|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the Whisper model for sequence to sequence speech recognition. |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import string |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import evaluate |
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
import transformers |
|
from datasets import Dataset, DatasetDict, load_dataset |
|
from flax import jax_utils, traverse_util |
|
from flax.jax_utils import pad_shard_unpad, unreplicate |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key |
|
from huggingface_hub import Repository, create_repo |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AutoConfig, |
|
AutoFeatureExtractor, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
is_tensorboard_available, |
|
is_wandb_available, |
|
) |
|
from transformers.file_utils import get_full_repo_name |
|
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
from distil_whisper import FlaxWhisperForConditionalGeneration |
|
|
|
|
|
|
|
check_min_version("4.27.0.dev0") |
|
|
|
require_version( |
|
"datasets>=1.18.0", |
|
"To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@flax.struct.dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": ("Path to pretrained model or model identifier from huggingface.co/models")} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained config name or path if not the same as model_name"}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "feature extractor name or path if not the same as model_name"}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `transformers-cli login`" |
|
" (necessary to use this script with private models)." |
|
) |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"Floating-point format in which the model weights should be initialized" |
|
" and trained. Choose one of `[float32, float16, bfloat16]`." |
|
) |
|
}, |
|
) |
|
activation_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "The dropout ratio for activations inside the fully connected layer."}, |
|
) |
|
attention_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "The dropout ratio for the attention probabilities."}, |
|
) |
|
dropout: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." |
|
}, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": ("The configuration name of the dataset to use (via the datasets library).")}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of" |
|
" training examples to this value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of" |
|
" evaluation examples to this value if set." |
|
) |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")}, |
|
) |
|
text_column_name: str = field( |
|
default="whisper_transcript", |
|
metadata={ |
|
"help": ( |
|
"The name of the dataset column containing the text data. Defaults to" |
|
" 'whisper_transcript'which is the pseudo-labelled Whisper" |
|
" transcription data." |
|
) |
|
}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=30.0, |
|
metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, |
|
metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")}, |
|
) |
|
max_label_length: int = field( |
|
default=128, |
|
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, |
|
) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set will pad the target sequence to a multiple of the provided" |
|
" value. This is important to avoid triggering recompilations on TPU." |
|
" If unspecified, will default to padding the targets to max length." |
|
) |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is" |
|
" especially useful when data preprocessing errors out in distributed" |
|
" training due to timeout. In this case, one should run the" |
|
" preprocessing in a non-distributed setup with" |
|
" `preprocessing_only=True` so that the cached datasets can" |
|
" consequently be loaded in distributed training" |
|
) |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'") |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": ( |
|
"The name of the evaluation data set split to use (via the datasets" |
|
" library). Defaults to 'validation'" |
|
) |
|
}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the wandb run."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
wandb_dir: str = field( |
|
default=None, |
|
metadata={"help": "The absolute path to save the wandb logs."}, |
|
) |
|
save_code_to_wandb: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to save main script to wandb. This is valuable for improving" |
|
" experimentreproducibility and to diff code across experiments in" |
|
" the UI." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments): |
|
use_scan: Optional[bool] = field( |
|
default=True, |
|
metadata={ |
|
"help": ( |
|
"Whether or not to use `scan_with_axes` over the encoder and decoder" |
|
" blocks. Using scan results in faster compile times and more efficient" |
|
" memory use during training, since all of the layers in the" |
|
" encoder/decoder are stacked, and we perform a lax.scan over the" |
|
" stacked block to index each layer. However, it results in slower" |
|
" inference time due to the overhead of stacking the layers this way." |
|
" Thus, we always default to disabling scan for the inference step." |
|
) |
|
}, |
|
) |
|
freeze_encoder: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to freeze the entire encoder model. Only recommended when the" |
|
" entire encoder has been copiedfrom the teacher model." |
|
) |
|
}, |
|
) |
|
|
|
|
|
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: |
|
""" |
|
Shift label ids one token to the right. |
|
""" |
|
shifted_label_ids = np.zeros_like(label_ids) |
|
shifted_label_ids[:, 1:] = label_ids[:, :-1] |
|
shifted_label_ids[:, 0] = decoder_start_token_id |
|
|
|
return shifted_label_ids |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxDataCollatorSpeechSeq2SeqWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor ([`Wav2Vec2Processor`]) |
|
The processor used for proccessing the data. |
|
decoder_start_token_id (:obj: `int`) |
|
The begin-of-sentence of the decoder. |
|
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_target_length (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` of the returned list and optionally padding length (see above). |
|
""" |
|
|
|
processor: Any |
|
decoder_start_token_id: int |
|
input_padding: Union[bool, str] = "max_length" |
|
target_padding: Union[bool, str] = "max_length" |
|
max_target_length: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: |
|
|
|
|
|
model_input_name = self.processor.model_input_names[0] |
|
|
|
|
|
input_features = {model_input_name: [feature[model_input_name] for feature in features]} |
|
label_features = {"input_ids": [feature["labels"] for feature in features]} |
|
|
|
|
|
batch = self.processor.feature_extractor.pad( |
|
input_features, |
|
padding=self.input_padding, |
|
return_tensors="np", |
|
) |
|
|
|
labels_batch = self.processor.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_target_length, |
|
padding=self.target_padding, |
|
return_tensors="np", |
|
) |
|
|
|
|
|
|
|
labels = labels_batch["input_ids"] |
|
if (labels[:, 0] == self.decoder_start_token_id).all().item(): |
|
labels = labels[:, 1:] |
|
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] |
|
|
|
decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) |
|
|
|
|
|
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) |
|
labels = labels.filled(fill_value=-100) |
|
|
|
batch["labels"] = labels |
|
batch["decoder_input_ids"] = decoder_input_ids |
|
|
|
return batch |
|
|
|
|
|
def get_data_loader( |
|
rng: jax.random.PRNGKey, |
|
dataset: Dataset, |
|
batch_size: int, |
|
data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding, |
|
shuffle: bool = True, |
|
drop_last: bool = True, |
|
dataloader_num_workers: int = 0, |
|
pin_memory: bool = True, |
|
) -> DataLoader: |
|
""" |
|
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, |
|
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. |
|
|
|
Args: |
|
rng (List(int)): JAX rng for generating pseudo random numbers. Used if shuffling the dataset. |
|
dataset (Dataset): dataset from which to load the data. |
|
batch_size (int): how many samples per batch to load. |
|
data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a |
|
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. |
|
shuffle (bool, optional): set to `True` to have the batches reshuffled. |
|
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, |
|
if the dataset size is not divisible by the batch size. If ``False`` and |
|
the size of dataset is not divisible by the batch size, then the last batch |
|
will be smaller. (default: ``False``) |
|
dataloader_num_workers (int, optional): how many subprocesses to use for data |
|
loading. ``0`` means that the data will be loaded in the main process. |
|
(default: ``0``) |
|
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors |
|
into device/CUDA pinned memory before returning them. If your data elements |
|
are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, |
|
see the example below. |
|
|
|
""" |
|
if shuffle: |
|
batch_idx = jax.random.permutation(rng, len(dataset)) |
|
batch_idx = np.asarray(batch_idx) |
|
dataset = dataset.select(batch_idx) |
|
|
|
data_loader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
drop_last=drop_last, |
|
pin_memory=pin_memory, |
|
collate_fn=data_collator, |
|
num_workers=dataloader_num_workers, |
|
) |
|
|
|
return data_loader |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
|
|
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step, logging_steps): |
|
summary_writer.scalar("train/time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
steps_arr = np.arange(0, step, logging_steps)[-len(vals) :] |
|
tag = f"train/{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, steps_arr[i]) |
|
|
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval/{metric_name}", value, step) |
|
|
|
|
|
def write_wandb_metric(wandb_logger, metrics, train_time, step, prefix): |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
wandb_logger.log(log_metrics, step) |
|
|
|
|
|
def write_wandb_pred(wandb_logger, pred_str, label_str, prefix="eval", num_lines=100): |
|
|
|
if num_lines < len(pred_str): |
|
str_data = [[label_str[i], pred_str[i]] for i in range(num_lines)] |
|
else: |
|
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))] |
|
|
|
wandb_logger.log( |
|
{f"{prefix}/predictions": wandb_logger.Table(columns=["label_str", "pred_str"], data=str_data)}, |
|
) |
|
|
|
|
|
def create_learning_rate_fn( |
|
num_train_steps: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, |
|
end_value=0, |
|
transition_steps=num_train_steps - num_warmup_steps, |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax") |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not" |
|
" empty.Use `--overwrite_output_dir` to overcome." |
|
) |
|
|
|
|
|
if training_args.push_to_hub: |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(training_args.output_dir).absolute().name, |
|
token=training_args.hub_token, |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) |
|
repo = Repository( |
|
training_args.output_dir, |
|
clone_from=repo_name, |
|
token=training_args.hub_token, |
|
) |
|
|
|
|
|
raw_datasets = DatasetDict() |
|
|
|
if training_args.do_train: |
|
raw_datasets["train"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.train_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
|
|
if training_args.do_eval: |
|
raw_datasets["eval"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.eval_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
|
|
if not training_args.do_train and not training_args.do_eval: |
|
raise ValueError( |
|
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." |
|
) |
|
|
|
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset" |
|
f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" |
|
" the correct audio column - one of" |
|
f" {', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--text_column_name {data_args.text_column_name} not found in dataset" |
|
f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the" |
|
" correct text column - one of" |
|
f" {', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
(model_args.config_name if model_args.config_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
config.update( |
|
{ |
|
"activation_dropout": model_args.activation_dropout, |
|
"attention_dropout": model_args.attention_dropout, |
|
"dropout": model_args.dropout, |
|
} |
|
) |
|
|
|
model, params = FlaxWhisperForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
dtype=getattr(jnp, model_args.dtype), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
_do_init=False, |
|
) |
|
|
|
if model.config.decoder_start_token_id is None: |
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") |
|
|
|
|
|
if training_args.use_scan: |
|
model.enable_scan() |
|
params = model.convert_unroll_to_scan(params) |
|
|
|
if training_args.gradient_checkpointing: |
|
model.enable_gradient_checkpointing() |
|
|
|
if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: |
|
|
|
tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=False) |
|
model.generation_config.forced_decoder_ids = tokenizer.get_decoder_prompt_ids( |
|
language="English", task="transcribe", no_timestamps=True |
|
) |
|
|
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, |
|
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), |
|
) |
|
|
|
|
|
|
|
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) |
|
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate) |
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length |
|
) |
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
dataloader_num_workers = training_args.dataloader_num_workers |
|
text_column_name = data_args.text_column_name |
|
model_input_name = feature_extractor.model_input_names[0] |
|
normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer) |
|
|
|
if training_args.do_train and data_args.max_train_samples is not None: |
|
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) |
|
|
|
if training_args.do_eval and data_args.max_eval_samples is not None: |
|
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) |
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
|
|
batch[model_input_name] = inputs.get(model_input_name)[0] |
|
batch["input_length"] = len(sample["array"]) |
|
|
|
|
|
input_str = " " + batch[text_column_name].lower() |
|
batch["labels"] = tokenizer(input_str).input_ids |
|
return batch |
|
|
|
vectorized_datasets = raw_datasets.map( |
|
prepare_dataset, |
|
remove_columns=next(iter(raw_datasets.values())).column_names, |
|
num_proc=num_workers, |
|
desc="preprocess train dataset", |
|
) |
|
|
|
|
|
def is_audio_in_length_range(length): |
|
return min_input_length < length < max_input_length |
|
|
|
vectorized_datasets = vectorized_datasets.filter( |
|
is_audio_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["input_length"], |
|
) |
|
|
|
|
|
def is_labels_in_length_range(labels): |
|
return 0 < len(labels) < max_label_length |
|
|
|
vectorized_datasets = vectorized_datasets.filter( |
|
is_labels_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["labels"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
metric = evaluate.load("wer") |
|
all_punctuation = list(string.punctuation.replace("'", "")) |
|
|
|
def compute_metrics(preds, labels): |
|
|
|
for idx in range(len(labels)): |
|
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id |
|
|
|
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
|
|
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
spaced_pred_str = [ |
|
pred_str[i].replace(punctuation, "") for punctuation in all_punctuation for i in range(len(pred_str)) |
|
] |
|
spaced_label_str = [ |
|
label_str[i].replace(punctuation, "") for punctuation in all_punctuation for i in range(len(label_str)) |
|
] |
|
wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str) |
|
|
|
|
|
norm_pred_str = [normalizer(pred) for pred in pred_str] |
|
norm_label_str = [normalizer(label) for label in label_str] |
|
|
|
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) |
|
|
|
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str |
|
|
|
|
|
feature_extractor.save_pretrained(training_args.output_dir) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
config.save_pretrained(training_args.output_dir) |
|
model.generation_config.save_pretrained( |
|
training_args.output_dir |
|
) |
|
|
|
processor = AutoProcessor.from_pretrained(training_args.output_dir) |
|
|
|
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( |
|
processor=processor, |
|
decoder_start_token_id=model.config.decoder_start_token_id, |
|
input_padding="longest", |
|
target_padding="max_length", |
|
max_target_length=max_label_length, |
|
) |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not" |
|
" installed: Please run `pip install tensorboard` to enable." |
|
) |
|
|
|
|
|
has_wandb = is_wandb_available() |
|
if has_wandb: |
|
import wandb as wandb_logger |
|
|
|
|
|
if jax.process_index() == 0: |
|
wandb_logger.init( |
|
project=data_args.wandb_project, |
|
name=data_args.wandb_name, |
|
job_type=data_args.wandb_job_type, |
|
dir=data_args.wandb_dir, |
|
save_code=data_args.save_code_to_wandb, |
|
) |
|
else: |
|
logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
eval_batch_size = per_device_eval_batch_size * jax.device_count() |
|
steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size |
|
total_train_steps = steps_per_epoch * num_epochs |
|
|
|
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn( |
|
total_train_steps, |
|
training_args.warmup_steps, |
|
training_args.learning_rate, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
|
|
layer_norm_candidates = [ |
|
"layer_norm", |
|
"self_attn_layer_norm", |
|
"final_layer_norm", |
|
"encoder_attn_layer_norm", |
|
] |
|
layer_norm_named_params = { |
|
layer[-2:] |
|
for layer_norm_name in layer_norm_candidates |
|
for layer in flat_params.keys() |
|
if layer_norm_name in "".join(layer).lower() |
|
} |
|
flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
|
|
adamw = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
mask=decay_mask_fn, |
|
) |
|
|
|
|
|
state = TrainState.create(apply_fn=model.__call__, params=params, tx=adamw, dropout_rng=dropout_rng) |
|
|
|
|
|
def loss_fn(logits, labels, label_smoothing_factor=0.0): |
|
""" |
|
The label smoothing implementation is adapted from Flax's official example: |
|
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 |
|
""" |
|
vocab_size = logits.shape[-1] |
|
confidence = 1.0 - label_smoothing_factor |
|
low_confidence = (1.0 - confidence) / (vocab_size - 1) |
|
normalizing_constant = -( |
|
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) |
|
) |
|
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) |
|
|
|
loss = optax.softmax_cross_entropy(logits, soft_labels) |
|
loss = loss - normalizing_constant |
|
|
|
|
|
padding_mask = labels >= 0 |
|
loss = loss * padding_mask |
|
loss = loss.sum() |
|
num_labels = padding_mask.sum() |
|
return loss, num_labels |
|
|
|
|
|
def train_step(state, batch, freeze_encoder, label_smoothing_factor=0.0): |
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
def compute_loss(params): |
|
labels = batch.pop("labels") |
|
logits = state.apply_fn( |
|
**batch, |
|
params=params, |
|
dropout_rng=dropout_rng, |
|
freeze_encoder=freeze_encoder, |
|
train=True, |
|
)[0] |
|
loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) |
|
return loss, num_labels |
|
|
|
grad_fn = jax.value_and_grad(compute_loss, has_aux=True) |
|
(loss, num_labels), grad = grad_fn(state.params) |
|
num_labels = jax.lax.psum(num_labels, "batch") |
|
|
|
|
|
loss = jax.lax.psum(loss, "batch") |
|
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) |
|
|
|
|
|
grad = jax.lax.psum(grad, "batch") |
|
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) |
|
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) |
|
|
|
metrics = { |
|
"loss": loss, |
|
"learning_rate": linear_decay_lr_schedule_fn(state.step), |
|
} |
|
return new_state, metrics |
|
|
|
|
|
def eval_step(params, batch, label_smoothing_factor=0.0): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, train=False)[0] |
|
|
|
loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) |
|
num_labels = jax.lax.psum(num_labels, "batch") |
|
|
|
|
|
loss = jax.lax.psum(loss, "batch") |
|
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) |
|
|
|
metrics = {"loss": loss} |
|
return metrics |
|
|
|
|
|
num_beams = ( |
|
training_args.generation_num_beams |
|
if training_args.generation_num_beams is not None |
|
else model.config.num_beams |
|
) |
|
gen_kwargs = {"max_length": max_label_length, "num_beams": num_beams} |
|
|
|
def generate_step(params, batch): |
|
output_ids = model.generate( |
|
batch[model_input_name], |
|
attention_mask=batch.get("attention_mask"), |
|
params=params, |
|
**gen_kwargs, |
|
) |
|
return output_ids.sequences |
|
|
|
|
|
p_train_step = jax.pmap( |
|
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), |
|
"batch", |
|
donate_argnums=(0,), |
|
static_broadcasted_argnums=(2,), |
|
) |
|
p_eval_step = jax.pmap( |
|
partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), |
|
"batch", |
|
) |
|
p_generate_step = jax.pmap(generate_step, "batch") |
|
|
|
|
|
state = state.replicate() |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(vectorized_datasets['train'])}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
|
|
train_time = 0 |
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) |
|
for epoch in epochs: |
|
|
|
train_start = time.time() |
|
|
|
|
|
rng, input_rng = jax.random.split(rng) |
|
train_metrics = [] |
|
|
|
|
|
train_loader = get_data_loader( |
|
input_rng, |
|
vectorized_datasets["train"], |
|
batch_size=train_batch_size, |
|
data_collator=data_collator, |
|
dataloader_num_workers=dataloader_num_workers, |
|
) |
|
|
|
for step, batch in enumerate(tqdm(train_loader, desc="Training...", position=1), 1): |
|
batch = shard(batch.data) |
|
state, train_metric = p_train_step(state, batch, training_args.freeze_encoder) |
|
|
|
cur_step = epoch * steps_per_epoch + step |
|
if cur_step % training_args.logging_steps == 0: |
|
train_metrics.append(train_metric) |
|
train_metric_to_write = unreplicate(train_metric) |
|
epochs.write( |
|
f"Step... ({cur_step} / {total_train_steps} | Loss:" |
|
f" {train_metric_to_write['loss']}, Learning Rate:" |
|
f" {train_metric_to_write['learning_rate']})" |
|
) |
|
if has_wandb and jax.process_index() == 0: |
|
write_wandb_metric( |
|
wandb_logger, |
|
train_metric_to_write, |
|
train_time + time.time() - train_start, |
|
cur_step, |
|
"train", |
|
) |
|
|
|
train_time += time.time() - train_start |
|
|
|
train_metric = unreplicate(train_metric) |
|
|
|
epochs.write( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}," |
|
f" Learning Rate: {train_metric['learning_rate']})" |
|
) |
|
|
|
|
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
eval_start = time.time() |
|
|
|
eval_loader = get_data_loader( |
|
input_rng, |
|
vectorized_datasets["eval"], |
|
batch_size=eval_batch_size, |
|
data_collator=data_collator, |
|
shuffle=False, |
|
drop_last=False, |
|
dataloader_num_workers=dataloader_num_workers, |
|
) |
|
for batch in tqdm(eval_loader, desc="Evaluating...", position=2): |
|
|
|
labels = batch["labels"] |
|
|
|
metrics = pad_shard_unpad(p_eval_step, static_return=True)( |
|
state.params, batch.data, min_device_batch=per_device_eval_batch_size |
|
) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
if training_args.predict_with_generate: |
|
generated_ids = pad_shard_unpad(p_generate_step)( |
|
state.params, batch.data, min_device_batch=per_device_eval_batch_size |
|
) |
|
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) |
|
eval_labels.extend(labels) |
|
|
|
eval_time = time.time() - eval_start |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
wer_desc = "" |
|
if training_args.predict_with_generate: |
|
wer_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels) |
|
eval_metrics.update(wer_metric) |
|
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) |
|
|
|
|
|
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} |" f" {wer_desc})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
write_metric( |
|
summary_writer, |
|
train_metrics, |
|
eval_metrics, |
|
train_time, |
|
cur_step, |
|
training_args.logging_steps, |
|
) |
|
|
|
if has_wandb and jax.process_index() == 0: |
|
write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, "eval") |
|
if training_args.predict_with_generate: |
|
write_wandb_pred(wandb_logger, pred_str, label_str) |
|
|
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) |
|
model.save_pretrained(training_args.output_dir, params=params) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
repo.push_to_hub( |
|
commit_message=f"Saving weights and logs of epoch {epoch + 1}", |
|
blocking=False, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|