Update README.md
Browse files
README.md
CHANGED
@@ -26,6 +26,32 @@ This model is fine-tuned on the SQuAD2.0 dataset. Fine-tuning the biomedical lan
|
|
26 |
|
27 |
Huggingface library doesn't implement Layer-Wise decay feature, which affects the performance on SQuAD task. The reported result of BioM-ELECTRA-SQuAD in our paper is 88.3 (F1) since we use ELECTRA open-source code with TF checkpoint, which uses Layer-Wise decay.
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
Evaluation results on SQuAD2.0 Dev Dataset
|
30 |
```
|
31 |
exact = 84.33420365535248
|
|
|
26 |
|
27 |
Huggingface library doesn't implement Layer-Wise decay feature, which affects the performance on SQuAD task. The reported result of BioM-ELECTRA-SQuAD in our paper is 88.3 (F1) since we use ELECTRA open-source code with TF checkpoint, which uses Layer-Wise decay.
|
28 |
|
29 |
+
|
30 |
+
Training Script
|
31 |
+
|
32 |
+
```python
|
33 |
+
run_qa.py --model_name_or_path sultan/BioM-ELECTRA-Large-Discriminator \
|
34 |
+
--dataset_name squad_v2 \
|
35 |
+
--do_train \
|
36 |
+
--do_eval \
|
37 |
+
--dataloader_num_workers 20 \
|
38 |
+
--preprocessing_num_workers 20 \
|
39 |
+
--version_2_with_negative \
|
40 |
+
--num_train_epochs 2 \
|
41 |
+
--learning_rate 5e-5 \
|
42 |
+
--max_seq_length 512 \
|
43 |
+
--doc_stride 128 \
|
44 |
+
--per_device_train_batch_size 8 \
|
45 |
+
--gradient_accumulation_steps 6 \
|
46 |
+
--per_device_eval_batch_size 128 \
|
47 |
+
--fp16 \
|
48 |
+
--fp16_opt_level O1 \
|
49 |
+
--logging_steps 50 \
|
50 |
+
--save_steps 1000 \
|
51 |
+
--overwrite_output_dir \
|
52 |
+
--output_dir out
|
53 |
+
```
|
54 |
+
|
55 |
Evaluation results on SQuAD2.0 Dev Dataset
|
56 |
```
|
57 |
exact = 84.33420365535248
|