Add/update README
Browse files
README.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# copa LoRA Models
|
| 2 |
+
|
| 3 |
+
This repository contains LoRA (Low-Rank Adaptation) models trained on the copa dataset.
|
| 4 |
+
|
| 5 |
+
## Models in this repository:
|
| 6 |
+
|
| 7 |
+
- `llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123
|
| 8 |
+
- `llama_finetune_copa_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_copa_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123
|
| 9 |
+
- `llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123
|
| 10 |
+
- `llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123
|
| 11 |
+
- `llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123
|
| 12 |
+
- `llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123
|
| 13 |
+
- `llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_copa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123
|
| 14 |
+
|
| 15 |
+
## Usage
|
| 16 |
+
|
| 17 |
+
To use these LoRA models, you'll need the `peft` library:
|
| 18 |
+
|
| 19 |
+
```bash
|
| 20 |
+
pip install peft transformers torch
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
Example usage:
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
from peft import PeftModel
|
| 27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 28 |
+
|
| 29 |
+
# Load base model
|
| 30 |
+
base_model_name = "your-base-model" # Replace with actual base model
|
| 31 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 33 |
+
|
| 34 |
+
# Load LoRA adapter
|
| 35 |
+
model = PeftModel.from_pretrained(
|
| 36 |
+
model,
|
| 37 |
+
"supergoose/copa",
|
| 38 |
+
subfolder="model_name_here" # Replace with specific model folder
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Use the model
|
| 42 |
+
inputs = tokenizer("Your prompt here", return_tensors="pt")
|
| 43 |
+
outputs = model.generate(**inputs)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Training Details
|
| 47 |
+
|
| 48 |
+
- Dataset: copa
|
| 49 |
+
- Training framework: LoRA/PEFT
|
| 50 |
+
- Models included: 7 variants
|
| 51 |
+
|
| 52 |
+
## Files Structure
|
| 53 |
+
|
| 54 |
+
Each model folder contains:
|
| 55 |
+
- `adapter_config.json`: LoRA configuration
|
| 56 |
+
- `adapter_model.safetensors`: LoRA weights
|
| 57 |
+
- `tokenizer.json`: Tokenizer configuration
|
| 58 |
+
- Additional training artifacts
|
| 59 |
+
|
| 60 |
+
---
|
| 61 |
+
*Generated automatically by LoRA uploader script*
|