|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Literal |
|
|
|
import fire |
|
import torch |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq |
|
|
|
from llamafactory.data import get_dataset |
|
from llamafactory.extras.constants import IGNORE_INDEX |
|
from llamafactory.hparams import get_train_args |
|
from llamafactory.model import load_tokenizer |
|
|
|
|
|
BASE_LR = 3e-4 |
|
BASE_BS = 4_000_000 |
|
|
|
|
|
def calculate_lr( |
|
model_name_or_path: str, |
|
batch_size: int, |
|
stage: Literal["pt", "sft"] = "sft", |
|
dataset: str = "alpaca_en", |
|
dataset_dir: str = "data", |
|
template: str = "default", |
|
cutoff_len: int = 1024, |
|
is_mistral: bool = False, |
|
packing: bool = False, |
|
): |
|
r""" |
|
Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters. |
|
Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16 |
|
""" |
|
model_args, data_args, training_args, _, _ = get_train_args( |
|
dict( |
|
stage=stage, |
|
model_name_or_path=model_name_or_path, |
|
dataset=dataset, |
|
dataset_dir=dataset_dir, |
|
template=template, |
|
cutoff_len=cutoff_len, |
|
packing=packing, |
|
output_dir="dummy_dir", |
|
overwrite_cache=True, |
|
) |
|
) |
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module) |
|
if stage == "pt": |
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) |
|
elif stage == "sft": |
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX) |
|
else: |
|
raise NotImplementedError("Stage does not supported: {}.".format(stage)) |
|
|
|
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True) |
|
valid_tokens, total_tokens = 0, 0 |
|
for batch in tqdm(dataloader): |
|
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item() |
|
total_tokens += torch.numel(batch["labels"]) |
|
|
|
batch_max_len = cutoff_len * batch_size |
|
valid_ratio = valid_tokens / total_tokens |
|
batch_valid_len = batch_max_len * valid_ratio |
|
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) |
|
lr = lr / 6.0 if is_mistral else lr |
|
print( |
|
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format( |
|
lr, valid_ratio * 100, batch_valid_len |
|
) |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(calculate_lr) |
|
|