointing`: False
353
+ - `gradient_checkpointing_kwargs`: None
354
+ - `include_inputs_for_metrics`: False
355
+ - `include_for_metrics`: []
356
+ - `eval_do_concat_batches`: True
357
+ - `fp16_backend`: auto
358
+ - `push_to_hub_model_id`: None
359
+ - `push_to_hub_organization`: None
360
+ - `mp_parameters`:
361
+ - `auto_find_batch_size`: False
362
+ - `full_determinism`: False
363
+ - `torchdynamo`: None
364
+ - `ray_scope`: last
365
+ - `ddp_timeout`: 1800
366
+ - `torch_compile`: False
367
+ - `torch_compile_backend`: None
368
+ - `torch_compile_mode`: None
369
+ - `dispatch_batches`: None
370
+ - `split_batches`: None
371
+ - `include_tokens_per_second`: False
372
+ - `include_num_input_tokens_seen`: False
373
+ - `neftune_noise_alpha`: None
374
+ - `optim_target_modules`: None
375
+ - `batch_eval_metrics`: False
376
+ - `eval_on_start`: False
377
+ - `use_liger_kernel`: False
378
+ - `eval_use_gather_object`: False
379
+ - `average_tokens_across_devices`: False
380
+ - `prompts`: None
381
+ - `batch_sampler`: no_duplicates
382
+ - `multi_dataset_batch_sampler`: proportional
383
+
384
+ </details>
385
+
386
+ ### Training Logs
387
+ | Epoch | Step | Training Loss | Validation Loss | basemodel_evaluator_spearman_cosine | finetunedmodel_evaluator_spearman_cosine |
388
+ |:-----:|:----:|:-------------:|:---------------:|:-----------------------------------:|:----------------------------------------:|
389
+ | -1 | -1 | - | - | 0.0810 | - |
390
+ | 0.8 | 100 | 4.5047 | 3.9356 | 0.5954 | - |
391
+ | -1 | -1 | - | - | - | 0.6004 |
392
+
393
+
394
+ ### Framework Versions
395
+ - Python: 3.11.11
396
+ - Sentence Transformers: 3.4.1
397
+ - Transformers: 4.48.3
398
+ - PyTorch: 2.5.1+cu124
399
+ - Accelerate: 1.3.0
400
+ - Datasets: 3.3.2
401
+ - Tokenizers: 0.21.0
402
+
403
+ ## Citation
404
+
405
+ ### BibTeX
406
+
407
+ #### Sentence Transformers
408
+ ```bibtex
409
+ @inproceedings{reimers-2019-sentence-bert,
410
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
411
+ author = "Reimers, Nils and Gurevych, Iryna",
412
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
413
+ month = "11",
414
+ year = "2019",
415
+ publisher = "Association for Computational Linguistics",
416
+ url = "https://arxiv.org/abs/1908.10084",
417
+ }
418
+ ```
419
+
420
+ #### CoSENTLoss
421
+ ```bibtex
422
+ @online{kexuefm-8847,
423
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
424
+ author={Su Jianlin},
425
+ year={2022},
426
+ month={Jan},
427
+ url={https://kexue.fm/archives/8847},
428
+ }
429
+ ```
430
+
431
+ <!--
432
+ ## Glossary
433
+
434
+ *Clearly define terms in order to be accessible across audiences.*
435
+ -->
436
+
437
+ <!--
438
+ ## Model Card Authors
439
+
440
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Contact
445
+
446
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
447
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.3",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3542c95b1f25c0eed96b0dac6eb6812f1248045e2eb7201b7ee7086efa85153
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "model_max_length": 512,
60
+ "pad_token": "<pad>",
61
+ "sep_token": "</s>",
62
+ "strip_accents": null,
63
+ "tokenize_chinese_chars": true,
64
+ "tokenizer_class": "MPNetTokenizer",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff