|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from collections import OrderedDict |
|
from typing import Any, Dict, Optional |
|
|
|
import fire |
|
import torch |
|
from safetensors.torch import save_file |
|
from tqdm import tqdm |
|
from transformers.modeling_utils import ( |
|
SAFE_WEIGHTS_INDEX_NAME, |
|
SAFE_WEIGHTS_NAME, |
|
WEIGHTS_INDEX_NAME, |
|
WEIGHTS_NAME, |
|
shard_checkpoint, |
|
) |
|
|
|
|
|
CONFIG_NAME = "config.json" |
|
|
|
|
|
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool): |
|
baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict() |
|
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): |
|
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): |
|
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") |
|
baichuan2_state_dict.update(shard_weight) |
|
|
|
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() |
|
for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"): |
|
if "W_pack" in key: |
|
proj_size = value.size(0) // 3 |
|
llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :] |
|
llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :] |
|
llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :] |
|
elif "lm_head" in key: |
|
llama2_state_dict[key] = torch.nn.functional.normalize(value) |
|
else: |
|
llama2_state_dict[key] = value |
|
|
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME |
|
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name) |
|
|
|
for shard_file, shard in tqdm(shards.items(), desc="Save weights"): |
|
if save_safetensors: |
|
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) |
|
else: |
|
torch.save(shard, os.path.join(output_dir, shard_file)) |
|
|
|
if index is None: |
|
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME))) |
|
else: |
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME |
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: |
|
json.dump(index, f, indent=2, sort_keys=True) |
|
print("Model weights saved in {}".format(output_dir)) |
|
|
|
|
|
def save_config(input_dir: str, output_dir: str): |
|
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: |
|
llama2_config_dict: Dict[str, Any] = json.load(f) |
|
|
|
llama2_config_dict["architectures"] = ["LlamaForCausalLM"] |
|
llama2_config_dict.pop("auto_map", None) |
|
llama2_config_dict.pop("tokenizer_class", None) |
|
llama2_config_dict["model_type"] = "llama" |
|
|
|
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: |
|
json.dump(llama2_config_dict, f, indent=2) |
|
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) |
|
|
|
|
|
def llamafy_baichuan2( |
|
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False |
|
): |
|
r""" |
|
Converts the Baichuan2-7B model in the same format as LLaMA2-7B. |
|
Usage: python llamafy_baichuan2.py --input_dir input --output_dir output |
|
Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied |
|
""" |
|
try: |
|
os.makedirs(output_dir, exist_ok=False) |
|
except Exception as e: |
|
raise print("Output dir already exists", e) |
|
|
|
save_weight(input_dir, output_dir, shard_size, save_safetensors) |
|
save_config(input_dir, output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(llamafy_baichuan2) |
|
|