command: | |
- python3 | |
- ${program} | |
- --do_train | |
- --do_eval | |
- --use_scan | |
- --gradient_checkpointing | |
- --overwrite_output_dir | |
- --predict_with_generate | |
- --streaming | |
- --use_auth_token | |
- ${args} | |
method: random | |
metric: | |
goal: minimize | |
name: eval/wer | |
parameters: | |
model_name_or_path: | |
value: distil-whisper/large-32-2 | |
teacher_model_name_or_path: | |
value: openai/whisper-large-v2 | |
train_dataset_name: | |
value: librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech | |
train_dataset_config_name: | |
value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L | |
train_split_name: | |
value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train | |
train_dataset_samples: | |
value: 100+360+500+2300+450+90+90+12000+450+3600+2500+5000 | |
eval_dataset_name: | |
value: "distil-whisper/gigaspeech-l" | |
eval_dataset_config_name: | |
value: "l" | |
cache_dir: | |
value: /home/sanchitgandhi/cache | |
dataset_cache_dir: | |
value: /home/sanchitgandhi/cache | |
output_dir: | |
value: ./ | |
per_device_train_batch_size: | |
value: 32 | |
per_device_eval_batch_size: | |
value: 64 | |
dtype: | |
value: bfloat16 | |
learning_rate: | |
value: 1e-4 | |
lr_scheduler_type: | |
value: constant_with_warmup | |
warmup_steps: | |
value: 50 | |
max_steps: | |
value: 1000 | |
eval_steps: | |
value: 1000 | |
save_steps: | |
value: 1000 | |
dataloader_num_workers: | |
value: 16 | |
logging_steps: | |
value: 5 | |
wer_threshold: | |
value: 10 | |
activation_dropout: | |
values: | |
- 0 | |
- 0.05 | |
- 0.1 | |
attention_dropout: | |
values: | |
- 0 | |
- 0.05 | |
- 0.1 | |
dropout: | |
values: | |
- 0 | |
- 0.05 | |
- 0.1 | |
freeze_encoder: | |
values: | |
- true | |
- false | |
program: run_distillation.py | |
project: distil-whisper-sweeps | |