|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Pseudo-labelling audio data using the Whisper model in preparation for distillation. |
|
""" |
|
|
|
|
|
import csv |
|
import logging |
|
import os |
|
import sys |
|
import time |
|
import warnings |
|
from dataclasses import dataclass, field |
|
from datetime import timedelta |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import evaluate |
|
import numpy as np |
|
import torch |
|
import transformers |
|
from accelerate import Accelerator, InitProcessGroupKwargs |
|
from accelerate.logging import get_logger |
|
from datasets import ( |
|
DatasetDict, |
|
IterableDatasetDict, |
|
load_dataset, |
|
) |
|
from huggingface_hub import HfFolder, create_repo, get_full_repo_name, snapshot_download, upload_folder |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import ( |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
WhisperConfig, |
|
WhisperFeatureExtractor, |
|
WhisperForConditionalGeneration, |
|
WhisperProcessor, |
|
WhisperTokenizerFast, |
|
) |
|
from transformers.models.whisper.english_normalizer import BasicTextNormalizer, EnglishTextNormalizer |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.34.0.dev0") |
|
|
|
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to distill from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained config name or path if not the same as model_name"}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "feature extractor name or path if not the same as model_name"}, |
|
) |
|
processor_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "processor name or path if not the same as model_name"}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
subfolder: str = field( |
|
default="", |
|
metadata={ |
|
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" |
|
"specify the folder name here." |
|
}, |
|
) |
|
token: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " |
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." |
|
) |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"The data type (dtype) in which to load the model weights. One of `float32` (full-precision), " |
|
"`float16` or `bfloat16` (both half-precision)." |
|
) |
|
}, |
|
) |
|
attn_implementation: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n" |
|
"1. `eager` or `None`: default Transformers attention implementation.\n" |
|
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" |
|
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." |
|
) |
|
}, |
|
) |
|
attn_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Deprecated. Use `attn_implementation` instead."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.attn_type is not None and self.attn_implementation is None: |
|
|
|
if self.attn_type == "flash_attn": |
|
self.attn_implementation = "sdpa" |
|
elif self.attn_type == "flash_attn_2": |
|
self.attn_implementation = "flash_attention_2" |
|
elif self.attn_type in [None, "eager", "sdpa", "flash_attention_2"]: |
|
self.attn_implementation = self.attn_type |
|
else: |
|
raise ValueError( |
|
f"Argument `--attn_type` is deprecated, and set to an invalid option `{self.attn_type}`. You should omit the argument `--attn_type`, and instead set `-attention_implementation` to one of the following:\n" |
|
"1. `eager` or `None`: default Transformers attention implementation.\n" |
|
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" |
|
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." |
|
) |
|
warnings.warn( |
|
f"Argument `--attn_type` is deprecated. Use `--attn_implementation` instead. Inferring `--attn_implementation={self.attn_implementation} from argument `--attn_type={self.attn_type}`." |
|
) |
|
elif self.attn_type is not None and self.attn_implementation is not None: |
|
raise ValueError( |
|
"`--attn_type` and `--attn_implementation` are both specified. Only the argument `--attn_implementation`." |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
preprocessing_batch_size: Optional[int] = field( |
|
default=500, |
|
metadata={"help": "The batch size to use for the dataset pre-processing."}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default="text", |
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'."}, |
|
) |
|
id_column_name: str = field( |
|
default="id", |
|
metadata={"help": "The name of the dataset column containing the id data. Defaults to 'id'"}, |
|
) |
|
speaker_id_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the speaker id data. Defaults to None."}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=30.0, |
|
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}, |
|
) |
|
max_label_length: int = field( |
|
default=256, |
|
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, |
|
) |
|
concatenate_audio: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to concatenate the audio samples to `max_duration_in_seconds`."}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is" |
|
" especially useful when data preprocessing errors out in distributed" |
|
" training due to timeout. In this case, one should run the" |
|
" preprocessing in a non-distributed setup with" |
|
" `preprocessing_only=True` so that the cached datasets can" |
|
" consequently be loaded in distributed training" |
|
) |
|
}, |
|
) |
|
dataset_split_name: str = field( |
|
default="train+validation+test", |
|
metadata={ |
|
"help": ( |
|
"The name of the data set splits to use (via the datasets library)." |
|
" Defaults to 'train+validation+test'. Multiple splits can be passed by splitting a" |
|
" list through the '+' character, e.g. 'train+validation' will" |
|
" pseudo-label both the 'train' and 'validation' splits sequentially." |
|
) |
|
}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
streaming: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to use dataset's streaming mode to load and pre-process the data."}, |
|
) |
|
max_samples_per_split: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "For debugging purposes, truncate the number of examples per split to this value if set."}, |
|
) |
|
return_timestamps: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to return the timestamps with the text. This enables the `FlaxWhisperTimestampsLogitsProcessor`." |
|
}, |
|
) |
|
language: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Language for multilingual distillation. This argument should be set for multilingual distillation " |
|
"only. For English speech recognition, it should be left as `None`." |
|
) |
|
}, |
|
) |
|
task: str = field( |
|
default="transcribe", |
|
metadata={ |
|
"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation." |
|
"This argument should be set for multilingual distillation only. For English speech recognition, it should be left as `None`." |
|
}, |
|
) |
|
decode_token_ids: bool = field( |
|
default=True, |
|
metadata={"help": "Deprecated. The predicted token ids should always be decoded to text transcriptions."}, |
|
) |
|
private_dataset: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to create a private dataset for the pseudo-labelled data."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if not self.decode_token_ids: |
|
raise ValueError( |
|
"The argument `--decode_token_ids` is deprecated. The token ids are now always decoded to " |
|
"their corresponding text string. This is following a fix to the merges of the Whisper tokenizer" |
|
"on the Hugging Face Hub: https://huggingface.co/openai/whisper-large-v2/discussions/100. " |
|
"You should either omit the argument `--decode_token_ids`, or set it to True explicitly." |
|
) |
|
|
|
|
|
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: |
|
""" |
|
Shift label ids one token to the right. |
|
""" |
|
shifted_label_ids = np.zeros_like(label_ids) |
|
shifted_label_ids[:, 1:] = label_ids[:, :-1] |
|
shifted_label_ids[:, 0] = decoder_start_token_id |
|
|
|
return shifted_label_ids |
|
|
|
|
|
@dataclass |
|
class DataCollatorSpeechSeq2SeqWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor ([`Wav2Vec2Processor`]) |
|
The processor used for proccessing the data. |
|
decoder_start_token_id (:obj: `int`) |
|
The start-of-sequence token id of the decoder. |
|
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_target_length (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` of the returned list and optionally padding length (see above). |
|
""" |
|
|
|
processor: Any |
|
decoder_start_token_id: int |
|
input_padding: Union[bool, str] = "max_length" |
|
target_padding: Union[bool, str] = "max_length" |
|
max_target_length: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: |
|
|
|
|
|
model_input_name = self.processor.model_input_names[0] |
|
|
|
|
|
input_features = {model_input_name: [feature[model_input_name] for feature in features]} |
|
label_features = {"input_ids": [feature["labels"] for feature in features]} |
|
|
|
|
|
batch = self.processor.feature_extractor.pad( |
|
input_features, |
|
padding=self.input_padding, |
|
return_tensors="pt", |
|
) |
|
|
|
labels_batch = self.processor.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_target_length, |
|
padding=self.target_padding, |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) |
|
|
|
|
|
|
|
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): |
|
labels = labels[:, 1:] |
|
|
|
batch["labels"] = labels |
|
return batch |
|
|
|
|
|
def log_metric( |
|
accelerator, |
|
metrics: Dict, |
|
train_time: float, |
|
prefix: str = "eval", |
|
): |
|
"""Helper function to log all evaluation metrics with the correct prefixes and styling.""" |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
accelerator.log(log_metrics) |
|
|
|
|
|
def log_pred( |
|
accelerator, |
|
pred_str: List[str], |
|
label_str: List[str], |
|
norm_pred_str: List[str], |
|
norm_label_str: List[str], |
|
prefix: str = "eval", |
|
num_lines: int = 200000, |
|
): |
|
"""Helper function to log target/predicted transcriptions to weights and biases (wandb).""" |
|
if accelerator.is_main_process: |
|
wandb_tracker = accelerator.get_tracker("wandb") |
|
|
|
prefix = prefix.replace("/", "-") |
|
|
|
|
|
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] |
|
|
|
wandb_tracker.log_table( |
|
table_name=f"{prefix}/all_predictions", |
|
columns=["Target", "Pred", "Norm Target", "Norm Pred"], |
|
data=str_data[:num_lines], |
|
) |
|
|
|
|
|
str_data = np.asarray(str_data) |
|
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] |
|
|
|
wandb_tracker.log_table( |
|
table_name=f"{prefix}/incorrect_predictions", |
|
columns=["Target", "Pred", "Norm Target", "Norm Pred"], |
|
data=str_data_incorrect[:num_lines], |
|
) |
|
|
|
|
|
def main(): |
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_args.dtype == "float16": |
|
mixed_precision = "fp16" |
|
torch_dtype = torch.float16 |
|
elif model_args.dtype == "bfloat16": |
|
mixed_precision = "bf16" |
|
torch_dtype = torch.bfloat16 |
|
else: |
|
mixed_precision = "no" |
|
torch_dtype = torch.float32 |
|
|
|
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=training_args.gradient_accumulation_steps, |
|
mixed_precision=mixed_precision, |
|
log_with=training_args.report_to, |
|
project_dir=training_args.output_dir, |
|
kwargs_handlers=[kwargs], |
|
) |
|
|
|
accelerator.init_trackers(project_name=data_args.wandb_project) |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " |
|
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
|
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
token = model_args.token if model_args.token is not None else HfFolder().get_token() |
|
|
|
data_splits = data_args.dataset_split_name.split("+") |
|
for split in data_splits: |
|
with accelerator.main_process_first(): |
|
raw_datasets[split] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=split, |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=token, |
|
streaming=data_args.streaming, |
|
num_proc=data_args.preprocessing_num_workers if not data_args.streaming else None, |
|
) |
|
|
|
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset" |
|
f" '{data_args.dataset_name}'. Make sure to set `--audio_column_name` to" |
|
" the correct audio column - one of" |
|
f" {', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--text_column_name {data_args.text_column_name} not found in dataset" |
|
f" '{data_args.dataset_name}'. Make sure to set `--text_column_name` to the" |
|
" correct text column - one of" |
|
f" {', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
|
|
config = WhisperConfig.from_pretrained( |
|
(model_args.config_name if model_args.config_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=token, |
|
) |
|
feature_extractor = WhisperFeatureExtractor.from_pretrained( |
|
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=token, |
|
) |
|
tokenizer = WhisperTokenizerFast.from_pretrained( |
|
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
token=token, |
|
) |
|
processor = WhisperProcessor.from_pretrained( |
|
(model_args.processor_name if model_args.processor_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=token, |
|
) |
|
|
|
model = WhisperForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
subfolder=model_args.subfolder, |
|
token=token, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch_dtype, |
|
attn_implementation=model_args.attn_implementation, |
|
) |
|
model.eval() |
|
|
|
if model.config.decoder_start_token_id is None: |
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") |
|
|
|
return_timestamps = data_args.return_timestamps |
|
if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: |
|
is_multilingual = True |
|
|
|
tokenizer.set_prefix_tokens( |
|
language=data_args.language, task=data_args.task, predict_timestamps=return_timestamps |
|
) |
|
elif data_args.language is not None: |
|
raise ValueError( |
|
"Setting language token for an English-only checkpoint is not permitted. The language argument should " |
|
"only be set for multilingual checkpoints." |
|
) |
|
else: |
|
is_multilingual = False |
|
|
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, |
|
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate), |
|
) |
|
|
|
|
|
|
|
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) |
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length |
|
) |
|
audio_column_name = data_args.audio_column_name |
|
sampling_rate = feature_extractor.sampling_rate |
|
|
|
preprocessing_batch_size = data_args.preprocessing_batch_size |
|
num_workers = data_args.preprocessing_num_workers |
|
dataloader_num_workers = training_args.dataloader_num_workers |
|
|
|
text_column_name = data_args.text_column_name |
|
model_input_name = feature_extractor.model_input_names[0] |
|
id_column_name = data_args.id_column_name |
|
speaker_id_column_name = data_args.speaker_id_column_name |
|
normalizer = ( |
|
BasicTextNormalizer() |
|
if data_args.language is not None |
|
else EnglishTextNormalizer(tokenizer.english_spelling_normalizer) |
|
) |
|
|
|
timestamp_position = 3 if is_multilingual else 1 |
|
decoder_prev_token_id = tokenizer.convert_tokens_to_ids("<|startofprev|>") |
|
decoder_eot_token_id = tokenizer.eos_token_id |
|
|
|
if data_args.max_samples_per_split is not None: |
|
for split in data_splits: |
|
raw_datasets[split] = ( |
|
raw_datasets[split].take(data_args.max_samples_per_split) |
|
if data_args.streaming |
|
else raw_datasets[split].select(range(data_args.max_samples_per_split)) |
|
) |
|
|
|
if speaker_id_column_name is not None: |
|
raw_datasets = raw_datasets.sort(speaker_id_column_name) |
|
|
|
def concatenate_dataset(batch): |
|
audio = [sample["array"] for sample in batch[audio_column_name]] |
|
input_lengths = [len(sample) for sample in audio] |
|
|
|
text = batch[text_column_name] |
|
speaker_id = batch[speaker_id_column_name] if speaker_id_column_name else len(text) * [None] |
|
|
|
concatenated_audio = [] |
|
concatenated_text = [] |
|
concatenated_speaker = [] |
|
condition_on_prev = [] |
|
audio_sample = audio[0] |
|
text_sample = text[0] |
|
|
|
for idx in range(1, len(audio)): |
|
prev_speaker = speaker_id[idx - 1] |
|
speaker = speaker_id[idx] |
|
|
|
if len(audio_sample) + input_lengths[idx] < max_input_length: |
|
if speaker == prev_speaker: |
|
|
|
|
|
audio_sample = np.append(audio_sample, audio[idx]) |
|
|
|
text_sample += " " + text[idx] |
|
else: |
|
|
|
concatenated_audio.append(audio_sample) |
|
concatenated_text.append(text_sample) |
|
concatenated_speaker.append(speaker) |
|
condition_on_prev.append(0) |
|
audio_sample = audio[idx] |
|
text_sample = text[idx] |
|
|
|
else: |
|
|
|
concatenated_audio.append(audio_sample) |
|
concatenated_text.append(text_sample) |
|
concatenated_speaker.append(speaker) |
|
condition_on_prev.append(1) |
|
audio_sample = audio[idx] |
|
text_sample = text[idx] |
|
|
|
batch[audio_column_name] = [{"array": array, "sampling_rate": sampling_rate} for array in concatenated_audio] |
|
batch[text_column_name] = concatenated_text |
|
batch[id_column_name] = concatenated_speaker |
|
batch["condition_on_prev"] = condition_on_prev |
|
|
|
return batch |
|
|
|
raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) |
|
if data_args.concatenate_audio and not data_args.streaming: |
|
with accelerator.main_process_first(): |
|
raw_datasets = raw_datasets.map( |
|
concatenate_dataset, |
|
batched=True, |
|
batch_size=preprocessing_batch_size, |
|
num_proc=num_workers, |
|
remove_columns=set(raw_datasets_features) |
|
- {audio_column_name, text_column_name, id_column_name, "condition_on_prev"}, |
|
desc="Concatenating dataset...", |
|
) |
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate) |
|
) |
|
pretty_name = data_args.dataset_name.split("/")[-1] |
|
|
|
def postprocess_ids(speaker_ids, indices): |
|
speaker_ids_formatted = [] |
|
for speaker, idx in zip(speaker_ids, indices): |
|
formatted_idx = f"{pretty_name}-{speaker}-{idx}" if speaker is not None else f"{pretty_name}-{idx}" |
|
speaker_ids_formatted.append(formatted_idx) |
|
return {id_column_name: speaker_ids_formatted} |
|
|
|
with accelerator.main_process_first(): |
|
raw_datasets = raw_datasets.map( |
|
postprocess_ids, |
|
input_columns=[id_column_name], |
|
with_indices=True, |
|
desc="Setting sample idxs...", |
|
batched=True, |
|
batch_size=preprocessing_batch_size, |
|
num_proc=num_workers, |
|
) |
|
elif data_args.concatenate_audio and data_args.streaming: |
|
raise ValueError( |
|
"Streaming mode is not yet compatible with concatenating audios to `max_duration_in_seconds`." |
|
"Either set `--streaming=False` and download the audios locally, or open an issue on the Distil-Whisper repo to request this feature." |
|
) |
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
|
|
batch[model_input_name] = inputs.get(model_input_name)[0] |
|
|
|
|
|
input_str = batch[text_column_name] |
|
batch["labels"] = tokenizer(input_str, max_length=max_label_length, truncation=True).input_ids |
|
return batch |
|
|
|
raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) |
|
file_ids_dataset = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
for split in raw_datasets: |
|
file_ids_dataset[split] = raw_datasets[split][id_column_name] |
|
if data_args.streaming: |
|
with accelerator.main_process_first(): |
|
vectorized_datasets = raw_datasets.map(prepare_dataset, remove_columns=raw_datasets_features) |
|
else: |
|
with accelerator.main_process_first(): |
|
vectorized_datasets = raw_datasets.map( |
|
prepare_dataset, |
|
remove_columns=raw_datasets_features, |
|
num_proc=num_workers, |
|
desc="preprocess dataset", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
if data_args.streaming and dataloader_num_workers > 0: |
|
logger.warning( |
|
"Using multiple dataloader num workers with streaming mode will result in different shards of " |
|
"data being transcribed in parallel. This is not advised if you want to preserve the order of the " |
|
"audio-text data." |
|
) |
|
|
|
|
|
output_dir = training_args.output_dir |
|
if accelerator.is_main_process: |
|
if training_args.push_to_hub: |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(output_dir).absolute().name, |
|
token=training_args.hub_token, |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
create_repo(repo_name, repo_type="dataset", exist_ok=True, token=training_args.hub_token) |
|
snapshot_download(repo_id=repo_name, local_dir=output_dir) |
|
|
|
|
|
with open(os.path.join(output_dir, ".gitattributes"), "r+") as f: |
|
git_lfs_extensions = f.read() |
|
if "*.csv" not in git_lfs_extensions: |
|
f.write("*.csv filter=lfs diff=lfs merge=lfs -text") |
|
|
|
elif output_dir is not None: |
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
metric = evaluate.load("wer") |
|
|
|
def compute_metrics(preds, labels, file_ids): |
|
|
|
for idx in range(len(labels)): |
|
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id |
|
|
|
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=False, decode_with_timestamps=return_timestamps) |
|
|
|
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
norm_pred_str = [normalizer(pred) for pred in pred_str] |
|
norm_label_str = [normalizer(label) for label in label_str] |
|
|
|
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
file_ids = [file_ids[i] for i in range(len(file_ids)) if len(norm_label_str[i]) > 0] |
|
|
|
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) |
|
|
|
return {"wer": wer}, pred_str, label_str, norm_pred_str, norm_label_str, file_ids |
|
|
|
def filter_eot_tokens(preds): |
|
for idx in range(len(preds)): |
|
|
|
token_ids = [token for token in preds[idx] if token != decoder_eot_token_id] |
|
token_ids = token_ids + [decoder_eot_token_id] |
|
preds[idx] = token_ids |
|
return preds |
|
|
|
|
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding( |
|
processor=processor, |
|
decoder_start_token_id=model.config.decoder_start_token_id, |
|
input_padding="longest", |
|
target_padding="max_length", |
|
max_target_length=max_label_length, |
|
) |
|
|
|
|
|
|
|
num_beams = ( |
|
training_args.generation_num_beams |
|
if training_args.generation_num_beams is not None |
|
else getattr(model.generation_config, "num_beams", 1) |
|
) |
|
|
|
gen_kwargs = { |
|
"max_length": max_label_length, |
|
"num_beams": num_beams, |
|
"return_timestamps": return_timestamps, |
|
} |
|
if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual: |
|
|
|
gen_kwargs.update( |
|
{ |
|
"language": data_args.language, |
|
"task": data_args.task, |
|
} |
|
) |
|
|
|
model.generation_config.forced_decoder_ids = None |
|
model.config.forced_decoder_ids = None |
|
|
|
|
|
model = accelerator.prepare(model) |
|
|
|
def eval_step_with_save(split="eval"): |
|
|
|
eval_preds = [] |
|
eval_labels = [] |
|
eval_ids = [] |
|
pred_str = [] |
|
eval_start = time.time() |
|
|
|
eval_loader = DataLoader( |
|
vectorized_datasets[split], |
|
batch_size=per_device_eval_batch_size, |
|
collate_fn=data_collator, |
|
num_workers=dataloader_num_workers, |
|
pin_memory=True, |
|
) |
|
file_loader = DataLoader( |
|
file_ids_dataset[split], |
|
batch_size=per_device_eval_batch_size * accelerator.num_processes, |
|
num_workers=dataloader_num_workers, |
|
) |
|
|
|
eval_loader = accelerator.prepare(eval_loader) |
|
batches = tqdm(eval_loader, desc=f"Evaluating {split}...", disable=not accelerator.is_local_main_process) |
|
|
|
|
|
split = split.replace(".", "-").split("/")[-1] |
|
output_csv = os.path.join(output_dir, f"{split}-transcription.csv") |
|
|
|
for step, (batch, file_ids) in enumerate(zip(batches, file_loader)): |
|
|
|
generate_fn = model.module.generate if accelerator.num_processes > 1 else model.generate |
|
generated_ids = generate_fn(batch["input_features"].to(dtype=torch_dtype), **gen_kwargs) |
|
generated_ids = accelerator.pad_across_processes(generated_ids, dim=1, pad_index=tokenizer.pad_token_id) |
|
|
|
generated_ids, labels = accelerator.gather_for_metrics((generated_ids, batch["labels"])) |
|
eval_preds.extend(generated_ids.cpu().numpy()) |
|
eval_labels.extend(labels.cpu().numpy()) |
|
eval_ids.extend(file_ids) |
|
|
|
if step % training_args.logging_steps == 0 and step > 0: |
|
batches.write(f"Saving transcriptions for split {split} step {step}") |
|
accelerator.wait_for_everyone() |
|
pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)) :] |
|
pred_ids = filter_eot_tokens(pred_ids) |
|
pred_str.extend( |
|
tokenizer.batch_decode( |
|
pred_ids, skip_special_tokens=False, decode_with_timestamps=return_timestamps |
|
) |
|
) |
|
csv_data = [[eval_ids[i], pred_str[i]] for i in range(len(eval_preds))] |
|
|
|
with open(output_csv, "w", encoding="UTF8", newline="") as f: |
|
writer = csv.writer(f) |
|
|
|
writer.writerow(["file_id", "whisper_transcript"]) |
|
writer.writerows(csv_data) |
|
|
|
if training_args.push_to_hub and accelerator.is_main_process: |
|
upload_folder( |
|
folder_path=output_dir, |
|
repo_id=repo_name, |
|
repo_type="dataset", |
|
commit_message=f"Saving transcriptions for split {split} step {step}.", |
|
) |
|
|
|
accelerator.wait_for_everyone() |
|
eval_time = time.time() - eval_start |
|
|
|
|
|
wer_desc = "" |
|
if "validation" in split or "test" in split: |
|
eval_preds = filter_eot_tokens(eval_preds) |
|
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str, eval_ids = compute_metrics( |
|
eval_preds, eval_labels, eval_ids |
|
) |
|
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) |
|
|
|
log_metric( |
|
accelerator, |
|
metrics=wer_metric, |
|
train_time=eval_time, |
|
prefix=split, |
|
) |
|
log_pred( |
|
accelerator, |
|
pred_str, |
|
label_str, |
|
norm_pred_str, |
|
norm_label_str, |
|
prefix=split, |
|
) |
|
else: |
|
pred_ids = eval_preds[-(len(eval_preds) - len(pred_str)) :] |
|
pred_ids = filter_eot_tokens(pred_ids) |
|
pred_str.extend( |
|
tokenizer.batch_decode(pred_ids, skip_special_tokens=False, decode_with_timestamps=return_timestamps) |
|
) |
|
|
|
batches.write(f"Saving final transcriptions for split {split}.") |
|
csv_data = [[eval_ids[i], eval_preds[i]] for i in range(len(eval_preds))] |
|
with open(output_csv, "w", encoding="UTF8", newline="") as f: |
|
writer = csv.writer(f) |
|
|
|
writer.writerow(["file_id", "whisper_transcript"]) |
|
writer.writerows(csv_data) |
|
|
|
|
|
logger.info(wer_desc) |
|
|
|
if not data_args.streaming: |
|
raw_datasets[split] = raw_datasets[split].add_column("whisper_transcript", pred_str) |
|
raw_datasets[split] = raw_datasets[split].add_column("eval_preds", eval_preds) |
|
|
|
def add_concatenated_text(eval_preds, condition_on_prev): |
|
concatenated_prev = [None] |
|
for token_ids, condition in zip(eval_preds[:-1], condition_on_prev[1:]): |
|
if condition is False: |
|
concatenated_prev.append(None) |
|
else: |
|
prompt_ids = [token for token in token_ids if token != decoder_eot_token_id] |
|
prompt_ids = [decoder_prev_token_id] + prompt_ids[timestamp_position:] |
|
concatenated_prev.append(prompt_ids) |
|
return {"condition_on_prev": concatenated_prev} |
|
|
|
with accelerator.main_process_first(): |
|
raw_datasets[split] = raw_datasets[split].map( |
|
add_concatenated_text, |
|
input_columns=["eval_preds", "condition_on_prev"], |
|
remove_columns=["eval_preds"], |
|
desc="Setting condition on prev...", |
|
batched=True, |
|
batch_size=preprocessing_batch_size, |
|
num_proc=num_workers, |
|
) |
|
|
|
logger.info("***** Running Labelling *****") |
|
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_eval_batch_size}") |
|
logger.info( |
|
f" Total eval batch size (w. parallel & distributed) = {training_args.per_device_eval_batch_size * accelerator.num_processes}" |
|
) |
|
logger.info(f" Predict labels with timestamps = {return_timestamps}") |
|
for split in data_splits: |
|
eval_step_with_save(split=split) |
|
accelerator.wait_for_everyone() |
|
if training_args.push_to_hub and accelerator.is_main_process: |
|
upload_folder( |
|
folder_path=output_dir, |
|
repo_id=repo_name, |
|
repo_type="dataset", |
|
commit_message=f"Saving final transcriptions for split {split.replace('.', '-').split('/')[-1]}", |
|
) |
|
if not data_args.streaming and accelerator.is_main_process: |
|
raw_datasets.save_to_disk(output_dir, num_proc=num_workers) |
|
if training_args.push_to_hub: |
|
raw_datasets.push_to_hub(repo_name, config_name=data_args.dataset_config_name) |
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|