Upload train_survival_32b.py with huggingface_hub
Browse files- train_survival_32b.py +104 -0
train_survival_32b.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = ["trl", "peft", "bitsandbytes", "datasets", "transformers"]
|
| 3 |
+
# ///
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from peft import LoraConfig
|
| 7 |
+
from trl import SFTTrainer, SFTConfig
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 9 |
+
import torch
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# Configuration
|
| 13 |
+
MODEL_ID = "Qwen/Qwen2.5-32B-Instruct"
|
| 14 |
+
DATASET_ID = "sunkencity/survival-instruct"
|
| 15 |
+
OUTPUT_MODEL_ID = "sunkencity/survival-expert-qwen-32b"
|
| 16 |
+
|
| 17 |
+
# Load Dataset
|
| 18 |
+
dataset = load_dataset(DATASET_ID, split="train")
|
| 19 |
+
|
| 20 |
+
# SANITIZE DATASET
|
| 21 |
+
def filter_empty(example):
|
| 22 |
+
return (
|
| 23 |
+
example["instruction"] is not None
|
| 24 |
+
and example["response"] is not None
|
| 25 |
+
and len(example["instruction"].strip()) > 0
|
| 26 |
+
and len(example["response"].strip()) > 0
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
dataset = dataset.filter(filter_empty)
|
| 30 |
+
|
| 31 |
+
# Load Model
|
| 32 |
+
# 4-bit quantization is essential for 32B on single A100 if we want decent batch size
|
| 33 |
+
bnb_config = BitsAndBytesConfig(
|
| 34 |
+
load_in_4bit=True,
|
| 35 |
+
bnb_4bit_quant_type="nf4",
|
| 36 |
+
bnb_4bit_compute_dtype=torch.bfloat16, # Using bfloat16 for A100
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
+
MODEL_ID,
|
| 41 |
+
quantization_config=bnb_config,
|
| 42 |
+
device_map="auto",
|
| 43 |
+
use_cache=False,
|
| 44 |
+
torch_dtype=torch.bfloat16
|
| 45 |
+
)
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 47 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 48 |
+
|
| 49 |
+
# MANUAL FORMATTING
|
| 50 |
+
def format_row(example):
|
| 51 |
+
instruction = example['instruction']
|
| 52 |
+
response = example['response']
|
| 53 |
+
# Qwen Chat Template
|
| 54 |
+
# <|im_start|>user
|
| 55 |
+
# {instruction}<|im_end|>
|
| 56 |
+
# <|im_start|>assistant
|
| 57 |
+
# {response}<|im_end|>
|
| 58 |
+
text = f"<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n{response}<|im_end|>{tokenizer.eos_token}"
|
| 59 |
+
return {"text": text}
|
| 60 |
+
|
| 61 |
+
dataset = dataset.map(format_row)
|
| 62 |
+
|
| 63 |
+
# LoRA
|
| 64 |
+
peft_config = LoraConfig(
|
| 65 |
+
r=32, # Increased rank for larger model capability
|
| 66 |
+
lora_alpha=64,
|
| 67 |
+
lora_dropout=0.05,
|
| 68 |
+
bias="none",
|
| 69 |
+
task_type="CAUSAL_LM",
|
| 70 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Args
|
| 74 |
+
training_args = SFTConfig(
|
| 75 |
+
output_dir="./results",
|
| 76 |
+
num_train_epochs=3,
|
| 77 |
+
per_device_train_batch_size=4, # A100 has 80GB, we can afford larger batches
|
| 78 |
+
gradient_accumulation_steps=4,
|
| 79 |
+
learning_rate=1e-4,
|
| 80 |
+
logging_steps=5,
|
| 81 |
+
push_to_hub=True,
|
| 82 |
+
hub_model_id=OUTPUT_MODEL_ID,
|
| 83 |
+
fp16=False,
|
| 84 |
+
bf16=True, # Enable BF16 for A100
|
| 85 |
+
packing=False,
|
| 86 |
+
max_length=2048, # Increased context length for 32B
|
| 87 |
+
dataset_text_field="text"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Trainer
|
| 91 |
+
trainer = SFTTrainer(
|
| 92 |
+
model=model,
|
| 93 |
+
train_dataset=dataset,
|
| 94 |
+
peft_config=peft_config,
|
| 95 |
+
args=training_args,
|
| 96 |
+
processing_class=tokenizer,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
print("Starting training...")
|
| 100 |
+
trainer.train()
|
| 101 |
+
|
| 102 |
+
print("Pushing to hub...")
|
| 103 |
+
trainer.push_to_hub()
|
| 104 |
+
print("Done!")
|