|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Evaluating a Whisper model on one or more evaluation datasets. |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import string |
|
import sys |
|
import time |
|
from dataclasses import field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import evaluate |
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
import torch |
|
import transformers |
|
from datasets import Dataset, DatasetDict, IterableDatasetDict, load_dataset |
|
from flax import jax_utils |
|
from flax.jax_utils import pad_shard_unpad |
|
from flax.training.common_utils import get_metrics, onehot |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import ( |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
WhisperConfig, |
|
WhisperFeatureExtractor, |
|
WhisperProcessor, |
|
WhisperTokenizerFast, |
|
is_tensorboard_available, |
|
is_wandb_available, |
|
) |
|
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
from distil_whisper import FlaxWhisperForConditionalGeneration |
|
|
|
|
|
|
|
check_min_version("4.27.0.dev0") |
|
|
|
require_version( |
|
"datasets>=1.18.0", |
|
"To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@flax.struct.dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": ("Path to pretrained model or model identifier from huggingface.co/models")} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained config name or path if not the same as model_name"}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "feature extractor name or path if not the same as model_name"}, |
|
) |
|
processor_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "processor name or path if not the same as model_name"}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, |
|
) |
|
subfolder: str = field( |
|
default="", |
|
metadata={ |
|
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" |
|
"specify the folder name here." |
|
}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `transformers-cli login`" |
|
" (necessary to use this script with private models)." |
|
) |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"Floating-point format in which the model weights should be initialized" |
|
" and trained. Choose one of `[float32, float16, bfloat16]`." |
|
) |
|
}, |
|
) |
|
load_with_scan: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to load the model with scan enabled. Required when the model was saved with scan enabled" |
|
) |
|
}, |
|
) |
|
return_timestamps: bool = field( |
|
default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset hours by a '+' symbol." |
|
}, |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_split_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The split name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to `text`."}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=30.0, |
|
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, |
|
metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}, |
|
) |
|
max_label_length: int = field( |
|
default=128, |
|
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, |
|
) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set will pad the target sequence to a multiple of the provided" |
|
" value. This is important to avoid triggering recompilations on TPU." |
|
" If unspecified, will default to padding the targets to max length." |
|
) |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is" |
|
" especially useful when data preprocessing errors out in distributed" |
|
" training due to timeout. In this case, one should run the" |
|
" preprocessing in a non-distributed setup with" |
|
" `preprocessing_only=True` so that the cached datasets can" |
|
" consequently be loaded in distributed training" |
|
) |
|
}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the wandb run."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
wandb_dir: str = field( |
|
default=None, |
|
metadata={"help": "The absolute path to save the wandb logs."}, |
|
) |
|
save_code_to_wandb: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to save main script to wandb. This is valuable for improving" |
|
" experiment reproducibility and to diff code across experiments in" |
|
" the UI." |
|
) |
|
}, |
|
) |
|
streaming: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."}, |
|
) |
|
log_audio: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "For debugging purposes, record the audio samples as well as the ground truths / preds."}, |
|
) |
|
|
|
|
|
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: |
|
""" |
|
Shift label ids one token to the right. |
|
""" |
|
shifted_label_ids = np.zeros_like(label_ids) |
|
shifted_label_ids[:, 1:] = label_ids[:, :-1] |
|
shifted_label_ids[:, 0] = decoder_start_token_id |
|
|
|
return shifted_label_ids |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxDataCollatorSpeechSeq2SeqWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor ([`Wav2Vec2Processor`]) |
|
The processor used for proccessing the data. |
|
decoder_start_token_id (:obj: `int`) |
|
The begin-of-sentence of the decoder. |
|
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_target_length (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` of the returned list and optionally padding length (see above). |
|
log_audio (:obj:`bool`): |
|
Whether we're logging audio samples as part of our eval. If so, will forward on the audio samples to the batch. |
|
audio_column_name (:obj:`str`): |
|
Name of the audio column in the dataset. Only relevant if logging audio samples. |
|
""" |
|
|
|
processor: Any |
|
decoder_start_token_id: int |
|
input_padding: Union[bool, str] = "max_length" |
|
target_padding: Union[bool, str] = "max_length" |
|
max_target_length: Optional[int] = None |
|
log_audio: Optional[bool] = False |
|
audio_column_name: Optional[str] = "audio" |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: |
|
|
|
|
|
model_input_name = self.processor.model_input_names[0] |
|
|
|
|
|
input_features = {model_input_name: [feature[model_input_name] for feature in features]} |
|
label_features = {"input_ids": [feature["labels"] for feature in features]} |
|
|
|
|
|
batch = self.processor.feature_extractor.pad( |
|
input_features, |
|
padding=self.input_padding, |
|
return_tensors="np", |
|
) |
|
|
|
labels_batch = self.processor.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_target_length, |
|
padding=self.target_padding, |
|
return_tensors="np", |
|
) |
|
|
|
|
|
|
|
labels = labels_batch["input_ids"] |
|
if (labels[:, 0] == self.decoder_start_token_id).all().item(): |
|
labels = labels[:, 1:] |
|
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] |
|
|
|
decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) |
|
|
|
|
|
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) |
|
labels = labels.filled(fill_value=-100) |
|
|
|
batch["labels"] = labels |
|
batch["decoder_input_ids"] = decoder_input_ids |
|
|
|
if self.log_audio: |
|
audio_samples = [feature[self.audio_column_name] for feature in features] |
|
batch["audio"] = audio_samples |
|
|
|
return batch |
|
|
|
|
|
def get_data_loader( |
|
dataset: Dataset, |
|
batch_size: int, |
|
data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding, |
|
dataloader_num_workers: int = 0, |
|
pin_memory: bool = True, |
|
) -> DataLoader: |
|
""" |
|
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, |
|
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. |
|
|
|
Args: |
|
dataset (Dataset): dataset from which to load the data. |
|
batch_size (int): how many samples per batch to load. |
|
data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a |
|
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. |
|
dataloader_num_workers (int, optional): how many subprocesses to use for data |
|
loading. ``0`` means that the data will be loaded in the main process. |
|
(default: ``0``) |
|
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors |
|
into device/CUDA pinned memory before returning them. If your data elements |
|
are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, |
|
see the example below. |
|
""" |
|
|
|
data_loader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
drop_last=False, |
|
pin_memory=pin_memory, |
|
collate_fn=data_collator, |
|
num_workers=dataloader_num_workers, |
|
) |
|
|
|
return data_loader |
|
|
|
|
|
def write_metric(summary_writer, eval_metrics, step, prefix="eval"): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"{prefix}/{metric_name}", value, step) |
|
|
|
|
|
def write_wandb_metric(wandb_logger, metrics, train_time, prefix): |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
wandb_logger.log(log_metrics) |
|
|
|
|
|
def convert_audio_to_wandb(wandb_logger, audio): |
|
return wandb_logger.Audio(audio["array"][:, np.newaxis], sample_rate=audio["sampling_rate"]) |
|
|
|
|
|
def write_wandb_pred( |
|
wandb_logger, |
|
eval_audios, |
|
pred_str, |
|
label_str, |
|
norm_pred_str, |
|
norm_label_str, |
|
prefix="eval", |
|
num_lines=200000, |
|
): |
|
columns = ["Target", "Pred", "Norm Target", "Norm Pred"] |
|
|
|
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] |
|
|
|
if len(eval_audios) > 0: |
|
columns.insert(0, "Audio") |
|
str_data = [ |
|
[ |
|
convert_audio_to_wandb(wandb_logger, eval_audios[i]), |
|
*str_data[i], |
|
] |
|
for i in range(len(pred_str)) |
|
] |
|
|
|
|
|
wandb_logger.log( |
|
{f"{prefix}/all_predictions": wandb_logger.Table(columns=columns, data=str_data[:num_lines])}, |
|
) |
|
|
|
str_data = np.asarray(str_data) |
|
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] |
|
|
|
wandb_logger.log( |
|
{f"{prefix}/incorrect_predictions": wandb_logger.Table(columns=columns, data=str_data_incorrect[:num_lines])}, |
|
) |
|
|
|
|
|
def convert_dataset_str_to_list( |
|
dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train" |
|
): |
|
if isinstance(dataset_names, str): |
|
dataset_names = dataset_names.split("+") |
|
|
|
|
|
for i in range(len(dataset_names)): |
|
ds_name = dataset_names[i] |
|
dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name |
|
|
|
dataset_config_names = dataset_config_names.split("+") |
|
splits = splits.split("+") if splits is not None else None |
|
text_column_names = text_column_names.split("+") if text_column_names is not None else None |
|
dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None |
|
|
|
|
|
if len(dataset_names) != len(dataset_config_names): |
|
raise ValueError( |
|
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(dataset_config_names)} configs." |
|
) |
|
|
|
if splits is not None and len(splits) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." |
|
) |
|
|
|
if text_column_names is not None and len(text_column_names) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(text_column_names)} text column names." |
|
) |
|
|
|
if dataset_hours is not None: |
|
if len(dataset_hours) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and " |
|
f"{len(dataset_hours)} hours." |
|
) |
|
dataset_hours = [float(ds_hours) for ds_hours in dataset_hours] |
|
else: |
|
dataset_hours = [None] * len(dataset_names) |
|
|
|
text_column_names = ( |
|
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] |
|
) |
|
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] |
|
|
|
dataset_names_dict = [] |
|
for i, ds_name in enumerate(dataset_names): |
|
dataset_names_dict.append( |
|
{ |
|
"name": ds_name, |
|
"config": dataset_config_names[i], |
|
"split": splits[i], |
|
"text_column_name": text_column_names[i], |
|
"hours": dataset_hours[i], |
|
} |
|
) |
|
return dataset_names_dict |
|
|
|
|
|
class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor): |
|
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: |
|
""" |
|
Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation |
|
computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation |
|
in transformers, and matches to within 1e-5 abs tolerance. |
|
""" |
|
waveform = torch.from_numpy(waveform).type(torch.float32) |
|
|
|
window = torch.hann_window(self.n_fft) |
|
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) |
|
magnitudes = stft[..., :-1].abs() ** 2 |
|
|
|
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) |
|
mel_spec = mel_filters.T @ magnitudes |
|
|
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10() |
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) |
|
log_spec = (log_spec + 4.0) / 4.0 |
|
return log_spec.numpy() |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax") |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
logger.info("Evaluation parameters %s", training_args) |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if "tensorboard" in training_args.report_to: |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because some" f" package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is" |
|
" not installed: Please run `pip install tensorboard` to enable." |
|
) |
|
|
|
|
|
has_wandb = is_wandb_available() |
|
if "wandb" in training_args.report_to: |
|
if has_wandb and jax.process_index() == 0: |
|
import wandb as wandb_logger |
|
|
|
|
|
wandb_logger.init( |
|
project=data_args.wandb_project, |
|
name=data_args.wandb_name, |
|
job_type=data_args.wandb_job_type, |
|
dir=data_args.wandb_dir, |
|
save_code=data_args.save_code_to_wandb, |
|
) |
|
else: |
|
logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") |
|
|
|
|
|
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
|
|
|
|
|
|
dataset_names_dict = convert_dataset_str_to_list( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
splits=data_args.dataset_split_name, |
|
text_column_names=data_args.text_column_name, |
|
) |
|
|
|
if len(dataset_names_dict) == 1: |
|
|
|
dataset_dict = dataset_names_dict[0] |
|
raw_datasets["eval"] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
streaming=data_args.streaming, |
|
) |
|
if dataset_dict["text_column_name"] not in list(raw_datasets["eval"].features.keys()): |
|
raise ValueError( |
|
f"--text column name {dataset_dict['text_column_name']} not found in the evaluation " |
|
f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " |
|
f"for the target text. Should be one of {' '.join(list(raw_datasets['eval'].features.keys()))}" |
|
) |
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets["eval"] = raw_datasets["eval"].rename_column(dataset_dict["text_column_name"], "text") |
|
else: |
|
|
|
for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."): |
|
|
|
|
|
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" |
|
raw_datasets[pretty_name] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
streaming=data_args.streaming, |
|
) |
|
if dataset_dict["text_column_name"] not in list(raw_datasets[pretty_name].features.keys()): |
|
raise ValueError( |
|
f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation " |
|
f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column " |
|
f"for the target text. Should be one of {' '.join(list(raw_datasets[pretty_name].features.keys()))}" |
|
) |
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( |
|
dataset_dict["text_column_name"], "text" |
|
) |
|
|
|
|
|
config = WhisperConfig.from_pretrained( |
|
(model_args.config_name if model_args.config_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained( |
|
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = WhisperTokenizerFast.from_pretrained( |
|
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
processor = WhisperProcessor.from_pretrained( |
|
(model_args.processor_name if model_args.processor_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
model, params = FlaxWhisperForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
dtype=getattr(jnp, model_args.dtype), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
_do_init=False, |
|
subfolder=model_args.subfolder, |
|
|
|
) |
|
|
|
if model.config.decoder_start_token_id is None: |
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") |
|
|
|
|
|
if model_args.load_with_scan: |
|
model.disable_scan() |
|
params = model.convert_scan_to_unroll(params) |
|
|
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, |
|
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), |
|
) |
|
|
|
|
|
|
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length |
|
) |
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
dataloader_num_workers = training_args.dataloader_num_workers |
|
model_input_name = feature_extractor.model_input_names[0] |
|
normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer) |
|
|
|
if data_args.max_eval_samples is not None: |
|
for split in raw_datasets: |
|
raw_datasets[split] = ( |
|
raw_datasets[split].take(data_args.max_eval_samples) |
|
if data_args.streaming |
|
else raw_datasets[split].select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
|
|
batch[model_input_name] = inputs.get(model_input_name)[0] |
|
|
|
|
|
input_str = batch["text"] |
|
batch["labels"] = tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids |
|
return batch |
|
|
|
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
for split in raw_datasets: |
|
raw_datasets_features = list(raw_datasets[split].features.keys()) |
|
if data_args.log_audio: |
|
|
|
raw_datasets_features.remove(audio_column_name) |
|
|
|
map_fn = partial( |
|
raw_datasets[split].map, |
|
function=prepare_dataset, |
|
remove_columns=raw_datasets_features, |
|
) |
|
|
|
vectorized_datasets[split] = ( |
|
map_fn(num_proc=num_workers, desc="preprocess eval dataset") |
|
if not data_args.streaming |
|
else map_fn() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
metric = evaluate.load("wer") |
|
|
|
all_punctuation = list(string.punctuation.replace("'", "")) |
|
return_timestamps = model_args.return_timestamps |
|
|
|
def compute_metrics(preds, labels): |
|
|
|
for idx in range(len(labels)): |
|
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id |
|
|
|
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) |
|
|
|
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
spaced_pred_str = [ |
|
pred_str[i].replace(punctuation, f" {punctuation} ") |
|
for punctuation in all_punctuation |
|
for i in range(len(pred_str)) |
|
] |
|
spaced_label_str = [ |
|
label_str[i].replace(punctuation, f" {punctuation} ") |
|
for punctuation in all_punctuation |
|
for i in range(len(label_str)) |
|
] |
|
wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str) |
|
|
|
|
|
norm_pred_str = [normalizer(pred) for pred in pred_str] |
|
norm_label_str = [normalizer(label) for label in label_str] |
|
|
|
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) |
|
|
|
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str |
|
|
|
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( |
|
processor=processor, |
|
decoder_start_token_id=model.config.decoder_start_token_id, |
|
input_padding="longest", |
|
target_padding="max_length", |
|
max_target_length=max_label_length, |
|
log_audio=data_args.log_audio, |
|
) |
|
|
|
|
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
eval_batch_size = per_device_eval_batch_size * jax.device_count() |
|
|
|
|
|
def loss_fn(logits, labels, label_smoothing_factor=0.0): |
|
""" |
|
The label smoothing implementation is adapted from Flax's official example: |
|
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 |
|
""" |
|
vocab_size = logits.shape[-1] |
|
confidence = 1.0 - label_smoothing_factor |
|
low_confidence = (1.0 - confidence) / (vocab_size - 1) |
|
normalizing_constant = -( |
|
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) |
|
) |
|
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) |
|
|
|
loss = optax.softmax_cross_entropy(logits, soft_labels) |
|
loss = loss - normalizing_constant |
|
|
|
|
|
padding_mask = labels >= 0 |
|
loss = loss * padding_mask |
|
loss = loss.sum() |
|
num_labels = padding_mask.sum() |
|
return loss, num_labels |
|
|
|
|
|
def eval_step(params, batch, label_smoothing_factor=0.0): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, freeze_encoder=True, train=False)[0] |
|
|
|
loss, num_labels = loss_fn(logits, labels, label_smoothing_factor) |
|
num_labels = jax.lax.psum(num_labels, "batch") |
|
|
|
|
|
loss = jax.lax.psum(loss, "batch") |
|
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) |
|
|
|
metrics = {"loss": loss} |
|
return metrics |
|
|
|
|
|
num_beams = ( |
|
training_args.generation_num_beams |
|
if training_args.generation_num_beams is not None |
|
else model.config.num_beams |
|
) |
|
|
|
|
|
gen_kwargs = { |
|
"max_length": max_label_length, |
|
"num_beams": num_beams, |
|
"language": "<|en|>", |
|
"task": "transcribe", |
|
"return_timestamps": return_timestamps, |
|
} |
|
|
|
def generate_step(params, batch): |
|
output_ids = model.generate( |
|
batch[model_input_name], |
|
attention_mask=batch.get("attention_mask"), |
|
params=params, |
|
freeze_encoder=True, |
|
**gen_kwargs, |
|
) |
|
return output_ids.sequences |
|
|
|
|
|
p_eval_step = jax.pmap( |
|
partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), |
|
"batch", |
|
) |
|
p_generate_step = jax.pmap(generate_step, "batch") |
|
|
|
|
|
params = jax_utils.replicate(params) |
|
|
|
def eval_step(split="eval"): |
|
|
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
eval_audios = [] |
|
eval_start = time.time() |
|
|
|
eval_loader = get_data_loader( |
|
vectorized_datasets[split], |
|
batch_size=eval_batch_size, |
|
data_collator=data_collator, |
|
dataloader_num_workers=dataloader_num_workers, |
|
) |
|
for batch in tqdm(eval_loader, desc=f"Evaluating {split}..."): |
|
|
|
labels = batch["labels"] |
|
if data_args.log_audio: |
|
eval_audios.extend(batch.pop("audio")) |
|
|
|
metrics = pad_shard_unpad(p_eval_step, static_return=True)( |
|
params, batch.data, min_device_batch=per_device_eval_batch_size |
|
) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
if training_args.predict_with_generate: |
|
generated_ids = pad_shard_unpad(p_generate_step)( |
|
params, batch.data, min_device_batch=per_device_eval_batch_size |
|
) |
|
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) |
|
eval_labels.extend(labels) |
|
|
|
eval_time = time.time() - eval_start |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
wer_desc = "" |
|
if training_args.predict_with_generate: |
|
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(eval_preds, eval_labels) |
|
eval_metrics.update(wer_metric) |
|
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) |
|
|
|
|
|
logger.info(f"Eval Loss: {eval_metrics['loss']} | {wer_desc})") |
|
|
|
|
|
if has_tensorboard and jax.process_index() == 0 and "tensorboard" in training_args.report_to: |
|
write_metric(summary_writer, eval_metrics, model_args.step, prefix=split) |
|
|
|
if has_wandb and jax.process_index() == 0 and "wandb" in training_args.report_to: |
|
write_wandb_metric(wandb_logger, eval_metrics, eval_time, prefix=split) |
|
if training_args.predict_with_generate: |
|
write_wandb_pred( |
|
wandb_logger, eval_audios, pred_str, label_str, norm_pred_str, norm_label_str, prefix=split |
|
) |
|
|
|
logger.info("***** Running Eval *****") |
|
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") |
|
logger.info(f" Total eval batch size (w. parallel & distributed) = {eval_batch_size}") |
|
for split in vectorized_datasets: |
|
eval_step(split=split) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|