训练模型源码
Browse files
fanyi.py
ADDED
|
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
warnings.filterwarnings("ignore")
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import math
|
| 6 |
+
from transformers import MarianTokenizer
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
from typing import List
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
from torch.nn import Transformer
|
| 11 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 12 |
+
from torch.utils.data import DataLoader, Dataset
|
| 13 |
+
from timeit import default_timer as timer
|
| 14 |
+
import urllib.request
|
| 15 |
+
import os
|
| 16 |
+
from torch.cuda.amp import GradScaler, autocast
|
| 17 |
+
import logging
|
| 18 |
+
|
| 19 |
+
logging.getLogger("datasets").setLevel(logging.ERROR)
|
| 20 |
+
|
| 21 |
+
print("CUDA是否可用:", torch.cuda.is_available())
|
| 22 |
+
print("PyTorch版本:", torch.__version__)
|
| 23 |
+
if torch.cuda.is_available():
|
| 24 |
+
print("CUDA版本:", torch.version.cuda)
|
| 25 |
+
|
| 26 |
+
# 设置设备
|
| 27 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 28 |
+
print("当前使用设备:", DEVICE)
|
| 29 |
+
if torch.cuda.is_available():
|
| 30 |
+
print(f"GPU信息: {torch.cuda.get_device_name(0)}")
|
| 31 |
+
print(f"当前GPU显存使用: {torch.cuda.memory_allocated(0)/1024**2:.2f} MB")
|
| 32 |
+
|
| 33 |
+
# 初始化tokenizer,MarianMT模型主要是通过其tokenizer(分词器)在发挥作用,而不是使��其预训练的翻译能力
|
| 34 |
+
tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-de-en')
|
| 35 |
+
|
| 36 |
+
# 定义特殊token的索引
|
| 37 |
+
PAD_IDX = tokenizer.pad_token_id
|
| 38 |
+
BOS_IDX = tokenizer.bos_token_id
|
| 39 |
+
EOS_IDX = tokenizer.eos_token_id
|
| 40 |
+
UNK_IDX = tokenizer.unk_token_id
|
| 41 |
+
|
| 42 |
+
# 获取词汇表大小
|
| 43 |
+
SRC_VOCAB_SIZE = tokenizer.vocab_size
|
| 44 |
+
TGT_VOCAB_SIZE = tokenizer.vocab_size
|
| 45 |
+
|
| 46 |
+
class PositionalEncoding(nn.Module):
|
| 47 |
+
def __init__(self, emb_size: int, dropout: float, maxlen: int = 5000):
|
| 48 |
+
super(PositionalEncoding, self).__init__()
|
| 49 |
+
den = torch.exp(-torch.arange(0, emb_size, 2) * math.log(10000) / emb_size)
|
| 50 |
+
pos = torch.arange(0, maxlen).reshape(maxlen, 1)
|
| 51 |
+
pos_embedding = torch.zeros((maxlen, emb_size))
|
| 52 |
+
pos_embedding[:, 0::2] = torch.sin(pos * den)
|
| 53 |
+
pos_embedding[:, 1::2] = torch.cos(pos * den)
|
| 54 |
+
pos_embedding = pos_embedding.unsqueeze(-2)
|
| 55 |
+
self.dropout = nn.Dropout(dropout)
|
| 56 |
+
self.register_buffer('pos_embedding', pos_embedding)
|
| 57 |
+
|
| 58 |
+
def forward(self, token_embedding: Tensor):
|
| 59 |
+
return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0), :])
|
| 60 |
+
|
| 61 |
+
class TokenEmbedding(nn.Module):
|
| 62 |
+
def __init__(self, vocab_size: int, emb_size):
|
| 63 |
+
super(TokenEmbedding, self).__init__()
|
| 64 |
+
self.embedding = nn.Embedding(vocab_size, emb_size)
|
| 65 |
+
self.emb_size = emb_size
|
| 66 |
+
|
| 67 |
+
def forward(self, tokens: Tensor):
|
| 68 |
+
return self.embedding(tokens.long()) * math.sqrt(self.emb_size)
|
| 69 |
+
|
| 70 |
+
class Seq2SeqTransformer(nn.Module):
|
| 71 |
+
def __init__(self, num_encoder_layers: int, num_decoder_layers: int,
|
| 72 |
+
emb_size: int, nhead: int, src_vocab_size: int,
|
| 73 |
+
tgt_vocab_size: int, dim_feedforward: int = 512, dropout: float = 0.1):
|
| 74 |
+
super(Seq2SeqTransformer, self).__init__()
|
| 75 |
+
self.transformer = Transformer(d_model=emb_size,
|
| 76 |
+
nhead=nhead,
|
| 77 |
+
num_encoder_layers=num_encoder_layers,
|
| 78 |
+
num_decoder_layers=num_decoder_layers,
|
| 79 |
+
dim_feedforward=dim_feedforward,
|
| 80 |
+
dropout=dropout)
|
| 81 |
+
self.generator = nn.Linear(emb_size, tgt_vocab_size)
|
| 82 |
+
self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
|
| 83 |
+
self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
|
| 84 |
+
self.positional_encoding = PositionalEncoding(emb_size, dropout=dropout)
|
| 85 |
+
|
| 86 |
+
def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor,
|
| 87 |
+
tgt_mask: Tensor, src_padding_mask: Tensor,
|
| 88 |
+
tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):
|
| 89 |
+
src_emb = self.positional_encoding(self.src_tok_emb(src))
|
| 90 |
+
tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
|
| 91 |
+
outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None,
|
| 92 |
+
src_padding_mask, tgt_padding_mask, memory_key_padding_mask)
|
| 93 |
+
return self.generator(outs)
|
| 94 |
+
|
| 95 |
+
def encode(self, src: Tensor, src_mask: Tensor):
|
| 96 |
+
return self.transformer.encoder(self.positional_encoding(self.src_tok_emb(src)), src_mask)
|
| 97 |
+
|
| 98 |
+
def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
|
| 99 |
+
return self.transformer.decoder(self.positional_encoding(self.tgt_tok_emb(tgt)), memory, tgt_mask)
|
| 100 |
+
|
| 101 |
+
def generate_square_subsequent_mask(sz):
|
| 102 |
+
mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1)
|
| 103 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
| 104 |
+
return mask
|
| 105 |
+
|
| 106 |
+
def create_mask(src, tgt):
|
| 107 |
+
src_seq_len = src.shape[0]
|
| 108 |
+
tgt_seq_len = tgt.shape[0]
|
| 109 |
+
|
| 110 |
+
tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
|
| 111 |
+
src_mask = torch.zeros((src_seq_len, src_seq_len), device=DEVICE).type(torch.bool)
|
| 112 |
+
|
| 113 |
+
src_padding_mask = (src == PAD_IDX).transpose(0, 1)
|
| 114 |
+
tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
|
| 115 |
+
return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask
|
| 116 |
+
|
| 117 |
+
def download_multi30k():
|
| 118 |
+
base_url = "https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/"
|
| 119 |
+
|
| 120 |
+
# 创建数据目录
|
| 121 |
+
os.makedirs("multi30k", exist_ok=True)
|
| 122 |
+
|
| 123 |
+
# 下载训练、验证和测试数据
|
| 124 |
+
splits = ['train', 'val', 'test']
|
| 125 |
+
languages = ['de', 'en']
|
| 126 |
+
|
| 127 |
+
for split in splits:
|
| 128 |
+
for lang in languages:
|
| 129 |
+
filename = f"{split}.{lang}"
|
| 130 |
+
url = f"{base_url}{filename}"
|
| 131 |
+
path = f"multi30k/{filename}"
|
| 132 |
+
|
| 133 |
+
if not os.path.exists(path):
|
| 134 |
+
print(f"Downloading {filename}...")
|
| 135 |
+
urllib.request.urlretrieve(url, path)
|
| 136 |
+
|
| 137 |
+
def load_data():
|
| 138 |
+
# 加载WMT14数据集的德英对
|
| 139 |
+
dataset = load_dataset("wmt14", "de-en", cache_dir=".cache")
|
| 140 |
+
|
| 141 |
+
# 为了便于训练,我们只使用一部分数据
|
| 142 |
+
train_size = 29000 # 与Multi30k训练集大小相近
|
| 143 |
+
val_size = 1000
|
| 144 |
+
test_size = 1000
|
| 145 |
+
|
| 146 |
+
# 处理数据集
|
| 147 |
+
data = {
|
| 148 |
+
'train': {
|
| 149 |
+
'de': [item['de'] for item in dataset['train']['translation'][:train_size]],
|
| 150 |
+
'en': [item['en'] for item in dataset['train']['translation'][:train_size]]
|
| 151 |
+
},
|
| 152 |
+
'val': {
|
| 153 |
+
'de': [item['de'] for item in dataset['validation']['translation'][:val_size]],
|
| 154 |
+
'en': [item['en'] for item in dataset['validation']['translation'][:val_size]]
|
| 155 |
+
},
|
| 156 |
+
'test': {
|
| 157 |
+
'de': [item['de'] for item in dataset['test']['translation'][:test_size]],
|
| 158 |
+
'en': [item['en'] for item in dataset['test']['translation'][:test_size]]
|
| 159 |
+
}
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
return data
|
| 163 |
+
|
| 164 |
+
# 添加一个自定义Dataset类
|
| 165 |
+
class TranslationDataset(Dataset):
|
| 166 |
+
def __init__(self, de_texts, en_texts):
|
| 167 |
+
self.de_texts = de_texts
|
| 168 |
+
self.en_texts = en_texts
|
| 169 |
+
|
| 170 |
+
def __len__(self):
|
| 171 |
+
return len(self.de_texts)
|
| 172 |
+
|
| 173 |
+
def __getitem__(self, idx):
|
| 174 |
+
return {
|
| 175 |
+
'de': self.de_texts[idx],
|
| 176 |
+
'en': self.en_texts[idx]
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
print("正在加载数据集...")
|
| 180 |
+
_cached_data = load_data() # 全局缓存数据
|
| 181 |
+
|
| 182 |
+
def get_dataloader(split='train', batch_size=32):
|
| 183 |
+
# 使用缓存的数据而不是重新加载
|
| 184 |
+
data = _cached_data[split]
|
| 185 |
+
|
| 186 |
+
# 创建Dataset对象
|
| 187 |
+
dataset = TranslationDataset(data['de'], data['en'])
|
| 188 |
+
|
| 189 |
+
return DataLoader(
|
| 190 |
+
dataset,
|
| 191 |
+
batch_size=batch_size,
|
| 192 |
+
shuffle=(split == 'train')
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# 修改模型参数,减少显存使用
|
| 196 |
+
BATCH_SIZE = 32 # 减小批次大小,原来是64
|
| 197 |
+
EMB_SIZE = 512 # 保持不变
|
| 198 |
+
NHEAD = 8 # 保持不变
|
| 199 |
+
FFN_HID_DIM = 512 # 改回512,原来改成了1024
|
| 200 |
+
NUM_ENCODER_LAYERS = 3 # 改回3,原来改成了4
|
| 201 |
+
NUM_DECODER_LAYERS = 3 # 改回3,原来改成了4
|
| 202 |
+
NUM_EPOCHS = 18 # 保持不变
|
| 203 |
+
|
| 204 |
+
# 实例化模型
|
| 205 |
+
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
|
| 206 |
+
NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
|
| 207 |
+
transformer = transformer.to(DEVICE)
|
| 208 |
+
|
| 209 |
+
# 初始化参数
|
| 210 |
+
for p in transformer.parameters():
|
| 211 |
+
if p.dim() > 1:
|
| 212 |
+
nn.init.xavier_uniform_(p)
|
| 213 |
+
|
| 214 |
+
# 定义损失函数和优化器
|
| 215 |
+
loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_IDX)
|
| 216 |
+
optimizer = torch.optim.Adam(transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)
|
| 217 |
+
|
| 218 |
+
# 创建梯度缩放器
|
| 219 |
+
scaler = GradScaler()
|
| 220 |
+
|
| 221 |
+
def train_epoch(model, optimizer):
|
| 222 |
+
try:
|
| 223 |
+
model.train()
|
| 224 |
+
losses = 0
|
| 225 |
+
train_dataloader = get_dataloader('train', BATCH_SIZE)
|
| 226 |
+
|
| 227 |
+
for batch in train_dataloader:
|
| 228 |
+
src_texts = batch['de']
|
| 229 |
+
tgt_texts = batch['en']
|
| 230 |
+
|
| 231 |
+
# 使用自动混合精度
|
| 232 |
+
with autocast():
|
| 233 |
+
src_tokens = tokenizer(src_texts, padding=True, return_tensors='pt')
|
| 234 |
+
tgt_tokens = tokenizer(tgt_texts, padding=True, return_tensors='pt')
|
| 235 |
+
|
| 236 |
+
src = src_tokens['input_ids'].transpose(0, 1).to(DEVICE)
|
| 237 |
+
tgt = tgt_tokens['input_ids'].transpose(0, 1).to(DEVICE)
|
| 238 |
+
|
| 239 |
+
tgt_input = tgt[:-1, :]
|
| 240 |
+
src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)
|
| 241 |
+
|
| 242 |
+
logits = model(src, tgt_input, src_mask, tgt_mask,
|
| 243 |
+
src_padding_mask, tgt_padding_mask, src_padding_mask)
|
| 244 |
+
|
| 245 |
+
tgt_out = tgt[1:, :]
|
| 246 |
+
loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
|
| 247 |
+
|
| 248 |
+
optimizer.zero_grad()
|
| 249 |
+
scaler.scale(loss).backward()
|
| 250 |
+
scaler.step(optimizer)
|
| 251 |
+
scaler.update()
|
| 252 |
+
losses += loss.item()
|
| 253 |
+
|
| 254 |
+
return losses / len(train_dataloader)
|
| 255 |
+
except KeyboardInterrupt:
|
| 256 |
+
print("\n训练被手动中断!正在保存当前模型状态...")
|
| 257 |
+
# 保存检查点
|
| 258 |
+
checkpoint = {
|
| 259 |
+
'model_state_dict': model.state_dict(),
|
| 260 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 261 |
+
'epoch': epoch, # 保存当前的epoch
|
| 262 |
+
'train_loss': train_loss,
|
| 263 |
+
'val_loss': val_loss
|
| 264 |
+
}
|
| 265 |
+
torch.save(checkpoint, 'transformer_translation.pth')
|
| 266 |
+
print("模型检查点已保存到 transformer_translation.pth")
|
| 267 |
+
raise KeyboardInterrupt
|
| 268 |
+
|
| 269 |
+
def evaluate(model):
|
| 270 |
+
model.eval()
|
| 271 |
+
losses = 0
|
| 272 |
+
val_dataloader = get_dataloader('val', BATCH_SIZE)
|
| 273 |
+
|
| 274 |
+
for batch in val_dataloader:
|
| 275 |
+
src_texts = batch['de']
|
| 276 |
+
tgt_texts = batch['en']
|
| 277 |
+
|
| 278 |
+
src_tokens = tokenizer(src_texts, padding=True, return_tensors='pt')
|
| 279 |
+
tgt_tokens = tokenizer(tgt_texts, padding=True, return_tensors='pt')
|
| 280 |
+
|
| 281 |
+
src = src_tokens['input_ids'].transpose(0, 1).to(DEVICE)
|
| 282 |
+
tgt = tgt_tokens['input_ids'].transpose(0, 1).to(DEVICE)
|
| 283 |
+
|
| 284 |
+
tgt_input = tgt[:-1, :]
|
| 285 |
+
src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)
|
| 286 |
+
|
| 287 |
+
logits = model(src, tgt_input, src_mask, tgt_mask,
|
| 288 |
+
src_padding_mask, tgt_padding_mask, src_padding_mask)
|
| 289 |
+
|
| 290 |
+
tgt_out = tgt[1:, :]
|
| 291 |
+
loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
|
| 292 |
+
losses += loss.item()
|
| 293 |
+
|
| 294 |
+
return losses / len(val_dataloader)
|
| 295 |
+
|
| 296 |
+
def greedy_decode(model, src, src_mask, max_len, start_symbol):
|
| 297 |
+
src = src.to(DEVICE)
|
| 298 |
+
src_mask = src_mask.to(DEVICE)
|
| 299 |
+
|
| 300 |
+
memory = model.encode(src, src_mask)
|
| 301 |
+
ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE)
|
| 302 |
+
|
| 303 |
+
for i in range(max_len-1):
|
| 304 |
+
memory = memory.to(DEVICE)
|
| 305 |
+
tgt_mask = (generate_square_subsequent_mask(ys.size(0))
|
| 306 |
+
.type(torch.bool)).to(DEVICE)
|
| 307 |
+
out = model.decode(ys, memory, tgt_mask)
|
| 308 |
+
out = out.transpose(0, 1)
|
| 309 |
+
prob = model.generator(out[:, -1])
|
| 310 |
+
_, next_word = torch.max(prob, dim=1)
|
| 311 |
+
next_word = next_word.item()
|
| 312 |
+
|
| 313 |
+
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0)
|
| 314 |
+
if next_word == EOS_IDX:
|
| 315 |
+
break
|
| 316 |
+
return ys
|
| 317 |
+
|
| 318 |
+
def translate(model: torch.nn.Module, src_sentence: str):
|
| 319 |
+
model.eval()
|
| 320 |
+
tokens = tokenizer(src_sentence, return_tensors='pt', padding=True)
|
| 321 |
+
src = tokens['input_ids'].transpose(0, 1).to(DEVICE)
|
| 322 |
+
src_mask = (torch.zeros(src.shape[0], src.shape[0])).type(torch.bool).to(DEVICE)
|
| 323 |
+
|
| 324 |
+
tgt_tokens = greedy_decode(model, src, src_mask, max_len=src.shape[0] + 5, start_symbol=BOS_IDX).flatten()
|
| 325 |
+
return tokenizer.decode(tgt_tokens.tolist(), skip_special_tokens=True)
|
| 326 |
+
|
| 327 |
+
# 在训练前添加显存清理
|
| 328 |
+
if torch.cuda.is_available():
|
| 329 |
+
torch.cuda.empty_cache()
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
# 训练模型
|
| 334 |
+
for epoch in range(1, NUM_EPOCHS + 1):
|
| 335 |
+
start_time = timer()
|
| 336 |
+
train_loss = train_epoch(transformer, optimizer)
|
| 337 |
+
end_time = timer()
|
| 338 |
+
val_loss = evaluate(transformer)
|
| 339 |
+
print(f"Epoch: {epoch}, Train loss: {train_loss:.3f}, Val loss: {val_loss:.3f}, "
|
| 340 |
+
f"Epoch time = {(end_time - start_time):.3f}s")
|
| 341 |
+
|
| 342 |
+
# 保存模型
|
| 343 |
+
path = 'transformer_translation.pth'
|
| 344 |
+
torch.save(transformer.state_dict(), path)
|
| 345 |
+
print("模型保存成功!")
|
| 346 |
+
|
| 347 |
+
# 加载模型
|
| 348 |
+
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE,
|
| 349 |
+
NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM)
|
| 350 |
+
transformer.load_state_dict(torch.load(path))
|
| 351 |
+
transformer = transformer.to(DEVICE)
|
| 352 |
+
print("模型加载成功!")
|
| 353 |
+
|
| 354 |
+
# 测试翻译
|
| 355 |
+
print(translate(transformer, "Eine Gruppe von Freunden spielt Billiade."))
|
| 356 |
+
|