|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Evaluating a Whisper model on one or more evaluation datasets. |
|
""" |
|
|
|
|
|
import json |
|
import logging |
|
import os |
|
import string |
|
import subprocess |
|
import sys |
|
import tempfile |
|
import time |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from typing import Optional |
|
|
|
import datasets |
|
import evaluate |
|
import numpy as np |
|
import torch |
|
import transformers |
|
import whisper |
|
from datasets import DatasetDict, IterableDatasetDict, load_dataset |
|
from tqdm import tqdm |
|
from transformers import ( |
|
HfArgumentParser, |
|
WhisperForConditionalGeneration, |
|
WhisperProcessor, |
|
is_wandb_available, |
|
pipeline, |
|
) |
|
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer |
|
from transformers.models.whisper.modeling_whisper import WhisperForCausalLM |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.27.0.dev0") |
|
|
|
require_version( |
|
"datasets>=1.18.0", |
|
"To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
PIPELINE_BATCH_SIZE = 16 |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset hours by a '+' symbol." |
|
}, |
|
) |
|
model_name_or_path: str = field( |
|
default=None, |
|
metadata={"help": "The name of the model to use (via the transformers library). "}, |
|
) |
|
assistant_model_name_or_path: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the assistant model to use to do speculative decoding. If None, no speculative decoding will be done." |
|
}, |
|
) |
|
use_fp16: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to evaluate in fp16"}, |
|
) |
|
use_torch_compile: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to compile the model"}, |
|
) |
|
use_orig_whisper: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to evaluate with orig whisper"}, |
|
) |
|
use_bf16: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to evaluate in bf16"}, |
|
) |
|
use_pipeline: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to evaluate with Transformers pipeline"}, |
|
) |
|
chunk_length_s: float = field( |
|
default=30.0, metadata={"help": "Chunk length to use when `use_pipeline` is enabled."} |
|
) |
|
return_timestamps: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to decode with timestamps. This can help for improved WER for long form evaluation." |
|
}, |
|
) |
|
attn_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Which attn type to use: None, 'flash', 'compile', 'flash+compile'"}, |
|
) |
|
batch_size: int = field( |
|
default=1, |
|
metadata={"help": "The batch size used for evluation."}, |
|
) |
|
num_beams: int = field( |
|
default=1, |
|
metadata={"help": "The beam size used for evluation."}, |
|
) |
|
samples_per_dataset: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Number of samples per dataset used to measure speed."}, |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_split_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The split name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to `text`."}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=30.0, |
|
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, |
|
metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, |
|
) |
|
max_label_length: int = field( |
|
default=128, |
|
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, |
|
) |
|
max_gen_length: int = field(default=128, metadata={"help": "Generate up until max_gen_length tokens."}) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set will pad the target sequence to a multiple of the provided" |
|
" value. This is important to avoid triggering recompilations on TPU." |
|
" If unspecified, will default to padding the targets to max length." |
|
) |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is" |
|
" especially useful when data preprocessing errors out in distributed" |
|
" training due to timeout. In this case, one should run the" |
|
" preprocessing in a non-distributed setup with" |
|
" `preprocessing_only=True` so that the cached datasets can" |
|
" consequently be loaded in distributed training" |
|
) |
|
}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-whisper-speed-benchmark", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the wandb run."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
wandb_dir: str = field( |
|
default=None, |
|
metadata={"help": "The absolute path to save the wandb logs."}, |
|
) |
|
save_code_to_wandb: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to save main script to wandb. This is valuable for improving" |
|
" experiment reproducibility and to diff code across experiments in" |
|
" the UI." |
|
) |
|
}, |
|
) |
|
streaming: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, |
|
) |
|
log_audio: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "For debugging purposes, record the audio samples as well as the ground truths / preds."}, |
|
) |
|
|
|
|
|
def write_metric(summary_writer, eval_metrics, step, prefix="eval"): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"{prefix}/{metric_name}", value, step) |
|
|
|
|
|
def write_wandb_metric(wandb_logger, metrics, train_time, prefix): |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
wandb_logger.log(log_metrics) |
|
|
|
|
|
def convert_dataset_str_to_list( |
|
dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" |
|
): |
|
if isinstance(dataset_names, str): |
|
dataset_names = dataset_names.split("+") |
|
|
|
|
|
for i in range(len(dataset_names)): |
|
ds_name = dataset_names[i] |
|
dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name |
|
|
|
dataset_config_names = dataset_config_names.split("+") |
|
splits = splits.split("+") if splits is not None else None |
|
text_column_names = text_column_names.split("+") if text_column_names is not None else None |
|
dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None |
|
|
|
|
|
if len(dataset_names) != len(dataset_config_names): |
|
raise ValueError( |
|
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(dataset_config_names)} configs." |
|
) |
|
|
|
if splits is not None and len(splits) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." |
|
) |
|
|
|
if text_column_names is not None and len(text_column_names) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(text_column_names)} text column names." |
|
) |
|
|
|
if dataset_hours is not None: |
|
if len(dataset_hours) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " |
|
f"{len(dataset_hours)} hours." |
|
) |
|
dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] |
|
else: |
|
dataset_hours = [None] * len(dataset_names) |
|
|
|
text_column_names = ( |
|
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] |
|
) |
|
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] |
|
|
|
dataset_names_dict = [] |
|
for i, ds_name in enumerate(dataset_names): |
|
dataset_names_dict.append( |
|
{ |
|
"name": ds_name, |
|
"config": dataset_config_names[i], |
|
"split": splits[i], |
|
"text_column_name": text_column_names[i], |
|
"hours": dataset_hours[i], |
|
} |
|
) |
|
return dataset_names_dict |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser([DataTrainingArguments]) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] |
|
else: |
|
data_args = parser.parse_args_into_dataclasses()[0] |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if data_args.use_pipeline and data_args.batch_size > 1: |
|
raise ValueError("Make sure that `batch_size` is set to 1 when `use_pipeline=True`.") |
|
|
|
has_wandb = is_wandb_available() |
|
if has_wandb: |
|
import wandb |
|
import wandb as wandb_logger |
|
|
|
|
|
wandb_logger.init( |
|
project=data_args.wandb_project, |
|
name=data_args.wandb_name, |
|
job_type=data_args.wandb_job_type, |
|
dir=data_args.wandb_dir, |
|
save_code=data_args.save_code_to_wandb, |
|
) |
|
wandb_logger.log({"torch_version": str(torch.__version__)}) |
|
wandb_logger.log({"transformers_version": str(transformers.__version__)}) |
|
wandb_logger.log({"batch_size": data_args.batch_size}) |
|
|
|
if data_args.use_pipeline: |
|
wandb_logger.log({"chunk_length_s": data_args.chunk_length_s}) |
|
else: |
|
raise ValueError("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") |
|
|
|
|
|
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
|
|
|
|
|
|
dataset_names_dict = convert_dataset_str_to_list( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
splits=data_args.dataset_split_name, |
|
text_column_names=data_args.text_column_name, |
|
) |
|
|
|
if len(dataset_names_dict) == 1: |
|
|
|
dataset_dict = dataset_names_dict[0] |
|
raw_datasets["eval"] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True, |
|
streaming=data_args.streaming, |
|
) |
|
if dataset_dict["text_column_name"] not in list(raw_datasets["eval"].features.keys()): |
|
raise ValueError( |
|
f"--text column name {dataset_dict['text_column_name']} not found in the evaluation " |
|
f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " |
|
f"for the target text. Should be one of {' '.join(list(raw_datasets['eval'].features.keys()))}" |
|
) |
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets["eval"] = raw_datasets["eval"].rename_column(dataset_dict["text_column_name"], "text") |
|
else: |
|
|
|
for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."): |
|
|
|
|
|
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" |
|
raw_datasets[pretty_name] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True, |
|
streaming=data_args.streaming, |
|
) |
|
if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()): |
|
raise ValueError( |
|
f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation " |
|
f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " |
|
f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}" |
|
) |
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( |
|
dataset_dict["text_column_name"], "text" |
|
) |
|
|
|
|
|
processor = WhisperProcessor.from_pretrained(data_args.model_name_or_path) |
|
|
|
dtype = torch.float16 if data_args.use_fp16 else torch.float32 |
|
if data_args.use_bf16: |
|
dtype = torch.bfloat16 |
|
|
|
use_flash_attention_2 = data_args.attn_type is not None and "flash2" in data_args.attn_type |
|
|
|
|
|
result = subprocess.run(["nvidia-smi"], capture_output=True, text=True) |
|
gpu_type = [x for x in result.stdout.split("=") if len(x) > 1][1].split("0")[1].split() |
|
|
|
use_sdpa = False |
|
if gpu_type[0] == "Tesla" and use_flash_attention_2: |
|
use_flash_attention_2 = False |
|
use_sdpa = True |
|
|
|
use_orig_whisper = False |
|
if data_args.use_orig_whisper: |
|
use_orig_whisper = True |
|
|
|
model_name = data_args.model_name_or_path.split("/")[-1].split("whisper-")[-1] |
|
model = whisper.load_model(model_name) |
|
model.cuda() |
|
else: |
|
model = WhisperForConditionalGeneration.from_pretrained( |
|
data_args.model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2 |
|
) |
|
model.cuda() |
|
|
|
if use_sdpa: |
|
logger.info("Use SDPA via BetterTransformers...") |
|
model.to_bettertransformer() |
|
|
|
if data_args.use_torch_compile: |
|
logger.info("Enabling torch compile for the encoder.") |
|
|
|
model.model.encoder.forward = torch.compile( |
|
model.model.encoder.forward, mode="reduce-overhead", fullgraph=True |
|
) |
|
|
|
|
|
input_values = np.random.randn(data_args.batch_size, 16_000) |
|
input_features = processor(input_values, return_tensors="pt", sampling_rate=16_000).input_features |
|
input_features = input_features.to(dtype=dtype, device=model.device) |
|
|
|
|
|
for _ in range(3): |
|
_ = model.generate(input_features) |
|
|
|
model_pipeline = None |
|
if data_args.use_pipeline: |
|
model_pipeline = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
torch_dtype=dtype, |
|
device=model.device, |
|
chunk_length_s=data_args.chunk_length_s, |
|
) |
|
model_pipeline_forward = model_pipeline._forward |
|
|
|
assistant_model = None |
|
if data_args.assistant_model_name_or_path is not None: |
|
logger.info("Loading assistant model...") |
|
|
|
if data_args.assistant_model_name_or_path.startswith("openai"): |
|
assistant_model = WhisperForConditionalGeneration.from_pretrained( |
|
data_args.assistant_model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2 |
|
) |
|
else: |
|
assistant_model = WhisperForCausalLM.from_pretrained( |
|
data_args.assistant_model_name_or_path, torch_dtype=dtype, use_flash_attention_2=use_flash_attention_2 |
|
) |
|
|
|
assistant_model.cuda() |
|
|
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, |
|
datasets.features.Audio(sampling_rate=processor.feature_extractor.sampling_rate), |
|
) |
|
|
|
|
|
|
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length |
|
) |
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
model_input_name = processor.feature_extractor.model_input_names[0] |
|
normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer) |
|
|
|
if data_args.max_eval_samples is not None: |
|
for split in raw_datasets: |
|
raw_datasets[split] = ( |
|
raw_datasets[split].take(data_args.max_eval_samples) |
|
if data_args.streaming |
|
else raw_datasets[split].select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
|
|
if model_pipeline is None and not use_orig_whisper: |
|
inputs = processor.feature_extractor( |
|
sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt" |
|
) |
|
batch[model_input_name] = inputs.get(model_input_name) |
|
else: |
|
batch[model_input_name] = sample["array"] |
|
|
|
|
|
batch["length_in_s"] = len(sample["array"]) / sample["sampling_rate"] |
|
|
|
|
|
input_str = batch["text"] |
|
batch["labels"] = processor.tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids |
|
return batch |
|
|
|
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
for split in raw_datasets: |
|
raw_datasets_features = list(raw_datasets[split].features.keys()) |
|
|
|
map_fn = partial( |
|
raw_datasets[split].map, |
|
function=prepare_dataset, |
|
remove_columns=raw_datasets_features, |
|
) |
|
|
|
vectorized_datasets[split] = ( |
|
map_fn(num_proc=num_workers, desc="preprocess eval dataset") |
|
if not data_args.streaming |
|
else map_fn() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
metric = evaluate.load("wer") |
|
|
|
list(string.punctuation.replace("'", "")) |
|
|
|
def compute_metrics(pred_str, label_str): |
|
|
|
norm_pred_str = [normalizer(pred) for pred in pred_str] |
|
norm_label_str = [normalizer(label) for label in label_str] |
|
|
|
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
|
|
if len(norm_pred_str) == 0 or len(norm_label_str) == 0: |
|
return 0.0 |
|
|
|
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) |
|
|
|
return wer |
|
|
|
result_datasets = DatasetDict() |
|
|
|
def benchmark(batch): |
|
if model_pipeline is None and not use_orig_whisper: |
|
inputs = torch.cat(batch[model_input_name], dim=0).cuda() |
|
if data_args.use_fp16: |
|
inputs = inputs.to(torch.float16) |
|
if data_args.use_bf16: |
|
inputs = inputs.to(torch.bfloat16) |
|
|
|
inner_batch_size = inputs.shape[0] |
|
else: |
|
inner_batch_size = 1 |
|
|
|
inputs = batch[model_input_name] |
|
|
|
gen_kwargs = { |
|
"return_timestamps": data_args.return_timestamps, |
|
"max_length": data_args.max_gen_length, |
|
} |
|
|
|
|
|
if not data_args.model_name_or_path.endswith(".en") and not data_args.model_name_or_path.endswith("24-2"): |
|
gen_kwargs["language"] = "<|en|>" |
|
gen_kwargs["task"] = "transcribe" |
|
gen_kwargs["num_beams"] = data_args.num_beams |
|
|
|
|
|
if use_orig_whisper: |
|
raw_audio = inputs[0].astype(np.float32) |
|
out_dict = model.transcribe(raw_audio) |
|
|
|
batch["transcription"] = [out_dict["text"]] |
|
batch["time"] = [out_dict["all_time"]] |
|
elif model_pipeline is not None: |
|
|
|
time_result = [] |
|
|
|
def _forward_time(*args, **kwargs): |
|
start_time = time.time() |
|
result = model_pipeline_forward(*args, **kwargs) |
|
end_time = time.time() - start_time |
|
|
|
time_result.append(end_time) |
|
|
|
return result |
|
|
|
model_pipeline._forward = _forward_time |
|
|
|
result = model_pipeline(inputs, batch_size=PIPELINE_BATCH_SIZE, generate_kwargs=gen_kwargs)[0]["text"] |
|
batch["transcription"] = [result] |
|
batch["time"] = [sum(time_result)] |
|
elif assistant_model is not None: |
|
gen_kwargs["assistant_model"] = assistant_model |
|
|
|
start_time = time.time() |
|
with torch.no_grad(): |
|
encoder_outputs = model.get_encoder()(inputs) |
|
|
|
gen_kwargs["encoder_outputs"] = encoder_outputs |
|
|
|
if data_args.assistant_model_name_or_path.startswith("openai"): |
|
with torch.no_grad(): |
|
assistant_encoder_outputs = assistant_model.get_encoder()(inputs) |
|
|
|
gen_kwargs["assistant_encoder_outputs"] = assistant_encoder_outputs |
|
else: |
|
gen_kwargs["assistant_encoder_outputs"] = encoder_outputs |
|
|
|
output_ids = model.generate(**gen_kwargs) |
|
batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size] |
|
|
|
batch["transcription"] = processor.batch_decode(output_ids, skip_special_tokens=True) |
|
else: |
|
start_time = time.time() |
|
output_ids = model.generate(inputs, **gen_kwargs) |
|
batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size] |
|
|
|
batch["transcription"] = processor.batch_decode(output_ids, skip_special_tokens=True) |
|
|
|
batch["length_in_s"] = batch["length_in_s"] |
|
batch["reference"] = processor.batch_decode(batch["labels"], skip_special_tokens=True) |
|
batch["num_words"] = [len(r.split()) for r in batch["reference"]] |
|
|
|
return batch |
|
|
|
for split in vectorized_datasets: |
|
vectorized_datasets_features = [model_input_name] |
|
|
|
map_fn = partial( |
|
vectorized_datasets[split].map, |
|
function=benchmark, |
|
remove_columns=vectorized_datasets_features, |
|
batch_size=data_args.batch_size, |
|
batched=True, |
|
) |
|
|
|
result_datasets[split] = ( |
|
map_fn(num_proc=1, desc="benchmark eval dataset") if not data_args.streaming else map_fn() |
|
) |
|
|
|
stats_dataset = DatasetDict() |
|
|
|
all_stats = { |
|
"times_audio_total": 0, |
|
"times_transcription_total": 0, |
|
"num_words_total": 0, |
|
"num_samples": 0, |
|
"time_per_sample": 0, |
|
"rtf": 0, |
|
"words_per_s": 0, |
|
"wer": 0, |
|
} |
|
|
|
count = 0 |
|
for split in result_datasets: |
|
transcriptions = [] |
|
references = [] |
|
stats = {k: 0 for k in all_stats.keys()} |
|
|
|
print(f"Start benchmarking {split}...") |
|
if data_args.streaming: |
|
result_iter = iter(result_datasets[split]) |
|
|
|
for result in result_iter: |
|
stats["times_audio_total"] += result["length_in_s"] |
|
stats["times_transcription_total"] += result["time"] |
|
stats["num_words_total"] += result["num_words"] |
|
stats["num_samples"] += 1 |
|
transcriptions.append(result["transcription"]) |
|
references.append(result["reference"]) |
|
|
|
count += 1 |
|
print(f"Processed {count} samples...") |
|
|
|
if data_args.samples_per_dataset is not None and stats["num_samples"] == data_args.samples_per_dataset: |
|
break |
|
|
|
stats["time_per_sample"] = stats["times_transcription_total"] / stats["num_samples"] |
|
stats["avg_length_sample"] = stats["times_audio_total"] / stats["num_samples"] |
|
stats["wer"] = compute_metrics(transcriptions, references) |
|
stats["rtf"] = stats["times_audio_total"] / stats["times_transcription_total"] |
|
stats["words_per_s"] = stats["num_words_total"] / stats["times_transcription_total"] |
|
|
|
stats_dataset[split] = stats |
|
|
|
log_stats = {f"{split}_{k}": v for k, v in stats.items()} |
|
wandb_logger.log(log_stats) |
|
|
|
all_stats["times_audio_total"] += stats["times_audio_total"] |
|
all_stats["times_transcription_total"] += stats["times_transcription_total"] |
|
all_stats["wer"] += stats["wer"] |
|
all_stats["num_samples"] += stats["num_samples"] |
|
all_stats["num_words_total"] += stats["num_words_total"] |
|
|
|
all_stats["time_per_sample"] = all_stats["times_transcription_total"] / all_stats["num_samples"] |
|
all_stats["avg_length_sample"] = all_stats["times_audio_total"] / all_stats["num_samples"] |
|
all_stats["wer"] = all_stats["wer"] / len(result_datasets) |
|
all_stats["rtf"] = all_stats["times_audio_total"] / all_stats["times_transcription_total"] |
|
all_stats["words_per_s"] = all_stats["num_words_total"] / all_stats["times_transcription_total"] |
|
|
|
stats_dataset["all"] = all_stats |
|
|
|
log_all_stats = {f"all_{k}": v for k, v in all_stats.items()} |
|
wandb_logger.log(log_all_stats) |
|
|
|
benchmark_artifact = wandb.Artifact("Benchmark", type="datasets") |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
for split in stats_dataset: |
|
file_name = os.path.join(temp_dir, f"{'_'.join(split.split('/'))}.json") |
|
|
|
with open(file_name, "w") as json_file: |
|
json.dump(stats_dataset[split], json_file) |
|
|
|
benchmark_artifact.add_file(file_name, split) |
|
|
|
wandb_logger.log_artifact(benchmark_artifact) |
|
|
|
print("Done!") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|