|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple |
|
|
|
from ...extras.constants import IGNORE_INDEX |
|
from ...extras.logging import get_logger |
|
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack, infer_seqlen |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer, ProcessorMixin |
|
|
|
from ...hparams import DataArguments |
|
from ..template import Template |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def _encode_supervised_example( |
|
prompt: Sequence[Dict[str, str]], |
|
response: Sequence[Dict[str, str]], |
|
system: Optional[str], |
|
tools: Optional[str], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
data_args: "DataArguments", |
|
) -> Tuple[List[int], List[int]]: |
|
if processor is not None and not hasattr(processor, "image_seq_length"): |
|
prompt[0]["content"] = template.image_token + prompt[0]["content"] |
|
|
|
messages = prompt + response |
|
input_ids, labels = [], [] |
|
|
|
if processor is not None and hasattr(processor, "image_seq_length"): |
|
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) |
|
input_ids += [image_token_id] * getattr(processor, "image_seq_length") |
|
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length") |
|
|
|
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools) |
|
total_length = 1 if template.efficient_eos else 0 |
|
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs): |
|
if total_length >= data_args.cutoff_len: |
|
break |
|
|
|
source_len, target_len = infer_seqlen(len(source_ids), len(target_ids), data_args.cutoff_len - total_length) |
|
source_ids = source_ids[:source_len] |
|
target_ids = target_ids[:target_len] |
|
total_length += source_len + target_len |
|
|
|
if data_args.train_on_prompt: |
|
source_mask = source_ids |
|
elif turn_idx != 0 and template.efficient_eos: |
|
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1) |
|
else: |
|
source_mask = [IGNORE_INDEX] * source_len |
|
|
|
input_ids += source_ids + target_ids |
|
labels += source_mask + target_ids |
|
|
|
if template.efficient_eos: |
|
input_ids += [tokenizer.eos_token_id] |
|
labels += [tokenizer.eos_token_id] |
|
|
|
return input_ids, labels |
|
|
|
|
|
def preprocess_supervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
|
|
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} |
|
if processor is not None: |
|
model_inputs["pixel_values"] = [] |
|
if hasattr(processor, "image_seq_length"): |
|
model_inputs["token_type_ids"] = [] |
|
|
|
for i in range(len(examples["prompt"])): |
|
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: |
|
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) |
|
continue |
|
|
|
input_ids, labels = _encode_supervised_example( |
|
prompt=examples["prompt"][i], |
|
response=examples["response"][i], |
|
system=examples["system"][i], |
|
tools=examples["tools"][i], |
|
template=template, |
|
tokenizer=tokenizer, |
|
processor=processor, |
|
data_args=data_args, |
|
) |
|
model_inputs["input_ids"].append(input_ids) |
|
model_inputs["attention_mask"].append([1] * len(input_ids)) |
|
model_inputs["labels"].append(labels) |
|
if processor is not None: |
|
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) |
|
if hasattr(processor, "image_seq_length"): |
|
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) |
|
|
|
return model_inputs |
|
|
|
|
|
def preprocess_packed_supervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
|
|
valid_num = 0 |
|
batch_input_ids, batch_labels = [], [] |
|
lengths = [] |
|
length2indexes = defaultdict(list) |
|
for i in range(len(examples["prompt"])): |
|
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: |
|
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) |
|
continue |
|
|
|
input_ids, labels = _encode_supervised_example( |
|
prompt=examples["prompt"][i], |
|
response=examples["response"][i], |
|
system=examples["system"][i], |
|
tools=examples["tools"][i], |
|
template=template, |
|
tokenizer=tokenizer, |
|
processor=None, |
|
data_args=data_args, |
|
) |
|
length = len(input_ids) |
|
if length > data_args.cutoff_len: |
|
logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len)) |
|
else: |
|
lengths.append(length) |
|
length2indexes[length].append(valid_num) |
|
batch_input_ids.append(input_ids) |
|
batch_labels.append(labels) |
|
valid_num += 1 |
|
|
|
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} |
|
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len) |
|
for knapsack in knapsacks: |
|
packed_input_ids, packed_attention_masks, packed_labels = [], [], [] |
|
for i, length in enumerate(knapsack): |
|
index = length2indexes[length].pop() |
|
packed_input_ids += batch_input_ids[index] |
|
packed_labels += batch_labels[index] |
|
if data_args.neat_packing: |
|
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) |
|
else: |
|
packed_attention_masks += [1] * len(batch_input_ids[index]) |
|
|
|
if len(packed_input_ids) < data_args.cutoff_len: |
|
pad_length = data_args.cutoff_len - len(packed_input_ids) |
|
packed_input_ids += [tokenizer.pad_token_id] * pad_length |
|
packed_labels += [IGNORE_INDEX] * pad_length |
|
if data_args.neat_packing: |
|
packed_attention_masks += [0] * pad_length |
|
else: |
|
packed_attention_masks += [1] * pad_length |
|
|
|
if len(packed_input_ids) != data_args.cutoff_len: |
|
raise ValueError("The length of packed example should be identical to the cutoff length.") |
|
|
|
model_inputs["input_ids"].append(packed_input_ids) |
|
model_inputs["attention_mask"].append(packed_attention_masks) |
|
model_inputs["labels"].append(packed_labels) |
|
|
|
return model_inputs |
|
|
|
|
|
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: |
|
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) |
|
print("input_ids:\n{}".format(example["input_ids"])) |
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) |
|
print("label_ids:\n{}".format(example["labels"])) |
|
print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False))) |
|
|