|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Evaluating a Whisper model on one or more long-form evaluation datasets. |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import datasets |
|
import numpy as np |
|
import torch |
|
import transformers |
|
from datasets import DatasetDict, IterableDatasetDict, load_dataset |
|
from jiwer import process_words, wer_default |
|
from nltk import ngrams |
|
from tqdm import tqdm |
|
from transformers import ( |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
WhisperTokenizer, |
|
is_tensorboard_available, |
|
is_wandb_available, |
|
pipeline, |
|
) |
|
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.27.0.dev0") |
|
|
|
require_version( |
|
"datasets>=1.18.0", |
|
"To fix: update `datasets` to the latest version: `pip install --upgrade datasets[audio]`", |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
subfolder: str = field( |
|
default="", |
|
metadata={ |
|
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" |
|
"specify the folder name here." |
|
}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `transformers-cli login`" |
|
" (necessary to use this script with private models)." |
|
) |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"Floating-point format in which the model weights should be initialized" |
|
" and evaluated. Choose one of `[float32, float16, bfloat16]`." |
|
) |
|
}, |
|
) |
|
return_timestamps: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to predict timestamps (alongside the text predictions). Timestamp predictions " |
|
"are discarded at the end of inference, but may assist in the model in reducing hallucinations." |
|
}, |
|
) |
|
length_penalty: Optional[float] = field( |
|
default=1.0, |
|
metadata={ |
|
"help": ( |
|
"Exponential penalty to the length that is used with beam-based generation. It is applied as an " |
|
"exponent to the sequence length, which in turn is used to divide the score of the sequence. Since " |
|
"the score is the log likelihood of the sequence (i.e. negative), length_penalty > 1.0 promotes " |
|
"longer sequences, while length_penalty < 1.0 encourages shorter sequences." |
|
) |
|
}, |
|
) |
|
do_sample: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Whether or not to use sampling ; use greedy decoding otherwise."}, |
|
) |
|
top_k: Optional[int] = field( |
|
default=50, |
|
metadata={"help": "The number of the highest probability vocabulary tokens to keep for top-k-filtering."}, |
|
) |
|
temperature: Optional[float] = field( |
|
default=1.0, |
|
metadata={"help": "The value used to modulate the next token probabilities if sampling."}, |
|
) |
|
chunk_length_s: Optional[float] = field( |
|
default=0, |
|
metadata={ |
|
"help": "The input length for each chunk. By default, the chunk length is set to 0, which means no chunking." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset hours by a '+' symbol." |
|
}, |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_split_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The split name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."}, |
|
) |
|
max_label_length: int = field( |
|
default=256, |
|
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the wandb run."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
wandb_dir: str = field( |
|
default=None, |
|
metadata={"help": "The absolute path to save the wandb logs."}, |
|
) |
|
save_code_to_wandb: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to save main script to wandb. This is valuable for improving" |
|
" experiment reproducibility and to diff code across experiments in" |
|
" the UI." |
|
) |
|
}, |
|
) |
|
streaming: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, |
|
) |
|
log_audio: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "For debugging purposes, record the audio samples as well as the ground truths / preds."}, |
|
) |
|
log_predictions: Optional[bool] = field( |
|
default=True, |
|
metadata={"help": "Whether or not to log the ground truths / pred text to the wandb logger."}, |
|
) |
|
ngram_degree: Optional[int] = field( |
|
default=5, metadata={"help": "Degree of n-grams used when computing duplicate n-grams in the predicted text."} |
|
) |
|
|
|
|
|
def write_metric(summary_writer, eval_metrics, prefix="eval"): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.add_scalar(f"{prefix}/{metric_name}", value, 0) |
|
|
|
|
|
def write_wandb_metric(wandb_logger, metrics, train_time, prefix): |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
wandb_logger.log(log_metrics) |
|
|
|
|
|
def convert_audio_to_wandb(wandb_logger, audio): |
|
return wandb_logger.Audio(audio["array"][:, np.newaxis], sample_rate=audio["sampling_rate"]) |
|
|
|
|
|
def write_wandb_pred( |
|
wandb_logger, |
|
eval_audios, |
|
pred_str, |
|
label_str, |
|
norm_pred_str, |
|
norm_label_str, |
|
prefix="eval", |
|
): |
|
columns = ["Target", "Pred", "Norm Target", "Norm Pred"] |
|
|
|
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] |
|
|
|
if len(eval_audios) > 0: |
|
columns.insert(0, "Audio") |
|
str_data = [ |
|
[ |
|
convert_audio_to_wandb(wandb_logger, eval_audios[i]), |
|
*str_data[i], |
|
] |
|
for i in range(len(pred_str)) |
|
] |
|
|
|
|
|
wandb_logger.log( |
|
{f"{prefix}/predictions": wandb_logger.Table(columns=columns, data=str_data)}, |
|
) |
|
|
|
|
|
def convert_dataset_str_to_list( |
|
dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" |
|
): |
|
if isinstance(dataset_names, str): |
|
dataset_names = dataset_names.split("+") |
|
|
|
|
|
for i in range(len(dataset_names)): |
|
ds_name = dataset_names[i] |
|
dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name |
|
|
|
dataset_config_names = dataset_config_names.split("+") |
|
splits = splits.split("+") if splits is not None else None |
|
text_column_names = text_column_names.split("+") if text_column_names is not None else None |
|
dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None |
|
|
|
|
|
if len(dataset_names) != len(dataset_config_names): |
|
raise ValueError( |
|
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(dataset_config_names)} configs." |
|
) |
|
|
|
if splits is not None and len(splits) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." |
|
) |
|
|
|
if text_column_names is not None and len(text_column_names) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(text_column_names)} text column names." |
|
) |
|
|
|
if dataset_hours is not None: |
|
if len(dataset_hours) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " |
|
f"{len(dataset_hours)} hours." |
|
) |
|
dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] |
|
else: |
|
dataset_hours = [None] * len(dataset_names) |
|
|
|
text_column_names = ( |
|
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] |
|
) |
|
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] |
|
|
|
dataset_names_dict = [] |
|
for i, ds_name in enumerate(dataset_names): |
|
dataset_names_dict.append( |
|
{ |
|
"name": ds_name, |
|
"config": dataset_config_names[i], |
|
"split": splits[i], |
|
"text_column_name": text_column_names[i], |
|
"hours": dataset_hours[i], |
|
} |
|
) |
|
return dataset_names_dict |
|
|
|
|
|
def data(dataset, text_column_name="text", log_audio=False): |
|
for item in dataset: |
|
yield {**item["audio"], "reference": item[text_column_name], "audio": item["audio"] if log_audio else None} |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if "tensorboard" in training_args.report_to: |
|
if has_tensorboard: |
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=os.path.join(training_args.output_dir, "runs")) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because some" f" package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is" |
|
" not installed: Please run `pip install tensorboard` to enable." |
|
) |
|
|
|
|
|
has_wandb = is_wandb_available() |
|
if "wandb" in training_args.report_to: |
|
if has_wandb: |
|
import wandb as wandb_logger |
|
|
|
|
|
wandb_logger.init( |
|
project=data_args.wandb_project, |
|
name=data_args.wandb_name, |
|
job_type=data_args.wandb_job_type, |
|
dir=data_args.wandb_dir, |
|
save_code=data_args.save_code_to_wandb, |
|
) |
|
else: |
|
logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
|
|
logger.setLevel(logging.INFO) |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
logger.info("Evaluation parameters %s", training_args) |
|
|
|
|
|
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
|
|
|
|
|
|
dataset_names_dict = convert_dataset_str_to_list( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
splits=data_args.dataset_split_name, |
|
text_column_names=data_args.text_column_name, |
|
) |
|
|
|
|
|
for dataset_dict in dataset_names_dict: |
|
|
|
|
|
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" |
|
raw_datasets[pretty_name] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
streaming=data_args.streaming, |
|
) |
|
if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()): |
|
raise ValueError( |
|
f"--text column name {dataset_dict['text_column_name']} not found in the evaluation " |
|
f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " |
|
f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}" |
|
) |
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( |
|
dataset_dict["text_column_name"], "text" |
|
) |
|
|
|
|
|
raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) |
|
audio_column_name = data_args.audio_column_name |
|
|
|
if audio_column_name not in raw_datasets_features: |
|
raise ValueError( |
|
f"--audio_column_name '{audio_column_name}' not found in dataset" |
|
f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" |
|
" the correct audio column - one of" |
|
f" {', '.join(raw_datasets_features)}." |
|
) |
|
|
|
for split in raw_datasets: |
|
raw_datasets[split] = raw_datasets[split].remove_columns( |
|
set(raw_datasets[split].features.keys()) - {audio_column_name, "text"} |
|
) |
|
|
|
if data_args.max_eval_samples is not None: |
|
for split in raw_datasets: |
|
raw_datasets[split] = ( |
|
raw_datasets[split].take(data_args.max_eval_samples) |
|
if data_args.streaming |
|
else raw_datasets[split].select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
|
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
num_beams = training_args.generation_num_beams if training_args.generation_num_beams is not None else 1 |
|
|
|
model_kwargs = { |
|
"cache_dir": model_args.cache_dir, |
|
"use_auth_token": True if model_args.use_auth_token else None, |
|
"subfolder": model_args.subfolder, |
|
} |
|
|
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model_args.model_name_or_path, |
|
torch_dtype=getattr(torch, model_args.dtype), |
|
model_kwargs=model_kwargs, |
|
max_new_tokens=training_args.generation_max_length, |
|
batch_size=per_device_eval_batch_size, |
|
chunk_length_s=model_args.chunk_length_s, |
|
return_timestamps=model_args.return_timestamps, |
|
device="cuda:0" if torch.cuda.is_available() else "cpu", |
|
) |
|
|
|
if pipe.model.can_generate(): |
|
if pipe.model.config.decoder_start_token_id is None: |
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") |
|
generate_kwargs = { |
|
"num_beams": num_beams, |
|
"length_penalty": model_args.length_penalty, |
|
"do_sample": model_args.do_sample, |
|
"top_k": model_args.top_k, |
|
"temperature": model_args.temperature, |
|
} |
|
if hasattr(pipe.model.generation_config, "is_multilingual") and pipe.model.generation_config.is_multilingual: |
|
generate_kwargs = generate_kwargs.update({"langauge": "English", "task": "transcribe"}) |
|
else: |
|
generate_kwargs = None |
|
|
|
|
|
whisper_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en") |
|
normalizer = EnglishTextNormalizer(whisper_tokenizer.english_spelling_normalizer) |
|
|
|
def compute_metrics(pred_str, label_str, ngram_degree=5): |
|
|
|
norm_pred_str = [normalizer(pred) for pred in pred_str] |
|
norm_label_str = [normalizer(label) for label in label_str] |
|
|
|
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
wer_output = process_words(norm_label_str, norm_pred_str, wer_default, wer_default) |
|
wer_norm = 100 * wer_output.wer |
|
ier_norm = 100 * wer_output.insertions / sum([len(ref) for ref in wer_output.references]) |
|
ser_norm = 100 * wer_output.substitutions / sum([len(ref) for ref in wer_output.references]) |
|
der_norm = 100 * wer_output.deletions / sum([len(ref) for ref in wer_output.references]) |
|
|
|
all_ngrams = list(ngrams(" ".join(norm_pred_str).split(), ngram_degree)) |
|
repeated_ngrams = len(all_ngrams) - len(set(all_ngrams)) |
|
|
|
return ( |
|
{"wer": wer_norm, "ier": ier_norm, "ser": ser_norm, "der": der_norm, "repeated_ngrams": repeated_ngrams}, |
|
pred_str, |
|
label_str, |
|
norm_pred_str, |
|
norm_label_str, |
|
) |
|
|
|
def eval_step(split="eval"): |
|
|
|
eval_preds = [] |
|
eval_labels = [] |
|
eval_audios = [] |
|
eval_start = time.time() |
|
|
|
for sample in tqdm( |
|
pipe( |
|
data(raw_datasets[split], log_audio=data_args.log_audio), |
|
generate_kwargs=generate_kwargs, |
|
), |
|
desc=f"Evaluating {split}...", |
|
): |
|
eval_preds.append(sample["text"]) |
|
eval_labels.append(sample["reference"][0]) |
|
if data_args.log_audio: |
|
eval_audios.append(sample["audio"][0]) |
|
|
|
eval_time = time.time() - eval_start |
|
|
|
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( |
|
eval_preds, eval_labels, data_args.ngram_degree |
|
) |
|
wer_desc = " ".join([f"{split} {key}: {value} |" for key, value in wer_metric.items()]) |
|
|
|
|
|
logger.info(wer_desc) |
|
|
|
|
|
if has_tensorboard and "tensorboard" in training_args.report_to: |
|
write_metric(summary_writer, wer_metric, prefix=split) |
|
|
|
|
|
if has_wandb and "wandb" in training_args.report_to: |
|
write_wandb_metric(wandb_logger, wer_metric, eval_time, prefix=split) |
|
if data_args.log_predictions: |
|
write_wandb_pred( |
|
wandb_logger, eval_audios, pred_str, label_str, norm_pred_str, norm_label_str, prefix=split |
|
) |
|
|
|
logger.info("***** Running Eval *****") |
|
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") |
|
logger.info(f" Total eval batch size (w. parallel & distributed) = {training_args.per_device_eval_batch_size}") |
|
if pipe.model.can_generate(): |
|
logger.info(f" Beam size = {num_beams}") |
|
if num_beams > 1: |
|
logger.info(f" Length penalty size = {model_args.length_penalty}") |
|
logger.info(f" Do sample = {model_args.do_sample}") |
|
if model_args.do_sample: |
|
logger.info(f" Top k = {model_args.top_k}") |
|
logger.info(f" Temperature = {model_args.temperature}") |
|
|
|
for split in raw_datasets: |
|
eval_step(split=split) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|