mao jiashun commited on
Commit
638d26f
1 Parent(s): a9ad1ec

Update iupac-gpt/README.md

Browse files
Files changed (1) hide show
  1. iupac-gpt/README.md +5 -5
iupac-gpt/README.md CHANGED
@@ -1,7 +1,7 @@
1
  # Generative Pre-Training from Molecules
2
 
3
  Autoregressive transformer language model for drug discovery. (Pre)trained on a large
4
- SMILES corpus. Evaluated on molecular property prediction and low-data de novo design
5
  tasks.
6
 
7
 
@@ -11,22 +11,22 @@ Set up [conda](https://conda.io/en/latest/index.html) and create a new environme
11
  `environment.yml` (if needed, make corresponding edits for GPU-compatibility).
12
  ```shell
13
  conda env create -f environment.yml
14
- conda activate smiles-gpt
15
  git clone https://github.com/sanjaradylov/smiles-gpt.git
16
- cd smiles-gpt
17
  ```
18
 
19
 
20
  ## Benchmark
21
 
22
  ### Checkpoint
23
- [checkpoints/benchmark-5m](https://github.com/sanjaradylov/smiles-gpt/tree/master/checkpoints/benchmark-5m)
24
  stores serialized model, tokenizer, and configuration. Do not modify them. Use
25
  `from_pretrained` method to load HuggingFace objects, e.g.,
26
  ```python
27
  from transformers import GPT2Config, GPT2LMHeadModel, PreTrainedTokenizerFast
28
 
29
- checkpoint = "checkpoints/benchmark-5m"
30
 
31
  config = GPT2Config.from_pretrained(checkpoint)
32
  model = GPT2LMHeadModel.from_pretrained(checkpoint)
 
1
  # Generative Pre-Training from Molecules
2
 
3
  Autoregressive transformer language model for drug discovery. (Pre)trained on a large
4
+ IUPAC corpus. Evaluated on molecular property prediction and low-data de novo design
5
  tasks.
6
 
7
 
 
11
  `environment.yml` (if needed, make corresponding edits for GPU-compatibility).
12
  ```shell
13
  conda env create -f environment.yml
14
+ conda activate iupacgpt
15
  git clone https://github.com/sanjaradylov/smiles-gpt.git
16
+ cd iupacgpt
17
  ```
18
 
19
 
20
  ## Benchmark
21
 
22
  ### Checkpoint
23
+ [checkpoints/iupac](https://huggingface.co/superspider2023/iupacGPT/edit/main/iupac-gpt/checkpoints/iupac)
24
  stores serialized model, tokenizer, and configuration. Do not modify them. Use
25
  `from_pretrained` method to load HuggingFace objects, e.g.,
26
  ```python
27
  from transformers import GPT2Config, GPT2LMHeadModel, PreTrainedTokenizerFast
28
 
29
+ checkpoint = "checkpoints/iupac"
30
 
31
  config = GPT2Config.from_pretrained(checkpoint)
32
  model = GPT2LMHeadModel.from_pretrained(checkpoint)