ppo-LunarLander-v2 / config.json
sungeuns's picture
Test model for lunar lander
4cda6a8
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a49f18c0430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a49f18c04c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a49f18c0550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a49f18c05e0>", "_build": "<function ActorCriticPolicy._build at 0x7a49f18c0670>", "forward": "<function ActorCriticPolicy.forward at 0x7a49f18c0700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a49f18c0790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a49f18c0820>", "_predict": "<function ActorCriticPolicy._predict at 0x7a49f18c08b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a49f18c0940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a49f18c09d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a49f18c0a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a49f185efc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699606332703872087, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEaTPD6Q+zI/Emp7Pjv+Jr82+D4+/vtsPQAAAAAAAAAAM9IyPmgBmbw0egc738l5uVpEDL6rnGu6AACAPwAAgD+zHUM+u3DgvLDoSDnkM1a4EBFGvrDmybgAAIA/AACAPwrWrT60uck+Qsu0uhXezL5IAU4+yJPdvQAAAAAAAAAA2kjKPWY3tD+zjtU+PvSevta/oz2ulvQ8AAAAAAAAAABmhXM98dX5PfMP6rzL7Vi+aNMMvb6T+jwAAAAAAAAAAJOflr46wEY/deOyvtFiEr9MgdO+rSX+PAAAAAAAAAAA4HA9PpuVtLwnD5G6jy0COTyAJL7Cl8I5AACAPwAAgD8aOhu+TBG/P1aWIb99Jwm+xOy+vch7M74AAAAAAAAAALonSz6bYZG86DUfO20PWrnL3QG+3JVJugAAgD8AAIA/+rOOvrkUXD98asq9ci0Pv6UqpL6S1yQ+AAAAAAAAAADW9Y6+wK0yP9REgbw3Hv6+pENfvrPQDz4AAAAAAAAAAMBRtj2PZnC6xnMjOoMa1DUWRFM6Gf87uQAAgD8AAAAAsx5CvT3m7D5WxQU9ekHPvkm/Bb0+/Mc8AAAAAAAAAAATRyw+HHI0vNW4xzu0Ghm6R1u3vUJS+7oAAIA/AACAP8aDaz67aZO8SBbVOj1XDLmfTgW+crwCugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIqmUW2w3aMAWyUS9eMAXSUR0CdSXSG8EmqdX2UKGgGR0BwjlQYUFjeaAdLs2gIR0CdSYXWOIZZdX2UKGgGR0BxJdv863iJaAdL4WgIR0CdSZhF3IMjdX2UKGgGR0Bw4KBiCrcTaAdLymgIR0CdSeaQ3gk1dX2UKGgGR0Bxzv850bLmaAdL6GgIR0CdSou8brC4dX2UKGgGR0Bwk2S2Yv38aAdLzmgIR0CdSuBDXvphdX2UKGgGR0BwJP9JjDsMaAdLxWgIR0CdStZowmE5dX2UKGgGR0BwztnCfpUxaAdLyWgIR0CdS0koWpIddX2UKGgGR0Bup3MSsbNsaAdLyGgIR0CdS875Ec81dX2UKGgGR0BwKzF6zE75aAdLz2gIR0CdS+C9AX2vdX2UKGgGR0Bug+TTvy9VaAdLxWgIR0CdTBiosI3SdX2UKGgGR0Bw4h3EAHVxaAdL5mgIR0CdTHIZqEeydX2UKGgGR0ByLMDmr8ziaAdLvmgIR0CdTthiLEUCdX2UKGgGR0BxBp3qzJIUaAdLzWgIR0CdTtGH58BudX2UKGgGR0Bw1938n/kvaAdL1WgIR0CdTyIQOFxodX2UKGgGR0BzG3BEa2nbaAdL8GgIR0CdT8sImgJ1dX2UKGgGR0BxTT5j6N2laAdLxWgIR0CdUDKT0QK8dX2UKGgGR0BxWae+VTrFaAdL2GgIR0CdUGeCTUy6dX2UKGgGR0BzOXHGS6lMaAdLx2gIR0CdUUldkauPdX2UKGgGR0Bzt38P4EfUaAdNHQFoCEdAnVFOxnnMdXV9lChoBkdAczB9AHE/B2gHS8toCEdAnVGB6F/QSnV9lChoBkdAcPtdRzijtWgHS/5oCEdAnVHPk/8l5XV9lChoBkdAcrUyUcGTtGgHS/JoCEdAnVH6L4vexnV9lChoBkdAcSonJDE3sGgHS8VoCEdAnVILdN34bnV9lChoBkdAbumC+UQkHGgHS9poCEdAnVIztw71ZnV9lChoBkdAZXsAR02ca2gHTegDaAhHQJ1T3aews5J1fZQoaAZHQHBd2yC4BmxoB0vDaAhHQJ1UVof0Vah1fZQoaAZHQHCb1L39JjFoB0vJaAhHQJ1UiKMvRJF1fZQoaAZHQHIBCYw7DEZoB0veaAhHQJ1VqtRvWH11fZQoaAZHQHFKPeHi3odoB0u/aAhHQJ1V1S0jTrp1fZQoaAZHQHISn974SHxoB0u+aAhHQJ1WGH0se4l1fZQoaAZHQGGwDjzZpSJoB03oA2gIR0CdVjI7vG6xdX2UKGgGR0Bw+PRWtEG8aAdL42gIR0CdVrYk3S8bdX2UKGgGR0BxJcQVbiZOaAdLs2gIR0CdV3WMS9M9dX2UKGgGR0ByGXRYzSCwaAdLw2gIR0CdV3BjWkJsdX2UKGgGR0BvVnuy/sVtaAdLyWgIR0CdV+AhStNjdX2UKGgGR0BylJXjlxOtaAdL22gIR0CdWDvYvnKXdX2UKGgGR0BveSpWFN+LaAdLyWgIR0CdWLtl7MPjdX2UKGgGR0BzEUzQ/oq1aAdL0GgIR0CdWMVoYekpdX2UKGgGR0BweLWMCLdfaAdL3GgIR0CdWQ5hz/6wdX2UKGgGR0BwXsZEUj9oaAdLw2gIR0CdWojawljWdX2UKGgGR0BwOA13t8eCaAdLyGgIR0CdW5XPZ7HAdX2UKGgGR0BwrEgW8AaOaAdL5WgIR0CdXHfT1CgLdX2UKGgGR0BvJNPHktEoaAdLwWgIR0CdXQG6f8MvdX2UKGgGR0BxJZWV/tpmaAdL1WgIR0CdXVP6KtPpdX2UKGgGR0BvNjK9wm3OaAdLvWgIR0CdXWe/5+H8dX2UKGgGR0BwEv90ihWYaAdLt2gIR0CdXgvZh8YydX2UKGgGR0BxmHZmI0qIaAdL8mgIR0CdXq5iVjZtdX2UKGgGR0A52yKNyYG/aAdLoGgIR0CdXqmgam4zdX2UKGgGR0BxwYuoP07KaAdL8mgIR0CdXuoCMglodX2UKGgGR0BxanPqs2ehaAdLuGgIR0CdX5ANXo1UdX2UKGgGR0Bv9CEpRXOoaAdL0GgIR0CdX4+tbLU1dX2UKGgGR0BwKsQwsXizaAdL92gIR0CdYJJdB0IUdX2UKGgGR0BxTfKMefZmaAdNHQFoCEdAnWMcByS3b3V9lChoBkdAcMrie/YapGgHS9loCEdAnWMyEtdzGXV9lChoBkdAcet8SwnpjmgHS8toCEdAnWTcriEQG3V9lChoBkdAcchBLf1pTWgHS/ZoCEdAnWXEal1r7HV9lChoBkdAcR+wHZ9NOGgHS9xoCEdAnWaYvN/vv3V9lChoBkdAcM2I/7iyZGgHS7xoCEdAnWbi9du50HV9lChoBkdAcbm99+gDimgHS65oCEdAnWcJobn5i3V9lChoBkdAcNO+fywwCmgHS91oCEdAnWdznV5KOHV9lChoBkdAb6m9TP0I1WgHS8BoCEdAnWfa/RE4N3V9lChoBkdAcFQCu2Zy/GgHS+BoCEdAnWhD6vaDf3V9lChoBkdAchfX2ugYg2gHTYUBaAhHQJ1o4n4O+Zh1fZQoaAZHQGNFjC53C9BoB03oA2gIR0CdafrsjVx0dX2UKGgGR0BxEkTpPhybaAdL3GgIR0CdajwazeGgdX2UKGgGR0BxzdwKjSG8aAdLvWgIR0Cda3hyKekIdX2UKGgGR0ByakNQTEiuaAdL1mgIR0Cdbas5GSZCdX2UKGgGR0Bw1wzzmOlwaAdNAwFoCEdAnW3ntjTa03V9lChoBkdAcdX9ovi97GgHS8FoCEdAnW6G/nGKh3V9lChoBkdAcA/H6uW8iGgHS95oCEdAnW6eDjBEa3V9lChoBkdAcfzFr2xptmgHS9loCEdAnW8CPuG9H3V9lChoBkdAcbt1He7+UGgHS95oCEdAnXBbNfPX1HV9lChoBkdAceUnCfpUxWgHS+poCEdAnXB2U4aP0nV9lChoBkdAcz/rWy1NQGgHTQ0BaAhHQJ1w9c8kleF1fZQoaAZHQG3pl/QSi/RoB0vpaAhHQJ1xOCjDbah1fZQoaAZHQHCpvG2kSEloB0vaaAhHQJ1xj/1g6U91fZQoaAZHQHFAgk5ZKWdoB0vqaAhHQJ1yPyxzJZJ1fZQoaAZHQHM/Thky1u1oB0v/aAhHQJ1z5tdiUgV1fZQoaAZHQHDy/7N0NjNoB0vFaAhHQJ10W55JK8N1fZQoaAZHQHGkLbtZ3cJoB01vAWgIR0CddIX/YJ3QdX2UKGgGR0ByJRm/WUbDaAdL5mgIR0CddiZ0Syt3dX2UKGgGR0ByyoetCAtnaAdL6WgIR0Cddlp3X7LudX2UKGgGR0By5a1rqMWHaAdL72gIR0CddwGI9C/odX2UKGgGR0ByJeiAUcn3aAdLy2gIR0Cddy8Empl0dX2UKGgGR0BwIm+UQkHEaAdL0mgIR0Cdd4NFSbYsdX2UKGgGR0BvTigXdj5LaAdLzGgIR0CdeAyUs4DLdX2UKGgGR0BxfeJIlMRIaAdL12gIR0CdeCjRUm2LdX2UKGgGR0BxOpUFSsKcaAdL1WgIR0CdeKolD4QCdX2UKGgGR0BxUn49HMEBaAdL32gIR0CdebVnEl3RdX2UKGgGR0ByvlSQ5myxaAdL2WgIR0CdeyvkzXSSdX2UKGgGR0Btld6Tnq3WaAdLw2gIR0CdfOWZJCjUdX2UKGgGR0BxrWJHiFTOaAdLzGgIR0CdffRXwLE2dX2UKGgGR0BxsS1NQCSzaAdNHgFoCEdAnX4sJdB0IXV9lChoBkdAcP6PVd5Y5mgHS9ZoCEdAnX6HFYMfBHV9lChoBkdAbcLl+Vkc0mgHS9FoCEdAnX9kvTPSlXV9lChoBkdAcMJfpljEvWgHS+BoCEdAnX9fLs8gZHV9lChoBkdAcPWvaURnOGgHS8hoCEdAnX/Eg8r7O3V9lChoBkdAcnNCRwIdEWgHS/JoCEdAnYCksJ6Y3XV9lChoBkdAcYhGKQ7tA2gHS8JoCEdAnYCoS13MZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}