|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import torch |
|
|
|
from llamafactory.hparams import get_infer_args, get_train_args |
|
from llamafactory.model import load_model, load_tokenizer |
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "full", |
|
"dataset": "llamafactory/tiny-supervised-dataset", |
|
"dataset_dir": "ONLINE", |
|
"template": "llama3", |
|
"cutoff_len": 1024, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
INFER_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"finetuning_type": "full", |
|
"template": "llama3", |
|
"infer_dtype": "float16", |
|
} |
|
|
|
|
|
def test_full_train(): |
|
model_args, _, _, finetuning_args, _ = get_train_args(TRAIN_ARGS) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
|
|
for param in model.parameters(): |
|
assert param.requires_grad is True |
|
assert param.dtype == torch.float32 |
|
|
|
|
|
def test_full_inference(): |
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) |
|
|
|
for param in model.parameters(): |
|
assert param.requires_grad is False |
|
assert param.dtype == torch.float16 |
|
|