mao jiashun
commited on
Commit
•
638d26f
1
Parent(s):
a9ad1ec
Update iupac-gpt/README.md
Browse files- iupac-gpt/README.md +5 -5
iupac-gpt/README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# Generative Pre-Training from Molecules
|
2 |
|
3 |
Autoregressive transformer language model for drug discovery. (Pre)trained on a large
|
4 |
-
|
5 |
tasks.
|
6 |
|
7 |
|
@@ -11,22 +11,22 @@ Set up [conda](https://conda.io/en/latest/index.html) and create a new environme
|
|
11 |
`environment.yml` (if needed, make corresponding edits for GPU-compatibility).
|
12 |
```shell
|
13 |
conda env create -f environment.yml
|
14 |
-
conda activate
|
15 |
git clone https://github.com/sanjaradylov/smiles-gpt.git
|
16 |
-
cd
|
17 |
```
|
18 |
|
19 |
|
20 |
## Benchmark
|
21 |
|
22 |
### Checkpoint
|
23 |
-
[checkpoints/
|
24 |
stores serialized model, tokenizer, and configuration. Do not modify them. Use
|
25 |
`from_pretrained` method to load HuggingFace objects, e.g.,
|
26 |
```python
|
27 |
from transformers import GPT2Config, GPT2LMHeadModel, PreTrainedTokenizerFast
|
28 |
|
29 |
-
checkpoint = "checkpoints/
|
30 |
|
31 |
config = GPT2Config.from_pretrained(checkpoint)
|
32 |
model = GPT2LMHeadModel.from_pretrained(checkpoint)
|
|
|
1 |
# Generative Pre-Training from Molecules
|
2 |
|
3 |
Autoregressive transformer language model for drug discovery. (Pre)trained on a large
|
4 |
+
IUPAC corpus. Evaluated on molecular property prediction and low-data de novo design
|
5 |
tasks.
|
6 |
|
7 |
|
|
|
11 |
`environment.yml` (if needed, make corresponding edits for GPU-compatibility).
|
12 |
```shell
|
13 |
conda env create -f environment.yml
|
14 |
+
conda activate iupacgpt
|
15 |
git clone https://github.com/sanjaradylov/smiles-gpt.git
|
16 |
+
cd iupacgpt
|
17 |
```
|
18 |
|
19 |
|
20 |
## Benchmark
|
21 |
|
22 |
### Checkpoint
|
23 |
+
[checkpoints/iupac](https://huggingface.co/superspider2023/iupacGPT/edit/main/iupac-gpt/checkpoints/iupac)
|
24 |
stores serialized model, tokenizer, and configuration. Do not modify them. Use
|
25 |
`from_pretrained` method to load HuggingFace objects, e.g.,
|
26 |
```python
|
27 |
from transformers import GPT2Config, GPT2LMHeadModel, PreTrainedTokenizerFast
|
28 |
|
29 |
+
checkpoint = "checkpoints/iupac"
|
30 |
|
31 |
config = GPT2Config.from_pretrained(checkpoint)
|
32 |
model = GPT2LMHeadModel.from_pretrained(checkpoint)
|