|
command: |
|
- python3 |
|
- ${program} |
|
- --do_train |
|
- --do_eval |
|
- --use_scan |
|
- --gradient_checkpointing |
|
- --overwrite_output_dir |
|
- --predict_with_generate |
|
- --freeze_encoder |
|
- --streaming |
|
- --use_auth_token |
|
- --compilation_cache |
|
- --load_with_scan_weights |
|
- ${args} |
|
method: grid |
|
metric: |
|
goal: minimize |
|
name: eval/wer |
|
parameters: |
|
model_name_or_path: |
|
value: distil-whisper/large-32-2-ts-freeze-librispeech |
|
teacher_model_name_or_path: |
|
value: openai/whisper-large-v2 |
|
train_dataset_name: |
|
value: librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech |
|
train_dataset_config_name: |
|
value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L |
|
train_split_name: |
|
value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train |
|
train_dataset_samples: |
|
value: 100+360+500+2300+450+90+90+12000+450+3600+2500+5000 |
|
eval_dataset_name: |
|
value: "distil-whisper/gigaspeech-l" |
|
eval_dataset_config_name: |
|
value: "l" |
|
cache_dir: |
|
value: /fsx/sanchit/cache |
|
dataset_cache_dir: |
|
value: /fsx/sanchit/cache |
|
output_dir: |
|
value: ./ |
|
per_device_train_batch_size: |
|
value: 128 |
|
per_device_eval_batch_size: |
|
value: 128 |
|
dtype: |
|
value: bfloat16 |
|
learning_rate: |
|
values: |
|
- 1e-3 |
|
- 3e-4 |
|
- 1e-4 |
|
- 3e-5 |
|
- 1e-5 |
|
lr_scheduler_type: |
|
value: constant_with_warmup |
|
warmup_steps: |
|
value: 50 |
|
max_steps: |
|
value: 500 |
|
eval_steps: |
|
value: 500 |
|
save_steps: |
|
value: 501 |
|
dataloader_num_workers: |
|
value: 16 |
|
logging_steps: |
|
value: 5 |
|
wer_threshold: |
|
value: 10 |
|
program: run_distillation.py |
|
project: distil-whisper-sweeps |
|
|