sukara13 commited on
Commit
538c58b
1 Parent(s): e4a23de

Upload 12 files

Browse files
Files changed (6) hide show
  1. README.md +202 -0
  2. adapter_model.safetensors +1 -1
  3. optimizer.pt +3 -0
  4. rng_state.pth +3 -0
  5. scheduler.pt +3 -0
  6. trainer_state.json +1048 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-7b-it
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b15c9177fa683b4c589104ce9e048435414192aa03bbc413d9adc5f3b4abb733
3
  size 7247616
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e472256015ab3321b2936015f9f6fac1b9dc926b5b62cd1d3db3f018e74485ff
3
  size 7247616
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08c44ad6d94f3fcc548d1c4b773b746f029a85e94cfc59471da43568cef5b2b8
3
+ size 14591866
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ad55119de1e13a9887ebdb75b834f80d5ec038b410405f875ebf02be93c9cbf
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ff26b2c82187b78643f5b30ed10abde142c89e0ea7822c395397e0b3a13cdae
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,1048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.83203125,
5
+ "eval_steps": 500,
6
+ "global_step": 1450,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01953125,
13
+ "grad_norm": 6.625,
14
+ "learning_rate": 1e-05,
15
+ "loss": 12.2067,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.0390625,
20
+ "grad_norm": 6.4375,
21
+ "learning_rate": 2e-05,
22
+ "loss": 12.0134,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.05859375,
27
+ "grad_norm": 7.6875,
28
+ "learning_rate": 3e-05,
29
+ "loss": 11.4098,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.078125,
34
+ "grad_norm": 7.40625,
35
+ "learning_rate": 4e-05,
36
+ "loss": 10.0389,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.09765625,
41
+ "grad_norm": 7.40625,
42
+ "learning_rate": 5e-05,
43
+ "loss": 8.5586,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.1171875,
48
+ "grad_norm": 8.375,
49
+ "learning_rate": 6e-05,
50
+ "loss": 7.2376,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.13671875,
55
+ "grad_norm": 10.8125,
56
+ "learning_rate": 7e-05,
57
+ "loss": 6.2848,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.15625,
62
+ "grad_norm": 13.6875,
63
+ "learning_rate": 8e-05,
64
+ "loss": 5.0552,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.17578125,
69
+ "grad_norm": 14.875,
70
+ "learning_rate": 9e-05,
71
+ "loss": 3.7062,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.1953125,
76
+ "grad_norm": 14.875,
77
+ "learning_rate": 0.0001,
78
+ "loss": 2.22,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.21484375,
83
+ "grad_norm": 4.15625,
84
+ "learning_rate": 9.930362116991644e-05,
85
+ "loss": 0.7615,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.234375,
90
+ "grad_norm": 2.265625,
91
+ "learning_rate": 9.860724233983287e-05,
92
+ "loss": 0.3524,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.25390625,
97
+ "grad_norm": 1.203125,
98
+ "learning_rate": 9.79108635097493e-05,
99
+ "loss": 0.29,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.2734375,
104
+ "grad_norm": 2.765625,
105
+ "learning_rate": 9.721448467966574e-05,
106
+ "loss": 0.3019,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.29296875,
111
+ "grad_norm": 1.8125,
112
+ "learning_rate": 9.651810584958218e-05,
113
+ "loss": 0.2656,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.3125,
118
+ "grad_norm": 1.0,
119
+ "learning_rate": 9.58217270194986e-05,
120
+ "loss": 0.2589,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.33203125,
125
+ "grad_norm": 2.0625,
126
+ "learning_rate": 9.512534818941504e-05,
127
+ "loss": 0.2599,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.3515625,
132
+ "grad_norm": 1.1328125,
133
+ "learning_rate": 9.442896935933148e-05,
134
+ "loss": 0.2475,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.37109375,
139
+ "grad_norm": 1.359375,
140
+ "learning_rate": 9.373259052924791e-05,
141
+ "loss": 0.2394,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.390625,
146
+ "grad_norm": 2.03125,
147
+ "learning_rate": 9.303621169916435e-05,
148
+ "loss": 0.2196,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.41015625,
153
+ "grad_norm": 1.21875,
154
+ "learning_rate": 9.233983286908079e-05,
155
+ "loss": 0.2454,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.4296875,
160
+ "grad_norm": 0.734375,
161
+ "learning_rate": 9.164345403899723e-05,
162
+ "loss": 0.2208,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.44921875,
167
+ "grad_norm": 1.015625,
168
+ "learning_rate": 9.094707520891366e-05,
169
+ "loss": 0.2191,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.46875,
174
+ "grad_norm": 0.8359375,
175
+ "learning_rate": 9.025069637883009e-05,
176
+ "loss": 0.2117,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.48828125,
181
+ "grad_norm": 1.0703125,
182
+ "learning_rate": 8.955431754874652e-05,
183
+ "loss": 0.2274,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.5078125,
188
+ "grad_norm": 1.25,
189
+ "learning_rate": 8.885793871866296e-05,
190
+ "loss": 0.1993,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.52734375,
195
+ "grad_norm": 1.1328125,
196
+ "learning_rate": 8.81615598885794e-05,
197
+ "loss": 0.2185,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.546875,
202
+ "grad_norm": 0.7578125,
203
+ "learning_rate": 8.746518105849582e-05,
204
+ "loss": 0.2048,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.56640625,
209
+ "grad_norm": 0.7734375,
210
+ "learning_rate": 8.676880222841226e-05,
211
+ "loss": 0.2008,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.5859375,
216
+ "grad_norm": 0.92578125,
217
+ "learning_rate": 8.60724233983287e-05,
218
+ "loss": 0.1946,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.60546875,
223
+ "grad_norm": 0.83984375,
224
+ "learning_rate": 8.537604456824512e-05,
225
+ "loss": 0.1977,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.625,
230
+ "grad_norm": 0.62890625,
231
+ "learning_rate": 8.467966573816156e-05,
232
+ "loss": 0.1928,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.64453125,
237
+ "grad_norm": 1.0625,
238
+ "learning_rate": 8.3983286908078e-05,
239
+ "loss": 0.2045,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.6640625,
244
+ "grad_norm": 0.546875,
245
+ "learning_rate": 8.328690807799443e-05,
246
+ "loss": 0.189,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.68359375,
251
+ "grad_norm": 1.3203125,
252
+ "learning_rate": 8.259052924791086e-05,
253
+ "loss": 0.1849,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.703125,
258
+ "grad_norm": 0.71484375,
259
+ "learning_rate": 8.18941504178273e-05,
260
+ "loss": 0.1868,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.72265625,
265
+ "grad_norm": 0.73828125,
266
+ "learning_rate": 8.119777158774373e-05,
267
+ "loss": 0.1968,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.7421875,
272
+ "grad_norm": 0.94140625,
273
+ "learning_rate": 8.050139275766017e-05,
274
+ "loss": 0.1875,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.76171875,
279
+ "grad_norm": 1.2421875,
280
+ "learning_rate": 7.980501392757661e-05,
281
+ "loss": 0.1849,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.78125,
286
+ "grad_norm": 0.6875,
287
+ "learning_rate": 7.910863509749304e-05,
288
+ "loss": 0.184,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.80078125,
293
+ "grad_norm": 0.59765625,
294
+ "learning_rate": 7.841225626740948e-05,
295
+ "loss": 0.1742,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.8203125,
300
+ "grad_norm": 0.66015625,
301
+ "learning_rate": 7.771587743732592e-05,
302
+ "loss": 0.173,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.83984375,
307
+ "grad_norm": 0.5703125,
308
+ "learning_rate": 7.701949860724234e-05,
309
+ "loss": 0.1583,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.859375,
314
+ "grad_norm": 0.625,
315
+ "learning_rate": 7.632311977715878e-05,
316
+ "loss": 0.1507,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.87890625,
321
+ "grad_norm": 0.9375,
322
+ "learning_rate": 7.562674094707522e-05,
323
+ "loss": 0.1667,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.8984375,
328
+ "grad_norm": 0.6484375,
329
+ "learning_rate": 7.493036211699165e-05,
330
+ "loss": 0.1445,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.91796875,
335
+ "grad_norm": 0.66796875,
336
+ "learning_rate": 7.423398328690808e-05,
337
+ "loss": 0.1268,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.9375,
342
+ "grad_norm": 0.734375,
343
+ "learning_rate": 7.353760445682452e-05,
344
+ "loss": 0.1437,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.95703125,
349
+ "grad_norm": 0.77734375,
350
+ "learning_rate": 7.284122562674095e-05,
351
+ "loss": 0.1439,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.9765625,
356
+ "grad_norm": 1.0,
357
+ "learning_rate": 7.214484679665738e-05,
358
+ "loss": 0.1341,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.99609375,
363
+ "grad_norm": 0.74609375,
364
+ "learning_rate": 7.144846796657381e-05,
365
+ "loss": 0.1202,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 1.015625,
370
+ "grad_norm": 0.66015625,
371
+ "learning_rate": 7.075208913649025e-05,
372
+ "loss": 0.1236,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 1.03515625,
377
+ "grad_norm": 0.72265625,
378
+ "learning_rate": 7.005571030640669e-05,
379
+ "loss": 0.1184,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 1.0546875,
384
+ "grad_norm": 1.203125,
385
+ "learning_rate": 6.935933147632311e-05,
386
+ "loss": 0.124,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 1.07421875,
391
+ "grad_norm": 0.83984375,
392
+ "learning_rate": 6.866295264623955e-05,
393
+ "loss": 0.1223,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 1.09375,
398
+ "grad_norm": 0.66015625,
399
+ "learning_rate": 6.796657381615599e-05,
400
+ "loss": 0.1136,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 1.11328125,
405
+ "grad_norm": 0.7578125,
406
+ "learning_rate": 6.727019498607243e-05,
407
+ "loss": 0.1113,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 1.1328125,
412
+ "grad_norm": 1.1015625,
413
+ "learning_rate": 6.657381615598886e-05,
414
+ "loss": 0.1055,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 1.15234375,
419
+ "grad_norm": 0.54296875,
420
+ "learning_rate": 6.58774373259053e-05,
421
+ "loss": 0.1148,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 1.171875,
426
+ "grad_norm": 0.91015625,
427
+ "learning_rate": 6.518105849582174e-05,
428
+ "loss": 0.1082,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 1.19140625,
433
+ "grad_norm": 0.9140625,
434
+ "learning_rate": 6.448467966573817e-05,
435
+ "loss": 0.0998,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 1.2109375,
440
+ "grad_norm": 0.84375,
441
+ "learning_rate": 6.37883008356546e-05,
442
+ "loss": 0.1083,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 1.23046875,
447
+ "grad_norm": 0.65625,
448
+ "learning_rate": 6.309192200557104e-05,
449
+ "loss": 0.1035,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 1.25,
454
+ "grad_norm": 0.9921875,
455
+ "learning_rate": 6.239554317548747e-05,
456
+ "loss": 0.1097,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 1.26953125,
461
+ "grad_norm": 0.458984375,
462
+ "learning_rate": 6.169916434540391e-05,
463
+ "loss": 0.1096,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 1.2890625,
468
+ "grad_norm": 0.51953125,
469
+ "learning_rate": 6.100278551532034e-05,
470
+ "loss": 0.1072,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 1.30859375,
475
+ "grad_norm": 0.59765625,
476
+ "learning_rate": 6.030640668523677e-05,
477
+ "loss": 0.1094,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 1.328125,
482
+ "grad_norm": 0.59375,
483
+ "learning_rate": 5.96100278551532e-05,
484
+ "loss": 0.1106,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 1.34765625,
489
+ "grad_norm": 0.388671875,
490
+ "learning_rate": 5.891364902506964e-05,
491
+ "loss": 0.1014,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 1.3671875,
496
+ "grad_norm": 0.478515625,
497
+ "learning_rate": 5.821727019498607e-05,
498
+ "loss": 0.1151,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 1.38671875,
503
+ "grad_norm": 0.71484375,
504
+ "learning_rate": 5.752089136490251e-05,
505
+ "loss": 0.1117,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 1.40625,
510
+ "grad_norm": 0.61328125,
511
+ "learning_rate": 5.682451253481894e-05,
512
+ "loss": 0.1102,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 1.42578125,
517
+ "grad_norm": 0.80078125,
518
+ "learning_rate": 5.6128133704735375e-05,
519
+ "loss": 0.1093,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 1.4453125,
524
+ "grad_norm": 0.55078125,
525
+ "learning_rate": 5.5431754874651806e-05,
526
+ "loss": 0.1046,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 1.46484375,
531
+ "grad_norm": 0.4765625,
532
+ "learning_rate": 5.473537604456824e-05,
533
+ "loss": 0.1013,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 1.484375,
538
+ "grad_norm": 0.99609375,
539
+ "learning_rate": 5.4038997214484674e-05,
540
+ "loss": 0.1108,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 1.50390625,
545
+ "grad_norm": 0.71875,
546
+ "learning_rate": 5.3342618384401125e-05,
547
+ "loss": 0.1068,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 1.5234375,
552
+ "grad_norm": 0.671875,
553
+ "learning_rate": 5.2646239554317555e-05,
554
+ "loss": 0.1037,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 1.54296875,
559
+ "grad_norm": 0.7265625,
560
+ "learning_rate": 5.194986072423399e-05,
561
+ "loss": 0.1091,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 1.5625,
566
+ "grad_norm": 0.58203125,
567
+ "learning_rate": 5.125348189415042e-05,
568
+ "loss": 0.0982,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 1.58203125,
573
+ "grad_norm": 1.015625,
574
+ "learning_rate": 5.055710306406686e-05,
575
+ "loss": 0.1121,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 1.6015625,
580
+ "grad_norm": 0.4140625,
581
+ "learning_rate": 4.986072423398329e-05,
582
+ "loss": 0.1028,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 1.62109375,
587
+ "grad_norm": 1.09375,
588
+ "learning_rate": 4.916434540389973e-05,
589
+ "loss": 0.1057,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 1.640625,
594
+ "grad_norm": 0.73046875,
595
+ "learning_rate": 4.846796657381616e-05,
596
+ "loss": 0.1048,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 1.66015625,
601
+ "grad_norm": 1.265625,
602
+ "learning_rate": 4.7771587743732597e-05,
603
+ "loss": 0.1053,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 1.6796875,
608
+ "grad_norm": 0.72265625,
609
+ "learning_rate": 4.707520891364903e-05,
610
+ "loss": 0.0982,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 1.69921875,
615
+ "grad_norm": 0.42578125,
616
+ "learning_rate": 4.637883008356546e-05,
617
+ "loss": 0.0999,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 1.71875,
622
+ "grad_norm": 0.55859375,
623
+ "learning_rate": 4.5682451253481895e-05,
624
+ "loss": 0.1044,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 1.73828125,
629
+ "grad_norm": 0.57421875,
630
+ "learning_rate": 4.4986072423398326e-05,
631
+ "loss": 0.106,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 1.7578125,
636
+ "grad_norm": 0.546875,
637
+ "learning_rate": 4.428969359331476e-05,
638
+ "loss": 0.0987,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 1.77734375,
643
+ "grad_norm": 0.5546875,
644
+ "learning_rate": 4.35933147632312e-05,
645
+ "loss": 0.0935,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 1.796875,
650
+ "grad_norm": 0.6171875,
651
+ "learning_rate": 4.289693593314764e-05,
652
+ "loss": 0.0984,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 1.81640625,
657
+ "grad_norm": 0.431640625,
658
+ "learning_rate": 4.220055710306407e-05,
659
+ "loss": 0.1019,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 1.8359375,
664
+ "grad_norm": 0.79296875,
665
+ "learning_rate": 4.1504178272980506e-05,
666
+ "loss": 0.1046,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 1.85546875,
671
+ "grad_norm": 0.51171875,
672
+ "learning_rate": 4.0807799442896936e-05,
673
+ "loss": 0.1057,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 1.875,
678
+ "grad_norm": 0.79296875,
679
+ "learning_rate": 4.0111420612813374e-05,
680
+ "loss": 0.102,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 1.89453125,
685
+ "grad_norm": 0.57421875,
686
+ "learning_rate": 3.9415041782729804e-05,
687
+ "loss": 0.0955,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 1.9140625,
692
+ "grad_norm": 0.68359375,
693
+ "learning_rate": 3.871866295264624e-05,
694
+ "loss": 0.1012,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 1.93359375,
699
+ "grad_norm": 0.51171875,
700
+ "learning_rate": 3.802228412256267e-05,
701
+ "loss": 0.1026,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 1.953125,
706
+ "grad_norm": 0.494140625,
707
+ "learning_rate": 3.7325905292479116e-05,
708
+ "loss": 0.1015,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 1.97265625,
713
+ "grad_norm": 0.5078125,
714
+ "learning_rate": 3.662952646239555e-05,
715
+ "loss": 0.1069,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 1.9921875,
720
+ "grad_norm": 0.69921875,
721
+ "learning_rate": 3.5933147632311984e-05,
722
+ "loss": 0.0937,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 2.01171875,
727
+ "grad_norm": 0.58984375,
728
+ "learning_rate": 3.5236768802228415e-05,
729
+ "loss": 0.0985,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 2.03125,
734
+ "grad_norm": 0.466796875,
735
+ "learning_rate": 3.454038997214485e-05,
736
+ "loss": 0.1058,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 2.05078125,
741
+ "grad_norm": 0.7578125,
742
+ "learning_rate": 3.384401114206128e-05,
743
+ "loss": 0.0993,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 2.0703125,
748
+ "grad_norm": 0.8671875,
749
+ "learning_rate": 3.314763231197771e-05,
750
+ "loss": 0.1004,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 2.08984375,
755
+ "grad_norm": 0.71875,
756
+ "learning_rate": 3.245125348189415e-05,
757
+ "loss": 0.0988,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 2.109375,
762
+ "grad_norm": 0.50390625,
763
+ "learning_rate": 3.175487465181058e-05,
764
+ "loss": 0.1189,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 2.12890625,
769
+ "grad_norm": 0.703125,
770
+ "learning_rate": 3.105849582172702e-05,
771
+ "loss": 0.1001,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 2.1484375,
776
+ "grad_norm": 0.7734375,
777
+ "learning_rate": 3.036211699164346e-05,
778
+ "loss": 0.1079,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 2.16796875,
783
+ "grad_norm": 0.703125,
784
+ "learning_rate": 2.9665738161559893e-05,
785
+ "loss": 0.1067,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 2.1875,
790
+ "grad_norm": 0.470703125,
791
+ "learning_rate": 2.8969359331476327e-05,
792
+ "loss": 0.0987,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 2.20703125,
797
+ "grad_norm": 0.53125,
798
+ "learning_rate": 2.827298050139276e-05,
799
+ "loss": 0.0969,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 2.2265625,
804
+ "grad_norm": 0.55859375,
805
+ "learning_rate": 2.7576601671309192e-05,
806
+ "loss": 0.0976,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 2.24609375,
811
+ "grad_norm": 0.515625,
812
+ "learning_rate": 2.6880222841225626e-05,
813
+ "loss": 0.1017,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 2.265625,
818
+ "grad_norm": 0.95703125,
819
+ "learning_rate": 2.618384401114206e-05,
820
+ "loss": 0.0963,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 2.28515625,
825
+ "grad_norm": 0.71484375,
826
+ "learning_rate": 2.5487465181058494e-05,
827
+ "loss": 0.1029,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 2.3046875,
832
+ "grad_norm": 0.9296875,
833
+ "learning_rate": 2.479108635097493e-05,
834
+ "loss": 0.099,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 2.32421875,
839
+ "grad_norm": 0.482421875,
840
+ "learning_rate": 2.4094707520891365e-05,
841
+ "loss": 0.1005,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 2.34375,
846
+ "grad_norm": 0.6171875,
847
+ "learning_rate": 2.33983286908078e-05,
848
+ "loss": 0.0955,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 2.36328125,
853
+ "grad_norm": 0.515625,
854
+ "learning_rate": 2.2701949860724233e-05,
855
+ "loss": 0.0982,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 2.3828125,
860
+ "grad_norm": 0.7265625,
861
+ "learning_rate": 2.200557103064067e-05,
862
+ "loss": 0.1055,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 2.40234375,
867
+ "grad_norm": 0.6484375,
868
+ "learning_rate": 2.1309192200557104e-05,
869
+ "loss": 0.1029,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 2.421875,
874
+ "grad_norm": 0.59765625,
875
+ "learning_rate": 2.0612813370473538e-05,
876
+ "loss": 0.0998,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 2.44140625,
881
+ "grad_norm": 0.6796875,
882
+ "learning_rate": 1.9916434540389972e-05,
883
+ "loss": 0.0963,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 2.4609375,
888
+ "grad_norm": 0.478515625,
889
+ "learning_rate": 1.922005571030641e-05,
890
+ "loss": 0.1001,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 2.48046875,
895
+ "grad_norm": 0.48828125,
896
+ "learning_rate": 1.8523676880222844e-05,
897
+ "loss": 0.1031,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 2.5,
902
+ "grad_norm": 0.52734375,
903
+ "learning_rate": 1.7827298050139278e-05,
904
+ "loss": 0.0981,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 2.51953125,
909
+ "grad_norm": 0.578125,
910
+ "learning_rate": 1.713091922005571e-05,
911
+ "loss": 0.1022,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 2.5390625,
916
+ "grad_norm": 0.875,
917
+ "learning_rate": 1.6434540389972145e-05,
918
+ "loss": 0.0981,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 2.55859375,
923
+ "grad_norm": 0.59375,
924
+ "learning_rate": 1.5738161559888583e-05,
925
+ "loss": 0.0974,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 2.578125,
930
+ "grad_norm": 0.7578125,
931
+ "learning_rate": 1.5041782729805015e-05,
932
+ "loss": 0.0961,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 2.59765625,
937
+ "grad_norm": 0.7265625,
938
+ "learning_rate": 1.4345403899721449e-05,
939
+ "loss": 0.0927,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 2.6171875,
944
+ "grad_norm": 0.51953125,
945
+ "learning_rate": 1.3649025069637883e-05,
946
+ "loss": 0.102,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 2.63671875,
951
+ "grad_norm": 0.6171875,
952
+ "learning_rate": 1.2952646239554317e-05,
953
+ "loss": 0.0991,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 2.65625,
958
+ "grad_norm": 0.5078125,
959
+ "learning_rate": 1.2256267409470753e-05,
960
+ "loss": 0.0951,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 2.67578125,
965
+ "grad_norm": 0.515625,
966
+ "learning_rate": 1.1559888579387188e-05,
967
+ "loss": 0.0944,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 2.6953125,
972
+ "grad_norm": 0.703125,
973
+ "learning_rate": 1.086350974930362e-05,
974
+ "loss": 0.1067,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 2.71484375,
979
+ "grad_norm": 0.7265625,
980
+ "learning_rate": 1.0167130919220056e-05,
981
+ "loss": 0.0935,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 2.734375,
986
+ "grad_norm": 0.66015625,
987
+ "learning_rate": 9.47075208913649e-06,
988
+ "loss": 0.0963,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 2.75390625,
993
+ "grad_norm": 0.84375,
994
+ "learning_rate": 8.774373259052924e-06,
995
+ "loss": 0.1012,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 2.7734375,
1000
+ "grad_norm": 0.7265625,
1001
+ "learning_rate": 8.07799442896936e-06,
1002
+ "loss": 0.0954,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 2.79296875,
1007
+ "grad_norm": 0.462890625,
1008
+ "learning_rate": 7.381615598885794e-06,
1009
+ "loss": 0.0997,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 2.8125,
1014
+ "grad_norm": 0.5703125,
1015
+ "learning_rate": 6.6852367688022295e-06,
1016
+ "loss": 0.0999,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 2.83203125,
1021
+ "grad_norm": 0.5859375,
1022
+ "learning_rate": 5.988857938718663e-06,
1023
+ "loss": 0.0898,
1024
+ "step": 1450
1025
+ }
1026
+ ],
1027
+ "logging_steps": 10,
1028
+ "max_steps": 1536,
1029
+ "num_input_tokens_seen": 0,
1030
+ "num_train_epochs": 3,
1031
+ "save_steps": 10,
1032
+ "stateful_callbacks": {
1033
+ "TrainerControl": {
1034
+ "args": {
1035
+ "should_epoch_stop": false,
1036
+ "should_evaluate": false,
1037
+ "should_log": false,
1038
+ "should_save": true,
1039
+ "should_training_stop": false
1040
+ },
1041
+ "attributes": {}
1042
+ }
1043
+ },
1044
+ "total_flos": 5763521685399552.0,
1045
+ "train_batch_size": 1,
1046
+ "trial_name": null,
1047
+ "trial_params": null
1048
+ }