|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Utilities for partitioning.""" |
|
|
|
import abc |
|
import collections |
|
import dataclasses |
|
import typing |
|
from typing import Any, Callable, Optional, Sequence, Tuple, Union |
|
|
|
import cached_property |
|
import jax |
|
import numpy as np |
|
from absl import logging |
|
from flax import traverse_util |
|
from flax.linen import partitioning as flax_partitioning |
|
from jax import numpy as jnp |
|
from jax import random |
|
from jax.experimental import multihost_utils |
|
from jax.experimental.mesh_utils import create_hybrid_device_mesh |
|
from jax.experimental.pjit import pjit as jax_pjit |
|
from jax.sharding import Mesh, PartitionSpec |
|
|
|
|
|
JaxDevice = Any |
|
TpuMesh = Tuple[int, int, int, int] |
|
OtherMesh = Tuple[int, int] |
|
HardwareMesh = Union[TpuMesh, OtherMesh] |
|
PyTreeDef = type(jax.tree_util.tree_structure(None)) |
|
TrainState = Any |
|
LogicalAxisRules = Sequence[Tuple[str, Optional[str]]] |
|
|
|
if typing.TYPE_CHECKING: |
|
cached_property = property |
|
else: |
|
cached_property = cached_property.cached_property |
|
|
|
|
|
class AxisNames(tuple): |
|
"""Tuple of strings specifying name for each axis. |
|
|
|
We create a separate class for this so JAX's pytree utilities can distinguish |
|
it from a tuple that should be treated as a pytree, instead treating it as a |
|
leaf. |
|
""" |
|
|
|
def __new__(cls, *names): |
|
return tuple.__new__(AxisNames, names) |
|
|
|
def __repr__(self): |
|
return "AxisNames%s" % tuple.__repr__(self) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def pjit( |
|
fun: Callable, |
|
in_axis_resources, |
|
out_axis_resources, |
|
static_argnums: Union[int, Sequence[int]] = (), |
|
donate_argnums: Union[int, Sequence[int]] = (), |
|
backend: Optional[str] = None, |
|
): |
|
"""Wrapper for pjit.""" |
|
del backend |
|
return jax_pjit( |
|
fun, |
|
in_axis_resources, |
|
out_axis_resources, |
|
static_argnums=static_argnums, |
|
donate_argnums=donate_argnums, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def pjit_with_cpu_fallback( |
|
fun: Callable, |
|
in_axis_resources, |
|
out_axis_resources, |
|
static_argnums: Union[int, Sequence[int]] = (), |
|
donate_argnums: Union[int, Sequence[int]] = (), |
|
backend: Optional[str] = None, |
|
): |
|
"""Wrapper for pjit that calls normal jit on cpu.""" |
|
if jax.devices(backend)[0].platform == "cpu": |
|
return jax.jit(fun, static_argnums=static_argnums, donate_argnums=donate_argnums) |
|
else: |
|
return jax_pjit( |
|
fun, |
|
in_axis_resources, |
|
out_axis_resources, |
|
static_argnums=static_argnums, |
|
donate_argnums=donate_argnums, |
|
) |
|
|
|
|
|
def with_sharding_constraint(x, axis_resources): |
|
"""Wrapper for pjit with_sharding_constraint, no-op on cpu or outside pjit.""" |
|
if jax.devices()[0].platform == "cpu" or not global_mesh_defined(): |
|
return x |
|
else: |
|
return jax.experimental.pjit.with_sharding_constraint(x, axis_resources) |
|
|
|
|
|
|
|
|
|
def bounds_from_last_device(last_device: JaxDevice) -> HardwareMesh: |
|
"""Get the bound from the given last device.""" |
|
|
|
|
|
|
|
if hasattr(last_device, "coords"): |
|
x, y, z = last_device.coords |
|
return x + 1, y + 1, z + 1, last_device.core_on_chip + 1 |
|
else: |
|
|
|
|
|
return jax.host_count(), jax.local_device_count() |
|
|
|
|
|
def get_coords(device: JaxDevice) -> HardwareMesh: |
|
"""Returns the coordinates of the given device.""" |
|
if hasattr(device, "coords"): |
|
return (*device.coords, device.core_on_chip) |
|
return (device.process_index, device.id % jax.local_device_count()) |
|
|
|
|
|
def global_mesh_defined(): |
|
"""Checks if global xmap/pjit mesh resource environment is defined.""" |
|
maps_env = jax.experimental.maps.thread_resources.env |
|
return maps_env.physical_mesh.devices.shape != () |
|
|
|
|
|
def get_mesh( |
|
model_parallel_submesh: HardwareMesh, |
|
input_devices: Sequence[JaxDevice] = (), |
|
input_local_devices: Sequence[JaxDevice] = (), |
|
tile_by_host_if_needed: bool = True, |
|
backend: Optional[str] = None, |
|
) -> Mesh: |
|
"""Construct an xmap/pjit Mesh for the given model-parallel submesh. |
|
|
|
The resulting mesh has two resource axes: 'model', with the provided submesh |
|
shape, and 'data', which covers the rest of the mesh. |
|
|
|
Args: |
|
model_parallel_submesh: a HardwareMesh spec, namely (x,y,z,core) on TPU for |
|
a single model-parallel replica's "tile" in the physical device mesh. The |
|
first three elements (`x`, `y`, and `z`) should be factors of the pod |
|
slice; e.g., if you are using df_4x8, then `x` should be a factor of 4 |
|
(one of 1, 2, 4), `y` should be a factor of 8 (one of 1, 2, 4, 8), and `z` |
|
must be 1, because TPU v3 slices are only 2D. `z` can be >1 for TPU v4 |
|
(and maybe later TPUs) that allow 3D slices. `core` is the number of cores |
|
to use from each TPU node. As communication is usually fastest inside the |
|
same node, if you need a tile of more than 1 core, then |
|
you should first increase `core`: e.g., for TPU v3, (1,1,1,2) is better |
|
than (2,1,1,1). To pick a good spec, try a few possible values until you |
|
get high TPU utilization. |
|
input_devices: the devices to use, will use jax.devices() if this is not |
|
set. |
|
input_local_devices: the local devices to use, will use jax.local_devices() |
|
if this is not set. |
|
tile_by_host_if_needed: JAX currently requires that the parts of any sharded |
|
array that are located on one host's local devices form a single |
|
contiguous slice. A best effort will be made to achieve this without |
|
"tiling" the device assignment over hosts (which can reduce XLA collective |
|
performance). If this flag is True, then the device assignment will be |
|
tiled over hosts if necessary to satisfy this constraint and create a |
|
buildable mesh; if false, mesh construction will fail instead. |
|
backend: get devices from the pinned backend, if specified. This is |
|
useful for explicitly specifying the devices other than relying on |
|
jax_platform_name. |
|
|
|
Returns: |
|
A xmap / pjit Mesh containing the virtual device mesh with data, model axes. |
|
""" |
|
input_devices = input_devices or jax.devices(backend) |
|
input_local_devices = input_local_devices or jax.local_devices(0, backend) |
|
|
|
|
|
last_device = sorted(input_devices, key=get_coords)[-1] |
|
last_input_local_devices = sorted(input_local_devices, key=get_coords)[-1] |
|
logging.info( |
|
"last device coords : %r\nlast local device coords: %r", |
|
get_coords(last_device), |
|
get_coords(last_input_local_devices), |
|
) |
|
global_hardware_mesh = bounds_from_last_device(last_device) |
|
mesh_ndim = len(global_hardware_mesh) |
|
local_hardware_mesh = bounds_from_last_device(last_input_local_devices) |
|
mesh_err = ( |
|
f"each dimension of the model parallel submesh {model_parallel_submesh} " |
|
"must be a factor of the corresponding dimension of the global device " |
|
f"mesh {global_hardware_mesh}" |
|
) |
|
assert not any(g % m for g, m in zip(global_hardware_mesh, model_parallel_submesh)), mesh_err |
|
assert not any(g % l for g, l in zip(global_hardware_mesh, local_hardware_mesh)) |
|
devices = np.empty(global_hardware_mesh, dtype=object) |
|
for device in input_devices: |
|
device_coords = get_coords(device) |
|
devices[device_coords] = device |
|
tile_by_host = tile_by_host_if_needed |
|
if len(global_hardware_mesh) == 4: |
|
|
|
global_hardware_mesh = typing.cast(Tuple[int, int, int, int], global_hardware_mesh) |
|
model_parallel_submesh = typing.cast(Tuple[int, int, int, int], model_parallel_submesh) |
|
gx, gy, gz, gc = global_hardware_mesh |
|
mx, my, mz, mc = model_parallel_submesh |
|
if (mx == gx > 1 and my == mz == 1) or (mx == 1 and my == gy > 1 and mz == gz > 1): |
|
logging.info("ensuring YZ plane has a Z-major device order") |
|
|
|
assert mc == gc, (mc, gc) |
|
global_hardware_mesh = gx, gz, gy, gc |
|
model_parallel_submesh = mx, mz, my, mc |
|
devices = devices.swapaxes(1, 2) |
|
tile_by_host = False |
|
if (my == gy > 1 and mx == mz == 1) or (my == 1 and mx == gx > 1 and mz == gz > 1): |
|
logging.info("ensuring XZ plane has a Z-major device order") |
|
|
|
assert mc == gc, (mc, gc) |
|
global_hardware_mesh = gz, gy, gx, gc |
|
model_parallel_submesh = mz, my, mx, mc |
|
devices = devices.swapaxes(0, 2) |
|
tile_by_host = False |
|
if tile_by_host: |
|
logging.warning( |
|
"Tiling device assignment mesh by hosts, which may lead to " |
|
"reduced XLA collective performance. To avoid this, modify " |
|
"the model parallel submesh or run with more tasks per host." |
|
) |
|
tile_err = ( |
|
"to tile the mesh by hosts, each dimension of the model parallel " |
|
"submesh must be either a factor or a multiple of the corresponding " |
|
"dimension of the per-host submesh" |
|
) |
|
|
|
def dh_dd_mh_md(g: int, m: int, l: int) -> Tuple[int, int, int, int]: |
|
"""Split a global mesh dimension into four tiling components. |
|
|
|
Args: |
|
g: global mesh bounds dimension size |
|
m: model-parallel submesh bounds dimension size |
|
l: local submesh bounds dimension size |
|
|
|
Returns: |
|
The resulting tuple divides the dimension into the hosts component of |
|
the data-parallel submesh, the devices component of the data-parallel |
|
submesh, the hosts component of the model-parallel submesh, and the |
|
devices component of the model-parallel submesh. |
|
""" |
|
d = g // m |
|
if m >= l: |
|
assert not m % l, tile_err |
|
return (d, 1, m // l, l) |
|
else: |
|
assert not l % m, tile_err |
|
return (d // (l // m), l // m, 1, m) |
|
|
|
|
|
dh_dd_mh_md_tups = map( |
|
dh_dd_mh_md, |
|
global_hardware_mesh, |
|
model_parallel_submesh, |
|
local_hardware_mesh, |
|
) |
|
|
|
devices = devices.reshape(*(s for t in dh_dd_mh_md_tups for s in t)) |
|
|
|
|
|
|
|
devices = devices.transpose( |
|
*(4 * i for i in range(mesh_ndim)), |
|
*(4 * i + 1 for i in range(mesh_ndim)), |
|
*(4 * i + 2 for i in range(mesh_ndim)), |
|
*(4 * i + 3 for i in range(mesh_ndim)), |
|
) |
|
else: |
|
|
|
model_data_tups = [(g // m, m) for g, m in zip(global_hardware_mesh, model_parallel_submesh)] |
|
|
|
devices = devices.reshape(*(s for t in model_data_tups for s in t)) |
|
|
|
|
|
devices = devices.transpose(*(2 * i for i in range(mesh_ndim)), *(2 * i + 1 for i in range(mesh_ndim))) |
|
|
|
devices = devices.reshape(-1, np.prod(model_parallel_submesh)) |
|
global_mesh = Mesh(devices, ["data", "model"]) |
|
logging.info("global_mesh axis_names: %s", global_mesh.axis_names) |
|
logging.info("global_mesh devices: %s", global_mesh.devices) |
|
logging.info("global_mesh devices shape: %s", global_mesh.devices.shape) |
|
return global_mesh |
|
|
|
|
|
def get_cpu_mesh() -> Mesh: |
|
"""Trivial mesh for CPU Testing.""" |
|
devices = np.empty((jax.host_count(), jax.local_device_count()), dtype=object) |
|
for device in jax.devices(): |
|
devices[device.process_index, device.id % jax.local_device_count()] = device |
|
return Mesh(devices, ["data", "model"]) |
|
|
|
|
|
def get_gpu_mesh(num_partitions: int) -> Mesh: |
|
"""Mesh for GPUs that preferentially places 'model' on NVLink.""" |
|
nvlink_size = jax.local_device_count() |
|
dcn_size = jax.process_count() |
|
nvlink_mp = min(num_partitions, nvlink_size) |
|
nvlink_dp, extra1 = divmod(nvlink_size, nvlink_mp) |
|
dcn_mp, extra2 = divmod(num_partitions, nvlink_mp) |
|
assert not ( |
|
extra1 or extra2 |
|
), "number of partitions on GPU must be a factor or multiple of the number of local devices" |
|
dcn_dp = dcn_size // dcn_mp |
|
|
|
devices = create_hybrid_device_mesh( |
|
mesh_shape=[nvlink_dp, nvlink_mp], |
|
dcn_mesh_shape=[dcn_dp, dcn_mp], |
|
process_is_granule=True, |
|
) |
|
|
|
global_mesh = Mesh(devices, ["data", "model"]) |
|
logging.info("global_mesh axis_names: %s", global_mesh.axis_names) |
|
logging.info("global_mesh devices: %s", global_mesh.devices) |
|
return global_mesh |
|
|
|
|
|
def default_mesh( |
|
num_partitions: int, |
|
model_parallel_submesh: Optional[HardwareMesh] = None, |
|
backend: Optional[str] = None, |
|
) -> Mesh: |
|
"""Attempt to return a default mesh for simple cases. |
|
|
|
Args: |
|
num_partitions: number of partitions to use, will be ignored if |
|
model_parallel_submesh is provided. |
|
model_parallel_submesh: 4-tuple that specifies the x,y,z,c submesh to use as |
|
the model-parallel device tile. |
|
backend: get devices from the pinned backend, if specified. This is useful |
|
for explicitly specifying the devices other than relying on |
|
jax_platform_name. |
|
|
|
Returns: |
|
xmap/pjit 2D Mesh with 'data', 'model' mesh axes. |
|
""" |
|
last_device = jax.devices(backend)[-1] |
|
platform = last_device.platform |
|
device_kind = last_device.device_kind |
|
bounds = bounds_from_last_device(last_device) |
|
|
|
if model_parallel_submesh: |
|
return get_mesh(model_parallel_submesh, backend=backend) |
|
|
|
if platform == "cpu": |
|
return get_cpu_mesh() |
|
elif platform == "gpu": |
|
return get_gpu_mesh(num_partitions) |
|
|
|
mps = None |
|
if device_kind in ("TPU v2", "TPU v3"): |
|
if num_partitions == 1: |
|
mps = (1, 1, 1, 1) |
|
elif num_partitions == 2: |
|
mps = (1, 1, 1, 2) |
|
elif num_partitions == 4: |
|
mps = (2, 1, 1, 2) |
|
elif num_partitions == 8: |
|
mps = (2, 2, 1, 2) |
|
elif num_partitions == 16: |
|
mps = (4, 2, 1, 2) |
|
|
|
elif (device_kind == "TPU v4" or device_kind == "TPU v4 lite") and bounds[3] == 1: |
|
if num_partitions == 1: |
|
mps = (1, 1, 1, 1) |
|
elif num_partitions == 2: |
|
mps = (1, 2, 1, 1) |
|
elif num_partitions == 4: |
|
if bounds[0] >= 4: |
|
mps = (4, 1, 1, 1) |
|
else: |
|
mps = (2, 2, 1, 1) |
|
elif num_partitions == 8: |
|
if bounds[2] >= 8: |
|
mps = (1, 1, 8, 1) |
|
else: |
|
mps = (4, 2, 1, 1) |
|
elif num_partitions == 16: |
|
if bounds[2] >= 16: |
|
mps = (1, 1, 16, 1) |
|
elif bounds[0] >= 8: |
|
mps = (8, 2, 1, 1) |
|
elif bounds[0] >= 4: |
|
mps = (4, 4, 1, 1) |
|
else: |
|
mps = (2, 2, 4, 1) |
|
|
|
if mps is None: |
|
raise ValueError( |
|
"No default mesh for this configuration: specify " "config.model_parallel_submesh explicitly." |
|
) |
|
return get_mesh(mps, backend=backend) |
|
|
|
|
|
|
|
|
|
@dataclasses.dataclass |
|
class LocalChunkInfo: |
|
|
|
slice: Tuple[slice, ...] |
|
|
|
replica_id: int |
|
|
|
|
|
class LocalChunker: |
|
"""Utility class to aid chunking of sharded arrays in multihost settings.""" |
|
|
|
def __init__(self, global_mesh: Mesh): |
|
self.global_mesh = global_mesh |
|
local_mesh = global_mesh.local_mesh |
|
first_local_device = local_mesh.devices.reshape(-1)[0] |
|
host_location = collections.OrderedDict( |
|
zip( |
|
global_mesh.shape.keys(), |
|
list(zip(*np.nonzero(global_mesh.devices == first_local_device)))[0], |
|
) |
|
) |
|
self.num_chunks = collections.OrderedDict() |
|
self.chunk_ids = collections.OrderedDict() |
|
self.mesh_axes = list(global_mesh.shape.keys()) |
|
for mesh_axis in self.mesh_axes: |
|
num_devices_per_chunk = local_mesh.shape[mesh_axis] |
|
self.num_chunks[mesh_axis] = global_mesh.shape[mesh_axis] // num_devices_per_chunk |
|
self.chunk_ids[mesh_axis] = host_location[mesh_axis] // num_devices_per_chunk |
|
|
|
def get_local_chunk_info( |
|
self, global_shape: Tuple[int, ...], mesh_axes: Sequence[Optional[str]] |
|
) -> LocalChunkInfo: |
|
"""Get the local chunk info for a given array shape and sharded axes. |
|
|
|
Args: |
|
global_shape: the global, unsharded shape of the array to chunk. |
|
mesh_axes: a sequence of names (or None) of equal rank to `global_shape` |
|
that specifies which mesh dimensions the array is sharded along. |
|
|
|
Returns: |
|
LocalChunkInfo containing the logical slices of the array found on this |
|
host's local devices, as well as the replica index for this chunk among |
|
chunks with the same slice. The latter is used to determine which |
|
host should write this chunk during checkpointing. |
|
""" |
|
local_slice = [slice(None) for dim in global_shape] |
|
sharded_mesh_axes = set() |
|
for i, (mesh_axis, size) in enumerate(zip(mesh_axes, global_shape)): |
|
if not mesh_axis: |
|
continue |
|
sharded_mesh_axes.add(mesh_axis) |
|
if not isinstance(mesh_axis, str): |
|
raise NotImplementedError("TODO(jekbradbury)") |
|
chunk_id = self.chunk_ids[mesh_axis] |
|
chunk_size = size // self.num_chunks[mesh_axis] |
|
local_slice[i] = slice(chunk_id * chunk_size, (chunk_id + 1) * chunk_size) |
|
|
|
replicated_mesh_axes = [mesh_axis for mesh_axis in self.mesh_axes if mesh_axis not in sharded_mesh_axes] |
|
replica_id = 0 |
|
for mesh_axis in replicated_mesh_axes: |
|
chunk_id = self.chunk_ids[mesh_axis] |
|
replica_id = replica_id * self.num_chunks[mesh_axis] + chunk_id |
|
|
|
return LocalChunkInfo(tuple(local_slice), replica_id) |
|
|
|
|
|
def standard_logical_axis_rules( |
|
activation_partitioning_dims: int = 1, |
|
parameter_partitioning_dims: int = 1, |
|
additional_rules: Optional[LogicalAxisRules] = None, |
|
) -> LogicalAxisRules: |
|
"""Default sharding rules for T5X model in terms of logical axis names. |
|
|
|
Args: |
|
activation_partitioning_dims: enables 2-D activation sharding when set to 2. |
|
parameter_partitioning_dims: enables 2-D parameter sharding when set to 2. |
|
additional_rules: additional rules (a sequence of tuples) that will be |
|
appended to the standard rules. |
|
|
|
Returns: |
|
Sequence of logical axis rules |
|
""" |
|
logging.info( |
|
"`activation_partitioning_dims` = %d, `parameter_partitioning_dims` = %d", |
|
activation_partitioning_dims, |
|
parameter_partitioning_dims, |
|
) |
|
|
|
if activation_partitioning_dims == 1 and parameter_partitioning_dims == 1: |
|
rules = [ |
|
("batch", "data"), |
|
("vocab", "model"), |
|
("embed", None), |
|
("mlp", "model"), |
|
("heads", "model"), |
|
("kv", None), |
|
("joined_kv", "model"), |
|
] |
|
elif activation_partitioning_dims == 2 and parameter_partitioning_dims == 1: |
|
rules = [ |
|
("batch", "data"), |
|
("vocab", "model"), |
|
("mlp", "model"), |
|
("heads", "model"), |
|
("kv", None), |
|
("joined_kv", "model"), |
|
("embed", "model"), |
|
] |
|
elif activation_partitioning_dims == 1 and parameter_partitioning_dims == 2: |
|
rules = [ |
|
("batch", "data"), |
|
("vocab", "model"), |
|
("mlp", "model"), |
|
("heads", "model"), |
|
("kv", None), |
|
("joined_kv", "model"), |
|
("embed", "data"), |
|
] |
|
elif activation_partitioning_dims == 2 and parameter_partitioning_dims == 2: |
|
rules = [ |
|
("batch", "data"), |
|
("vocab", "model"), |
|
("mlp", "model"), |
|
("heads", "model"), |
|
("kv", None), |
|
("joined_kv", "model"), |
|
("embed", "model"), |
|
("embed", "data"), |
|
] |
|
else: |
|
raise ValueError( |
|
f"`activation_partitioning_dims` = {activation_partitioning_dims} " |
|
f"`parameter_partitioning_dims` = {parameter_partitioning_dims} " |
|
"is not supported." |
|
) |
|
|
|
|
|
replicated_rules = [ |
|
("relpos_buckets", None), |
|
("abspos_buckets", None), |
|
("length", None), |
|
("layers", None), |
|
("stack", None), |
|
("mlp_activations", None), |
|
] |
|
rules.extend(replicated_rules) |
|
|
|
if additional_rules: |
|
rules.extend(additional_rules) |
|
|
|
return rules |
|
|
|
|
|
|
|
def _id_fn(x, ix): |
|
"""Identity function for copying parameters to the devices, sharded.""" |
|
|
|
|
|
y = random.split(random.PRNGKey(jnp.array(ix, dtype=jnp.uint32))) |
|
return x, y |
|
|
|
|
|
@dataclasses.dataclass |
|
class DataLayout: |
|
"""Represents data layout for the partitioned model.""" |
|
|
|
batch_size: int |
|
shard_id: int |
|
num_shards: int |
|
is_first_host_in_replica_set: bool |
|
|
|
|
|
PartitionedCallable = Callable[..., Any] |
|
CompiledPartitionedCallable = Callable[..., Any] |
|
|
|
|
|
class BasePartitioner(metaclass=abc.ABCMeta): |
|
"""Interface for partitioning computations across hardware devices.""" |
|
|
|
def __init__( |
|
self, |
|
num_partitions: Optional[int] = None, |
|
model_parallel_submesh: Optional[HardwareMesh] = None, |
|
params_on_devices: bool = True, |
|
backend: Optional[str] = None, |
|
): |
|
"""Configures the partitioner. |
|
|
|
Args: |
|
num_partitions: the number of partitions to use. Ignored if |
|
`model_parallel_submesh` is provided. |
|
model_parallel_submesh: 4-tuple that specifies the x,y,z,c submesh to use |
|
as the model-parallel device tile. This submesh is used for the larger |
|
of the two parameter dimensions, and, if 2-D activation sharding is |
|
enabled, for the model dimension of activations. The rest of the mesh is |
|
used for data parallelism and, if 2-D parameter sharding is enabled, the |
|
other parameter dimension. |
|
params_on_devices: whether to keep the params on devices, if False - |
|
params stay in the host memory. Note that some partitioners might ignore |
|
this setting, for example if they don't support storing all params on |
|
device memory. |
|
backend: get devices from the pinned backend, if specified. This is useful |
|
for explicitly specifying the devices other than relying on |
|
jax_platform_name. |
|
""" |
|
|
|
if not num_partitions and not model_parallel_submesh: |
|
raise ValueError("At least one of `num_partitions` or " "`model_parallel_submesh` must be set.") |
|
|
|
if model_parallel_submesh is not None and len(model_parallel_submesh) != 4: |
|
logging.error( |
|
( |
|
"`model_parallel_submesh` must be either None or a 4-tuple. Got" |
|
" `model_parallel_submesh`=%s. A ValueError will be raised" |
|
" beginning March 1, 2022." |
|
), |
|
model_parallel_submesh, |
|
) |
|
|
|
if bool(num_partitions) and bool(model_parallel_submesh): |
|
logging.error( |
|
( |
|
"At most one of `num_partitions` or `model_parallel_submesh` can be" |
|
" set. Got `num_partitions=%s` and `model_parallel_submesh`=%s. A" |
|
" ValueError will be raised beginning March 21, 2022." |
|
), |
|
num_partitions, |
|
model_parallel_submesh, |
|
) |
|
|
|
self._num_partitions = num_partitions |
|
self._model_parallel_submesh = model_parallel_submesh |
|
self._params_on_devices = params_on_devices |
|
self._data_axis = "data" |
|
self._backend = backend |
|
|
|
@property |
|
def mesh(self) -> Mesh: |
|
raise NotImplementedError |
|
|
|
@property |
|
def data_partition_spec(self) -> PartitionSpec: |
|
return PartitionSpec(self._data_axis) |
|
|
|
def get_data_layout(self, batch_size: Optional[int] = None, host_index: Optional[int] = None) -> DataLayout: |
|
"""Returns filled `DataLayout` based on the partitioned model layout. |
|
|
|
Args: |
|
batch_size: if set, indicates the requested batch size. The exception will |
|
be raised if this batch size is not compatible with the layout. If not |
|
set, the batch size is inferred from the layout. |
|
host_index: indicates the host index to use for the calculations, if not |
|
set - use JAX-provided one. Should be in [0, num_hosts) interval and the |
|
order should match the order of corresponding CPU devices in |
|
`jax.devices()`. |
|
|
|
Returns: |
|
Filled `DataLayout` structure. |
|
""" |
|
if host_index is not None: |
|
raise NotImplementedError("Explicit host_index is not yet implemented.") |
|
if self._data_axis is None: |
|
return DataLayout( |
|
batch_size=batch_size, |
|
shard_id=0, |
|
num_shards=1, |
|
is_first_host_in_replica_set=(jax.process_index() == 0), |
|
) |
|
mesh_size = self._local_chunker.global_mesh.shape[self._data_axis] |
|
batch_size = batch_size or mesh_size |
|
if batch_size % mesh_size: |
|
raise ValueError( |
|
f"Batch size ({batch_size}) must be divisible by corresponding " f"mesh size ({mesh_size})." |
|
) |
|
num_shards = self._local_chunker.num_chunks[self._data_axis] |
|
if batch_size % num_shards: |
|
raise ValueError(f"Batch size ({batch_size}) must be divisible by number of " f"replicas ({num_shards}).") |
|
replica_id = self._local_chunker.get_local_chunk_info((batch_size,), [self._data_axis]).replica_id |
|
return DataLayout( |
|
batch_size=int(batch_size), |
|
shard_id=int(self._local_chunker.chunk_ids[self._data_axis]), |
|
num_shards=int(num_shards), |
|
is_first_host_in_replica_set=(replica_id == 0), |
|
) |
|
|
|
def get_local_chunk_info( |
|
self, global_shape: Tuple[int, ...], mesh_axes: Sequence[Optional[str]] |
|
) -> LocalChunkInfo: |
|
"""Returns the local chunk info for a given array shape and sharded axes.""" |
|
return self._local_chunker.get_local_chunk_info(global_shape, mesh_axes) |
|
|
|
@property |
|
def params_on_devices(self): |
|
return self._params_on_devices |
|
|
|
def move_params_to_devices(self, train_state: TrainState, train_state_axes: TrainState) -> TrainState: |
|
"""Moves the optimizer parameters to devices.""" |
|
p_id_fn = self.partition( |
|
_id_fn, |
|
in_axis_resources=(train_state_axes, None), |
|
out_axis_resources=(train_state_axes, None), |
|
donate_argnums=(0,), |
|
) |
|
if jax.config.jax_array and jax.process_count() > 1: |
|
train_state = multihost_utils.host_local_array_to_global_array(train_state, self.mesh, train_state_axes) |
|
train_state, _ = p_id_fn(train_state, jnp.ones((), dtype=jnp.uint32)) |
|
return train_state |
|
|
|
@property |
|
@abc.abstractmethod |
|
def _local_chunker(self): |
|
"""Returns the chunker that matches the parameters of this partitioner.""" |
|
raise NotImplementedError |
|
|
|
def get_logical_axes(self, train_state: TrainState) -> TrainState: |
|
"""Returns a copy of TrainState with Optional[AxisNames] as leaves.""" |
|
|
|
return train_state.restore_state(jax.tree_map(lambda x: None, train_state.state_dict())) |
|
|
|
def get_mesh_axes(self, train_state: TrainState) -> TrainState: |
|
"""Returns a copy of TrainState with Optional[PartitionSpecs] as leaves.""" |
|
raise NotImplementedError |
|
|
|
@abc.abstractmethod |
|
def partition( |
|
self, |
|
fn: Callable, |
|
in_axis_resources, |
|
out_axis_resources, |
|
static_argnums: Union[int, Sequence[int]] = (), |
|
donate_argnums: Union[int, Sequence[int]] = (), |
|
) -> PartitionedCallable: |
|
"""Partitions the computation using partitioner-specific implementation. |
|
|
|
Args: |
|
fn: the function to partition. |
|
in_axis_resources: Pytree of structure matching that of arguments to `fn`, |
|
with all actual arguments replaced by resource assignment |
|
specifications. It is also valid to specify a pytree prefix (e.g. one |
|
value in place of a whole subtree), in which case the leaves get |
|
broadcast to all values in that subtree. |
|
The valid resource assignment specifications are: |
|
`None`: in which case the value will be replicated on all devices |
|
`PartitionSpec`: a tuple of length at most equal to the rank of the |
|
partitioned value. Each element can be a `None`, a mesh axis or a |
|
tuple of mesh axes, and specifies the set of resources assigned to |
|
partition the value's dimension matching its position in the spec. |
|
out_axis_resources: Like `in_axis_resources`, but specifies resource |
|
assignment for function outputs. |
|
static_argnums: an optional int or collection of ints that specify which |
|
positional arguments to treat as static (compile-time constant) in the |
|
partitioned function. |
|
donate_argnums: an optional int or collection of ints that specify which |
|
argument buffers are "donated" to the computation. It is safe to donate |
|
argument buffers if you no longer need them once the computation has |
|
finished. |
|
|
|
Returns: |
|
A partitioned version of the input function. |
|
""" |
|
raise NotImplementedError |
|
|
|
@abc.abstractmethod |
|
def compile(self, partitioned_fn: PartitionedCallable, *args) -> CompiledPartitionedCallable: |
|
"""Compiles and returns the partitioned function, or the original. |
|
|
|
Args: |
|
partitioned_fn: The partitioned function. |
|
*args: Sample arguments to the partitioned function matching the input |
|
shapes that will be passed to the compiled function. |
|
|
|
Returns: |
|
The compiled function, or the original if this partitioner does not |
|
support compilation. |
|
""" |
|
raise NotImplementedError |
|
|
|
|
|
class PjittedFnWithContext(PartitionedCallable): |
|
"""Wraps pjitted function to apply the appropriate contexts.""" |
|
|
|
def __init__( |
|
self, |
|
pjitted_fn, |
|
partition_mesh: Mesh, |
|
logical_axis_rules: flax_partitioning.LogicalRules = (), |
|
): |
|
self._pjitted_fn = pjitted_fn |
|
self._mesh = partition_mesh |
|
self._logical_axis_rules = logical_axis_rules |
|
|
|
def __call__(self, *args): |
|
with Mesh(self._mesh.devices, self._mesh.axis_names), flax_partitioning.axis_rules(self._logical_axis_rules): |
|
return self._pjitted_fn(*args) |
|
|
|
def lower(self, *args): |
|
with Mesh(self._mesh.devices, self._mesh.axis_names), flax_partitioning.axis_rules(self._logical_axis_rules): |
|
return self._pjitted_fn.lower(*args) |
|
|
|
|
|
class BasePjitPartitioner(BasePartitioner): |
|
"""Partitioner that uses T5X version of jax.pjit.""" |
|
|
|
@cached_property |
|
def _local_chunker(self) -> LocalChunker: |
|
return LocalChunker(self.mesh) |
|
|
|
@cached_property |
|
def mesh(self) -> Mesh: |
|
return default_mesh(self._num_partitions, self._model_parallel_submesh, self._backend) |
|
|
|
def partition( |
|
self, |
|
fn: Callable, |
|
in_axis_resources, |
|
out_axis_resources, |
|
static_argnums: Union[int, Sequence[int]] = (), |
|
donate_argnums: Union[int, Sequence[int]] = (), |
|
) -> PjittedFnWithContext: |
|
pjitted = pjit( |
|
fn, |
|
in_axis_resources=in_axis_resources, |
|
out_axis_resources=out_axis_resources, |
|
static_argnums=static_argnums, |
|
donate_argnums=donate_argnums, |
|
backend=self._backend, |
|
) |
|
|
|
return PjittedFnWithContext(pjitted, self.mesh) |
|
|
|
def compile(self, partitioned_fn: PjittedFnWithContext, *args) -> CompiledPartitionedCallable: |
|
return partitioned_fn.lower(*args).compile() |
|
|
|
|
|
class PjitPartitioner(BasePjitPartitioner): |
|
"""Partitioner that uses named axes and jax.pjit.""" |
|
|
|
def __init__( |
|
self, |
|
num_partitions: Optional[int] = None, |
|
model_parallel_submesh: Optional[HardwareMesh] = None, |
|
params_on_devices: bool = True, |
|
backend: Optional[str] = None, |
|
logical_axis_rules: Optional[LogicalAxisRules] = None, |
|
use_cpu_pjit: Optional[bool] = False, |
|
): |
|
"""PjitPartitioner constructor. |
|
|
|
See https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.mdx/usage/partitioning for details. |
|
|
|
Args: |
|
num_partitions: an integer that specifies the size of the model parallel |
|
submesh to be automatically selected for the current topology. See |
|
`model_parallel_submesh` for details on how this submesh is used. |
|
Mutually exlusive with `model_parallel_submesh`. |
|
model_parallel_submesh: is a 4-tuple that specifies the `(x, y, z, c)` |
|
submesh model-parallel device tile, an axis of accelerator parallelism |
|
orthogonal to data parallelism. Array axes in a model's parameters or |
|
activations can be sharded over this submesh using axis rules (see |
|
`logical_axis_rules`) that map them to 'model'. The effective number of |
|
model sub-partitions is equal to `np.prod(model_parallel_submesh)` and |
|
must evenly divide the total number of devices (i.e., |
|
`jax.device_count() % np.prod(model_parallel_submesh) == 0`). The rest |
|
of the TPU mesh is the data parallel submesh, providing |
|
`jax.device_count() // np.prod(model_parallel_submesh)` partitions. It |
|
is used for data (batch) parallelism and to shard other array axes that |
|
are mapped to 'data'. This argument is mutually exclusive with |
|
`num_partitions`. |
|
params_on_devices: whether to keep the params on devices, if False - |
|
params stay in the host memory. Note that some partitioners might ignore |
|
this setting, for example if they don't support storing all params on |
|
device memory. |
|
backend: get devices from the pinned backend, if specified. This is |
|
useful for explicitly specifying the devices other than relying on |
|
jax_platform_name. |
|
logical_axis_rules: a priority-ordered sequence of KV tuples that maps |
|
logical axis names to either `None` (not sharded), 'model' (to shard |
|
across the model-parallel submesh), or 'data' (to shard across the |
|
data-parallel submesh). |
|
use_cpu_pjit: enables wrapper function for pjit which just jits the |
|
function if using CPU backend. |
|
""" |
|
super().__init__( |
|
num_partitions=num_partitions, |
|
model_parallel_submesh=model_parallel_submesh, |
|
params_on_devices=params_on_devices, |
|
backend=backend, |
|
) |
|
if logical_axis_rules is None: |
|
logical_axis_rules = standard_logical_axis_rules() |
|
self._logical_axis_rules = tuple(logical_axis_rules) |
|
(self._data_axis,) = flax_partitioning.logical_to_mesh_axes(["batch"], logical_axis_rules) |
|
self._use_cpu_pjit = use_cpu_pjit |
|
|
|
def partition( |
|
self, |
|
fn: Callable, |
|
in_axis_resources, |
|
out_axis_resources, |
|
static_argnums: Union[int, Sequence[int]] = (), |
|
donate_argnums: Union[int, Sequence[int]] = (), |
|
) -> PjittedFnWithContext: |
|
"""Partitions the function using jax.pjit.""" |
|
if self._use_cpu_pjit: |
|
pjit_fn = pjit_with_cpu_fallback |
|
else: |
|
pjit_fn = pjit |
|
pjitted = pjit_fn( |
|
fn, |
|
in_axis_resources=in_axis_resources, |
|
out_axis_resources=out_axis_resources, |
|
static_argnums=static_argnums, |
|
donate_argnums=donate_argnums, |
|
backend=self._backend, |
|
) |
|
|
|
return PjittedFnWithContext(pjitted, self.mesh, self._logical_axis_rules) |
|
|
|
@property |
|
def logical_axis_rules(self): |
|
"""Returns the logical axis rules.""" |
|
return self._logical_axis_rules |
|
|
|
def get_logical_axes(self, train_state: TrainState) -> TrainState: |
|
"""Returns a copy of TrainState with Optional[AxisNames] as leaves.""" |
|
return train_state.as_logical_axes() |
|
|
|
def get_mesh_axes(self, train_state: TrainState) -> TrainState: |
|
"""Returns a copy of TrainState with Optional[PartitionSpecs] as leaves.""" |
|
logical_axes = self.get_logical_axes(train_state) |
|
|
|
def _logical_to_mesh_axes(param_name, logical_axes): |
|
if logical_axes is None: |
|
return None |
|
elif logical_axes is traverse_util.empty_node: |
|
return traverse_util.empty_node |
|
try: |
|
return flax_partitioning.logical_to_mesh_axes(logical_axes, self._logical_axis_rules) |
|
except ValueError as e: |
|
raise ValueError(f"Failed to map logical axes for {param_name}") from e |
|
|
|
flat_logical_axes = traverse_util.flatten_dict(logical_axes.state_dict(), keep_empty_nodes=True, sep="/") |
|
flat_mesh_axes = {k: _logical_to_mesh_axes(k, v) for k, v in flat_logical_axes.items()} |
|
|
|
return logical_axes.restore_state(traverse_util.unflatten_dict(flat_mesh_axes, sep="/")) |
|
|