Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- adapter_model.safetensors +1 -1
- checkpoint-1200/README.md +202 -0
- checkpoint-1200/adapter_config.json +380 -0
- checkpoint-1200/adapter_model.safetensors +3 -0
- checkpoint-1200/latest +1 -0
- checkpoint-1200/qwen.tiktoken +0 -0
- checkpoint-1200/rng_state_0.pth +3 -0
- checkpoint-1200/rng_state_1.pth +3 -0
- checkpoint-1200/rng_state_2.pth +3 -0
- checkpoint-1200/rng_state_3.pth +3 -0
- checkpoint-1200/scheduler.pt +3 -0
- checkpoint-1200/special_tokens_map.json +3 -0
- checkpoint-1200/tokenizer_config.json +14 -0
- checkpoint-1200/trainer_state.json +873 -0
- checkpoint-1200/training_args.bin +3 -0
- checkpoint-1200/zero_to_fp32.py +587 -0
- checkpoint-1600/README.md +202 -0
- checkpoint-1600/adapter_config.json +380 -0
- checkpoint-1600/adapter_model.safetensors +3 -0
- checkpoint-1600/latest +1 -0
- checkpoint-1600/qwen.tiktoken +0 -0
- checkpoint-1600/rng_state_0.pth +3 -0
- checkpoint-1600/rng_state_1.pth +3 -0
- checkpoint-1600/rng_state_2.pth +3 -0
- checkpoint-1600/rng_state_3.pth +3 -0
- checkpoint-1600/scheduler.pt +3 -0
- checkpoint-1600/special_tokens_map.json +3 -0
- checkpoint-1600/tokenizer_config.json +14 -0
- checkpoint-1600/trainer_state.json +1153 -0
- checkpoint-1600/training_args.bin +3 -0
- checkpoint-1600/zero_to_fp32.py +587 -0
- checkpoint-2000/README.md +202 -0
- checkpoint-2000/adapter_config.json +380 -0
- checkpoint-2000/adapter_model.safetensors +3 -0
- checkpoint-2000/latest +1 -0
- checkpoint-2000/qwen.tiktoken +0 -0
- checkpoint-2000/rng_state_0.pth +3 -0
- checkpoint-2000/rng_state_1.pth +3 -0
- checkpoint-2000/rng_state_2.pth +3 -0
- checkpoint-2000/rng_state_3.pth +3 -0
- checkpoint-2000/scheduler.pt +3 -0
- checkpoint-2000/special_tokens_map.json +3 -0
- checkpoint-2000/tokenizer_config.json +14 -0
- checkpoint-2000/trainer_state.json +1433 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-2000/zero_to_fp32.py +587 -0
- checkpoint-2400/README.md +202 -0
- checkpoint-2400/adapter_config.json +380 -0
- checkpoint-2400/adapter_model.safetensors +3 -0
- checkpoint-2400/latest +1 -0
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 469105640
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29edeab874fb9c672969f9531b2a0473dab3b421c73f00c956d2cdc2b8e00b69
|
3 |
size 469105640
|
checkpoint-1200/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-1200/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.h.17.attn.c_proj",
|
24 |
+
"transformer.h.20.mlp.c_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
26 |
+
"transformer.h.3.attn.c_attn",
|
27 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
29 |
+
"transformer.h.28.mlp.w2",
|
30 |
+
"transformer.h.6.mlp.w2",
|
31 |
+
"transformer.h.13.mlp.w1",
|
32 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
33 |
+
"transformer.h.2.mlp.c_proj",
|
34 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
35 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
36 |
+
"transformer.h.4.attn.c_proj",
|
37 |
+
"transformer.h.22.mlp.c_proj",
|
38 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
39 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
40 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
42 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
43 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
44 |
+
"transformer.h.0.attn.c_attn",
|
45 |
+
"transformer.h.19.mlp.w2",
|
46 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
48 |
+
"transformer.h.31.mlp.c_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
50 |
+
"transformer.h.18.mlp.w1",
|
51 |
+
"transformer.h.23.mlp.w2",
|
52 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
54 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
55 |
+
"transformer.h.12.mlp.w2",
|
56 |
+
"transformer.h.23.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
58 |
+
"transformer.h.10.mlp.w1",
|
59 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
61 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
62 |
+
"transformer.h.9.mlp.w1",
|
63 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
64 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
65 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
67 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
69 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
70 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
71 |
+
"transformer.h.24.attn.c_proj",
|
72 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
73 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
74 |
+
"transformer.h.10.attn.c_attn",
|
75 |
+
"transformer.h.26.attn.c_attn",
|
76 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
78 |
+
"transformer.h.7.attn.c_proj",
|
79 |
+
"transformer.h.24.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
81 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
82 |
+
"transformer.h.12.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
84 |
+
"transformer.h.18.attn.c_attn",
|
85 |
+
"transformer.h.23.attn.c_proj",
|
86 |
+
"transformer.h.27.mlp.c_proj",
|
87 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
88 |
+
"transformer.h.3.mlp.w1",
|
89 |
+
"transformer.h.2.mlp.w2",
|
90 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
92 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
93 |
+
"transformer.h.25.mlp.w1",
|
94 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
96 |
+
"transformer.h.1.attn.c_proj",
|
97 |
+
"transformer.h.1.attn.c_attn",
|
98 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
99 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
100 |
+
"transformer.h.13.attn.c_attn",
|
101 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
102 |
+
"transformer.h.7.mlp.w2",
|
103 |
+
"transformer.h.9.attn.c_proj",
|
104 |
+
"transformer.h.15.attn.c_attn",
|
105 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
106 |
+
"transformer.h.27.attn.c_attn",
|
107 |
+
"transformer.h.15.mlp.c_proj",
|
108 |
+
"transformer.h.21.mlp.w2",
|
109 |
+
"transformer.h.28.attn.c_proj",
|
110 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
111 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
112 |
+
"transformer.h.9.mlp.w2",
|
113 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
115 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
116 |
+
"transformer.h.11.mlp.w1",
|
117 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
118 |
+
"transformer.h.10.attn.c_proj",
|
119 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
120 |
+
"transformer.h.31.attn.c_attn",
|
121 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
122 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
123 |
+
"transformer.h.24.mlp.w1",
|
124 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
125 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
126 |
+
"transformer.h.8.mlp.c_proj",
|
127 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
128 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
129 |
+
"transformer.h.22.mlp.w2",
|
130 |
+
"transformer.h.29.mlp.w2",
|
131 |
+
"transformer.h.0.mlp.c_proj",
|
132 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
133 |
+
"transformer.h.8.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.w1",
|
135 |
+
"transformer.h.26.mlp.w2",
|
136 |
+
"transformer.h.25.attn.c_proj",
|
137 |
+
"transformer.h.27.mlp.w1",
|
138 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
140 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
141 |
+
"transformer.h.29.attn.c_attn",
|
142 |
+
"transformer.h.24.attn.c_attn",
|
143 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
144 |
+
"transformer.h.2.attn.c_proj",
|
145 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
146 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
148 |
+
"transformer.h.11.mlp.c_proj",
|
149 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
150 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
151 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
152 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
154 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
155 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
156 |
+
"transformer.h.1.mlp.w2",
|
157 |
+
"transformer.h.21.mlp.c_proj",
|
158 |
+
"transformer.h.23.attn.c_attn",
|
159 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
160 |
+
"transformer.h.14.attn.c_attn",
|
161 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
162 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
163 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
164 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
165 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
167 |
+
"transformer.h.9.mlp.c_proj",
|
168 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
169 |
+
"transformer.h.18.mlp.c_proj",
|
170 |
+
"transformer.h.19.mlp.w1",
|
171 |
+
"transformer.h.9.attn.c_attn",
|
172 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
175 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
177 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
178 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
180 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
181 |
+
"transformer.h.25.attn.c_attn",
|
182 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
183 |
+
"transformer.h.16.mlp.w1",
|
184 |
+
"transformer.h.28.mlp.c_proj",
|
185 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
186 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
187 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
189 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
190 |
+
"transformer.h.30.mlp.w1",
|
191 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
192 |
+
"transformer.h.15.mlp.w1",
|
193 |
+
"transformer.h.16.attn.c_proj",
|
194 |
+
"transformer.h.20.mlp.w1",
|
195 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
196 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
197 |
+
"transformer.h.10.mlp.c_proj",
|
198 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
199 |
+
"transformer.h.13.mlp.w2",
|
200 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
202 |
+
"transformer.h.22.attn.c_proj",
|
203 |
+
"transformer.h.6.mlp.w1",
|
204 |
+
"transformer.h.18.mlp.w2",
|
205 |
+
"transformer.h.4.mlp.c_proj",
|
206 |
+
"transformer.h.3.mlp.c_proj",
|
207 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
208 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
209 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
211 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
214 |
+
"transformer.h.22.mlp.w1",
|
215 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
216 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
217 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
218 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
219 |
+
"transformer.h.18.attn.c_proj",
|
220 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
221 |
+
"transformer.h.5.attn.c_attn",
|
222 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
223 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
224 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
225 |
+
"transformer.h.5.attn.c_proj",
|
226 |
+
"transformer.h.7.attn.c_attn",
|
227 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
229 |
+
"transformer.h.29.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
231 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
232 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
233 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
234 |
+
"transformer.h.23.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
236 |
+
"transformer.h.12.attn.c_proj",
|
237 |
+
"transformer.h.16.mlp.w2",
|
238 |
+
"transformer.h.27.mlp.w2",
|
239 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
240 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
242 |
+
"transformer.h.26.attn.c_proj",
|
243 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
244 |
+
"transformer.h.8.mlp.w2",
|
245 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
246 |
+
"transformer.h.17.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.w2",
|
248 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
249 |
+
"transformer.h.28.mlp.w1",
|
250 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
251 |
+
"transformer.h.12.mlp.w1",
|
252 |
+
"transformer.h.30.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
254 |
+
"transformer.h.6.attn.c_attn",
|
255 |
+
"transformer.h.5.mlp.c_proj",
|
256 |
+
"transformer.h.6.mlp.c_proj",
|
257 |
+
"transformer.h.22.attn.c_attn",
|
258 |
+
"transformer.h.13.attn.c_proj",
|
259 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
260 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
261 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
262 |
+
"transformer.h.17.mlp.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
264 |
+
"transformer.h.4.mlp.w2",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
266 |
+
"transformer.h.11.mlp.w2",
|
267 |
+
"transformer.h.19.attn.c_attn",
|
268 |
+
"transformer.h.14.mlp.w1",
|
269 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
270 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
271 |
+
"transformer.h.21.attn.c_attn",
|
272 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
273 |
+
"transformer.h.2.mlp.w1",
|
274 |
+
"transformer.h.14.attn.c_proj",
|
275 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
276 |
+
"transformer.h.6.attn.c_proj",
|
277 |
+
"transformer.h.0.mlp.w2",
|
278 |
+
"transformer.h.5.mlp.w1",
|
279 |
+
"transformer.h.30.attn.c_proj",
|
280 |
+
"transformer.h.24.mlp.w2",
|
281 |
+
"transformer.h.0.attn.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
283 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
284 |
+
"transformer.h.10.mlp.w2",
|
285 |
+
"transformer.h.17.mlp.w2",
|
286 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
287 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
288 |
+
"transformer.h.20.mlp.w2",
|
289 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
290 |
+
"transformer.h.29.mlp.w1",
|
291 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
292 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
293 |
+
"transformer.h.15.attn.c_proj",
|
294 |
+
"transformer.h.3.mlp.w2",
|
295 |
+
"transformer.h.30.attn.c_attn",
|
296 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
297 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
298 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
299 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
300 |
+
"transformer.h.20.attn.c_attn",
|
301 |
+
"transformer.h.19.mlp.c_proj",
|
302 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
304 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
307 |
+
"transformer.h.11.attn.c_proj",
|
308 |
+
"transformer.h.12.attn.c_attn",
|
309 |
+
"transformer.visual.conv1",
|
310 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
311 |
+
"transformer.h.25.mlp.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
313 |
+
"transformer.h.26.mlp.w1",
|
314 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
315 |
+
"transformer.h.7.mlp.c_proj",
|
316 |
+
"transformer.h.29.attn.c_proj",
|
317 |
+
"transformer.h.1.mlp.c_proj",
|
318 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
319 |
+
"transformer.h.14.mlp.c_proj",
|
320 |
+
"transformer.h.3.attn.c_proj",
|
321 |
+
"transformer.h.25.mlp.w2",
|
322 |
+
"transformer.h.20.attn.c_proj",
|
323 |
+
"transformer.h.16.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
325 |
+
"transformer.h.17.attn.c_attn",
|
326 |
+
"transformer.h.14.mlp.w2",
|
327 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
328 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
330 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
331 |
+
"transformer.h.15.mlp.w2",
|
332 |
+
"transformer.h.4.attn.c_attn",
|
333 |
+
"transformer.h.31.mlp.w1",
|
334 |
+
"transformer.h.11.attn.c_attn",
|
335 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
336 |
+
"transformer.h.7.mlp.w1",
|
337 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
338 |
+
"transformer.h.1.mlp.w1",
|
339 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
340 |
+
"transformer.h.21.attn.c_proj",
|
341 |
+
"transformer.h.30.mlp.c_proj",
|
342 |
+
"transformer.h.21.mlp.w1",
|
343 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
344 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
345 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
346 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
347 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
348 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
350 |
+
"transformer.h.13.mlp.c_proj",
|
351 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
353 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
354 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
355 |
+
"transformer.h.4.mlp.w1",
|
356 |
+
"transformer.h.8.attn.c_attn",
|
357 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
359 |
+
"transformer.h.28.attn.c_attn",
|
360 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
361 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
362 |
+
"transformer.h.19.attn.c_proj",
|
363 |
+
"transformer.h.2.attn.c_attn",
|
364 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
365 |
+
"transformer.h.26.mlp.c_proj",
|
366 |
+
"transformer.h.8.attn.c_proj",
|
367 |
+
"transformer.h.27.attn.c_proj",
|
368 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
369 |
+
"transformer.h.16.attn.c_attn",
|
370 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
372 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
373 |
+
"transformer.h.31.attn.c_proj",
|
374 |
+
"transformer.h.5.mlp.w2",
|
375 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-1200/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42041b221d86a9753fed065745dc7df697e59016b80d615003f1759f4ad6203d
|
3 |
+
size 469105640
|
checkpoint-1200/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1200
|
checkpoint-1200/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1200/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:336248bbe8a4fee02df88588f7f7dc1b33253e35723db0c2b4226da31752a2d3
|
3 |
+
size 14960
|
checkpoint-1200/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29d9da4dc40c9b6b09b727757e4b19b448bc1dfeb00627e256a8e07f67e4da9
|
3 |
+
size 14960
|
checkpoint-1200/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4ae0fe36d0ba0ead4de4005e87904f5e4d9dec09a80b2e4db5ec0c80a0ea346
|
3 |
+
size 14960
|
checkpoint-1200/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9087f0ffb3a26097f004f56dccdbf08eec0c5cc75577bc9d741246ab7c60a229
|
3 |
+
size 14960
|
checkpoint-1200/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80613ac1f3063b2760ed75829d953d81b43e14572849068a9f7570742ebc5962
|
3 |
+
size 1064
|
checkpoint-1200/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-1200/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 1280,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-1200/trainer_state.json
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.20191822311963656,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0016826518593303045,
|
13 |
+
"grad_norm": 5.367858933563703,
|
14 |
+
"learning_rate": 4.9999999999999996e-06,
|
15 |
+
"loss": 0.9537,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.003365303718660609,
|
20 |
+
"grad_norm": 9.386746384686745,
|
21 |
+
"learning_rate": 9.999999999999999e-06,
|
22 |
+
"loss": 0.943,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.005047955577990914,
|
27 |
+
"grad_norm": 7.387362447577942,
|
28 |
+
"learning_rate": 1.5e-05,
|
29 |
+
"loss": 0.934,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.006730607437321218,
|
34 |
+
"grad_norm": 6.9256319824932655,
|
35 |
+
"learning_rate": 1.9999999999999998e-05,
|
36 |
+
"loss": 0.8376,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.008413259296651522,
|
41 |
+
"grad_norm": 9.1148382590838,
|
42 |
+
"learning_rate": 2.5e-05,
|
43 |
+
"loss": 0.8484,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.010095911155981827,
|
48 |
+
"grad_norm": 3.9989232759892426,
|
49 |
+
"learning_rate": 3e-05,
|
50 |
+
"loss": 0.8097,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.011778563015312132,
|
55 |
+
"grad_norm": 3.892371218590039,
|
56 |
+
"learning_rate": 2.9999786123888308e-05,
|
57 |
+
"loss": 0.7811,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.013461214874642436,
|
62 |
+
"grad_norm": 8.096662196282066,
|
63 |
+
"learning_rate": 2.9999144501652298e-05,
|
64 |
+
"loss": 0.7446,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.01514386673397274,
|
69 |
+
"grad_norm": 1.5769306611206149,
|
70 |
+
"learning_rate": 2.9998075151588992e-05,
|
71 |
+
"loss": 0.7258,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.016826518593303044,
|
76 |
+
"grad_norm": 8.47430485487969,
|
77 |
+
"learning_rate": 2.999657810419285e-05,
|
78 |
+
"loss": 0.7052,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01850917045263335,
|
83 |
+
"grad_norm": 2.363071299913598,
|
84 |
+
"learning_rate": 2.999465340215489e-05,
|
85 |
+
"loss": 0.7657,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.020191822311963654,
|
90 |
+
"grad_norm": 1.9252385425154874,
|
91 |
+
"learning_rate": 2.999230110036149e-05,
|
92 |
+
"loss": 0.7329,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.02187447417129396,
|
97 |
+
"grad_norm": 8.946028475031488,
|
98 |
+
"learning_rate": 2.99895212658928e-05,
|
99 |
+
"loss": 0.7304,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.023557126030624265,
|
104 |
+
"grad_norm": 6.877609312630206,
|
105 |
+
"learning_rate": 2.9986313978020846e-05,
|
106 |
+
"loss": 0.7453,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02523977788995457,
|
111 |
+
"grad_norm": 2.5256324882367993,
|
112 |
+
"learning_rate": 2.9982679328207262e-05,
|
113 |
+
"loss": 0.7366,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.02692242974928487,
|
118 |
+
"grad_norm": 2.709550398238738,
|
119 |
+
"learning_rate": 2.9978617420100692e-05,
|
120 |
+
"loss": 0.7258,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.028605081608615177,
|
125 |
+
"grad_norm": 1.543550019689774,
|
126 |
+
"learning_rate": 2.9974128369533805e-05,
|
127 |
+
"loss": 0.7372,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.03028773346794548,
|
132 |
+
"grad_norm": 3.3453966881155504,
|
133 |
+
"learning_rate": 2.9969212304520034e-05,
|
134 |
+
"loss": 0.743,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.03197038532727579,
|
139 |
+
"grad_norm": 1.922001656181265,
|
140 |
+
"learning_rate": 2.9963869365249895e-05,
|
141 |
+
"loss": 0.7819,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.03365303718660609,
|
146 |
+
"grad_norm": 2.0611188483400036,
|
147 |
+
"learning_rate": 2.995809970408699e-05,
|
148 |
+
"loss": 0.7155,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0353356890459364,
|
153 |
+
"grad_norm": 1.5313041833127259,
|
154 |
+
"learning_rate": 2.9951903485563685e-05,
|
155 |
+
"loss": 0.7322,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.0370183409052667,
|
160 |
+
"grad_norm": 2.0124191694435085,
|
161 |
+
"learning_rate": 2.99452808863764e-05,
|
162 |
+
"loss": 0.6759,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03870099276459701,
|
167 |
+
"grad_norm": 3.182123324389477,
|
168 |
+
"learning_rate": 2.993823209538056e-05,
|
169 |
+
"loss": 0.6953,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.04038364462392731,
|
174 |
+
"grad_norm": 1.6122782177661379,
|
175 |
+
"learning_rate": 2.9930757313585238e-05,
|
176 |
+
"loss": 0.6953,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.04206629648325761,
|
181 |
+
"grad_norm": 2.2027482596695647,
|
182 |
+
"learning_rate": 2.9922856754147406e-05,
|
183 |
+
"loss": 0.7301,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.04374894834258792,
|
188 |
+
"grad_norm": 2.6782477155989213,
|
189 |
+
"learning_rate": 2.9914530642365852e-05,
|
190 |
+
"loss": 0.6891,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.04543160020191822,
|
195 |
+
"grad_norm": 1.9740401144541417,
|
196 |
+
"learning_rate": 2.990577921567476e-05,
|
197 |
+
"loss": 0.7231,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.04711425206124853,
|
202 |
+
"grad_norm": 1.719874620968932,
|
203 |
+
"learning_rate": 2.989660272363696e-05,
|
204 |
+
"loss": 0.7505,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.04879690392057883,
|
209 |
+
"grad_norm": 1.3138364164203409,
|
210 |
+
"learning_rate": 2.988700142793676e-05,
|
211 |
+
"loss": 0.7116,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.05047955577990914,
|
216 |
+
"grad_norm": 5.853627389344256,
|
217 |
+
"learning_rate": 2.9876975602372536e-05,
|
218 |
+
"loss": 0.719,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.05216220763923944,
|
223 |
+
"grad_norm": 2.347259437170711,
|
224 |
+
"learning_rate": 2.9866525532848906e-05,
|
225 |
+
"loss": 0.6803,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.05384485949856974,
|
230 |
+
"grad_norm": 1.937679220955038,
|
231 |
+
"learning_rate": 2.9855651517368567e-05,
|
232 |
+
"loss": 0.7461,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.05552751135790005,
|
237 |
+
"grad_norm": 1.6661300351569575,
|
238 |
+
"learning_rate": 2.9844353866023802e-05,
|
239 |
+
"loss": 0.7472,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.05721016321723035,
|
244 |
+
"grad_norm": 2.357915869204484,
|
245 |
+
"learning_rate": 2.9832632900987642e-05,
|
246 |
+
"loss": 0.7148,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.05889281507656066,
|
251 |
+
"grad_norm": 4.398815186243292,
|
252 |
+
"learning_rate": 2.982048895650468e-05,
|
253 |
+
"loss": 0.6992,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.06057546693589096,
|
258 |
+
"grad_norm": 12.662682224480092,
|
259 |
+
"learning_rate": 2.9807922378881537e-05,
|
260 |
+
"loss": 0.7539,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.06225811879522127,
|
265 |
+
"grad_norm": 0.8642696401357872,
|
266 |
+
"learning_rate": 2.979493352647697e-05,
|
267 |
+
"loss": 0.7212,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.06394077065455157,
|
272 |
+
"grad_norm": 27.047937858232604,
|
273 |
+
"learning_rate": 2.9781522769691686e-05,
|
274 |
+
"loss": 0.722,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.06562342251388188,
|
279 |
+
"grad_norm": 2.598805292448644,
|
280 |
+
"learning_rate": 2.9767690490957758e-05,
|
281 |
+
"loss": 0.7065,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.06730607437321218,
|
286 |
+
"grad_norm": 1.2314762895092763,
|
287 |
+
"learning_rate": 2.9753437084727713e-05,
|
288 |
+
"loss": 0.7498,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.06898872623254249,
|
293 |
+
"grad_norm": 1.6421909669790502,
|
294 |
+
"learning_rate": 2.9738762957463292e-05,
|
295 |
+
"loss": 0.6992,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.0706713780918728,
|
300 |
+
"grad_norm": 2.023552968622588,
|
301 |
+
"learning_rate": 2.9723668527623877e-05,
|
302 |
+
"loss": 0.6943,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.0723540299512031,
|
307 |
+
"grad_norm": 1.5172337910969138,
|
308 |
+
"learning_rate": 2.9708154225654526e-05,
|
309 |
+
"loss": 0.6987,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0740366818105334,
|
314 |
+
"grad_norm": 1.197852135730745,
|
315 |
+
"learning_rate": 2.9692220493973712e-05,
|
316 |
+
"loss": 0.7302,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.0757193336698637,
|
321 |
+
"grad_norm": 2.4396443837967183,
|
322 |
+
"learning_rate": 2.9675867786960718e-05,
|
323 |
+
"loss": 0.7318,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.07740198552919401,
|
328 |
+
"grad_norm": 1.4599851880563282,
|
329 |
+
"learning_rate": 2.9659096570942654e-05,
|
330 |
+
"loss": 0.6941,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.07908463738852431,
|
335 |
+
"grad_norm": 1.117755825364562,
|
336 |
+
"learning_rate": 2.9641907324181194e-05,
|
337 |
+
"loss": 0.7399,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.08076728924785462,
|
342 |
+
"grad_norm": 2.9235378164576242,
|
343 |
+
"learning_rate": 2.96243005368589e-05,
|
344 |
+
"loss": 0.7207,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.08244994110718493,
|
349 |
+
"grad_norm": 7.308883163781362,
|
350 |
+
"learning_rate": 2.960627671106527e-05,
|
351 |
+
"loss": 0.682,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.08413259296651522,
|
356 |
+
"grad_norm": 3.4394827932955234,
|
357 |
+
"learning_rate": 2.9587836360782405e-05,
|
358 |
+
"loss": 0.708,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.08581524482584553,
|
363 |
+
"grad_norm": 3.2314529856927634,
|
364 |
+
"learning_rate": 2.9568980011870357e-05,
|
365 |
+
"loss": 0.7335,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.08749789668517584,
|
370 |
+
"grad_norm": 1.825724533695325,
|
371 |
+
"learning_rate": 2.954970820205214e-05,
|
372 |
+
"loss": 0.6951,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.08918054854450615,
|
377 |
+
"grad_norm": 3.3231741746640076,
|
378 |
+
"learning_rate": 2.9530021480898393e-05,
|
379 |
+
"loss": 0.7793,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.09086320040383644,
|
384 |
+
"grad_norm": 1.3097651462571123,
|
385 |
+
"learning_rate": 2.9509920409811696e-05,
|
386 |
+
"loss": 0.7087,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.09254585226316675,
|
391 |
+
"grad_norm": 6.685911471215255,
|
392 |
+
"learning_rate": 2.9489405562010565e-05,
|
393 |
+
"loss": 0.6906,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.09422850412249706,
|
398 |
+
"grad_norm": 2.870746617513948,
|
399 |
+
"learning_rate": 2.9468477522513132e-05,
|
400 |
+
"loss": 0.7028,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.09591115598182735,
|
405 |
+
"grad_norm": 1.782555352805469,
|
406 |
+
"learning_rate": 2.9447136888120408e-05,
|
407 |
+
"loss": 0.6901,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.09759380784115766,
|
412 |
+
"grad_norm": 2.336519711000487,
|
413 |
+
"learning_rate": 2.9425384267399327e-05,
|
414 |
+
"loss": 0.7779,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.09927645970048797,
|
419 |
+
"grad_norm": 8.935574410818228,
|
420 |
+
"learning_rate": 2.940322028066534e-05,
|
421 |
+
"loss": 0.7503,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.10095911155981828,
|
426 |
+
"grad_norm": 2.754713786882031,
|
427 |
+
"learning_rate": 2.938064555996476e-05,
|
428 |
+
"loss": 0.7208,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.10264176341914857,
|
433 |
+
"grad_norm": 1.5082503557652136,
|
434 |
+
"learning_rate": 2.9357660749056713e-05,
|
435 |
+
"loss": 0.7169,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.10432441527847888,
|
440 |
+
"grad_norm": 9.04522194526273,
|
441 |
+
"learning_rate": 2.9334266503394803e-05,
|
442 |
+
"loss": 0.6927,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.10600706713780919,
|
447 |
+
"grad_norm": 55.28278686388287,
|
448 |
+
"learning_rate": 2.9310463490108397e-05,
|
449 |
+
"loss": 0.7107,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.10768971899713949,
|
454 |
+
"grad_norm": 3.721916069105249,
|
455 |
+
"learning_rate": 2.928625238798362e-05,
|
456 |
+
"loss": 0.6951,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.1093723708564698,
|
461 |
+
"grad_norm": 2.5040797323750112,
|
462 |
+
"learning_rate": 2.9261633887443993e-05,
|
463 |
+
"loss": 0.6916,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.1110550227158001,
|
468 |
+
"grad_norm": 3.5468924769840617,
|
469 |
+
"learning_rate": 2.9236608690530738e-05,
|
470 |
+
"loss": 0.7077,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.11273767457513041,
|
475 |
+
"grad_norm": 3.0266819778200746,
|
476 |
+
"learning_rate": 2.921117751088276e-05,
|
477 |
+
"loss": 0.6952,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.1144203264344607,
|
482 |
+
"grad_norm": 1.634743894298146,
|
483 |
+
"learning_rate": 2.91853410737163e-05,
|
484 |
+
"loss": 0.6936,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.11610297829379101,
|
489 |
+
"grad_norm": 1.0925365801520501,
|
490 |
+
"learning_rate": 2.915910011580426e-05,
|
491 |
+
"loss": 0.7317,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.11778563015312132,
|
496 |
+
"grad_norm": 1.6959112138540386,
|
497 |
+
"learning_rate": 2.9132455385455176e-05,
|
498 |
+
"loss": 0.6917,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.11946828201245162,
|
503 |
+
"grad_norm": 1.9723433746891168,
|
504 |
+
"learning_rate": 2.9105407642491895e-05,
|
505 |
+
"loss": 0.7209,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.12115093387178193,
|
510 |
+
"grad_norm": 2.1537215293733833,
|
511 |
+
"learning_rate": 2.907795765822989e-05,
|
512 |
+
"loss": 0.7488,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.12283358573111224,
|
517 |
+
"grad_norm": 3.227101869737169,
|
518 |
+
"learning_rate": 2.9050106215455283e-05,
|
519 |
+
"loss": 0.7152,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.12451623759044254,
|
524 |
+
"grad_norm": 2.7222358893572554,
|
525 |
+
"learning_rate": 2.9021854108402516e-05,
|
526 |
+
"loss": 0.708,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.12619888944977284,
|
531 |
+
"grad_norm": 2.1054843767538136,
|
532 |
+
"learning_rate": 2.8993202142731693e-05,
|
533 |
+
"loss": 0.7251,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.12788154130910315,
|
538 |
+
"grad_norm": 2.11845883419618,
|
539 |
+
"learning_rate": 2.8964151135505616e-05,
|
540 |
+
"loss": 0.7405,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.12956419316843346,
|
545 |
+
"grad_norm": 13.171512404187755,
|
546 |
+
"learning_rate": 2.8934701915166477e-05,
|
547 |
+
"loss": 0.6844,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.13124684502776376,
|
552 |
+
"grad_norm": 2.7633375632879127,
|
553 |
+
"learning_rate": 2.890485532151225e-05,
|
554 |
+
"loss": 0.6766,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.13292949688709407,
|
559 |
+
"grad_norm": 1.8420785342693768,
|
560 |
+
"learning_rate": 2.887461220567271e-05,
|
561 |
+
"loss": 0.7037,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.13461214874642435,
|
566 |
+
"grad_norm": 1.5557447509529954,
|
567 |
+
"learning_rate": 2.8843973430085204e-05,
|
568 |
+
"loss": 0.6991,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.13629480060575466,
|
573 |
+
"grad_norm": 1.9295826624758823,
|
574 |
+
"learning_rate": 2.8812939868470016e-05,
|
575 |
+
"loss": 0.6956,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.13797745246508497,
|
580 |
+
"grad_norm": 3.3211216557707126,
|
581 |
+
"learning_rate": 2.878151240580548e-05,
|
582 |
+
"loss": 0.6774,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.13966010432441528,
|
587 |
+
"grad_norm": 4.196064403930616,
|
588 |
+
"learning_rate": 2.874969193830274e-05,
|
589 |
+
"loss": 0.6752,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.1413427561837456,
|
594 |
+
"grad_norm": 5.574976270137628,
|
595 |
+
"learning_rate": 2.871747937338016e-05,
|
596 |
+
"loss": 0.6553,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1430254080430759,
|
601 |
+
"grad_norm": 1.6494038718740478,
|
602 |
+
"learning_rate": 2.8684875629637505e-05,
|
603 |
+
"loss": 0.7152,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.1447080599024062,
|
608 |
+
"grad_norm": 1.3061892609414858,
|
609 |
+
"learning_rate": 2.8651881636829698e-05,
|
610 |
+
"loss": 0.7462,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.1463907117617365,
|
615 |
+
"grad_norm": 4.321044418392694,
|
616 |
+
"learning_rate": 2.861849833584032e-05,
|
617 |
+
"loss": 0.6902,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1480733636210668,
|
622 |
+
"grad_norm": 2.9444722968009764,
|
623 |
+
"learning_rate": 2.8584726678654787e-05,
|
624 |
+
"loss": 0.6813,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.1497560154803971,
|
629 |
+
"grad_norm": 1.4940245340163587,
|
630 |
+
"learning_rate": 2.85505676283332e-05,
|
631 |
+
"loss": 0.689,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.1514386673397274,
|
636 |
+
"grad_norm": 3.3704010040589565,
|
637 |
+
"learning_rate": 2.851602215898287e-05,
|
638 |
+
"loss": 0.6953,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.15312131919905772,
|
643 |
+
"grad_norm": 1.6597144402924948,
|
644 |
+
"learning_rate": 2.8481091255730552e-05,
|
645 |
+
"loss": 0.7277,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.15480397105838803,
|
650 |
+
"grad_norm": 10.969872224353953,
|
651 |
+
"learning_rate": 2.844577591469435e-05,
|
652 |
+
"loss": 0.7142,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.15648662291771834,
|
657 |
+
"grad_norm": 8.45616831264245,
|
658 |
+
"learning_rate": 2.8410077142955304e-05,
|
659 |
+
"loss": 0.7197,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.15816927477704862,
|
664 |
+
"grad_norm": 2.9594258901214427,
|
665 |
+
"learning_rate": 2.8373995958528683e-05,
|
666 |
+
"loss": 0.7351,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.15985192663637893,
|
671 |
+
"grad_norm": 2.168676312428759,
|
672 |
+
"learning_rate": 2.8337533390334942e-05,
|
673 |
+
"loss": 0.7544,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.16153457849570924,
|
678 |
+
"grad_norm": 7.898767360662744,
|
679 |
+
"learning_rate": 2.8300690478170388e-05,
|
680 |
+
"loss": 0.7015,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.16321723035503954,
|
685 |
+
"grad_norm": 16.83650212945308,
|
686 |
+
"learning_rate": 2.826346827267753e-05,
|
687 |
+
"loss": 0.7139,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.16489988221436985,
|
692 |
+
"grad_norm": 2.3791337429068977,
|
693 |
+
"learning_rate": 2.8225867835315114e-05,
|
694 |
+
"loss": 0.7053,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.16658253407370016,
|
699 |
+
"grad_norm": 1.9679363325295285,
|
700 |
+
"learning_rate": 2.8187890238327842e-05,
|
701 |
+
"loss": 0.7313,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.16826518593303044,
|
706 |
+
"grad_norm": 1.4822625638777076,
|
707 |
+
"learning_rate": 2.814953656471583e-05,
|
708 |
+
"loss": 0.7085,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.16994783779236075,
|
713 |
+
"grad_norm": 2.647291447509443,
|
714 |
+
"learning_rate": 2.8110807908203682e-05,
|
715 |
+
"loss": 0.6638,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.17163048965169106,
|
720 |
+
"grad_norm": 2.969379719654364,
|
721 |
+
"learning_rate": 2.8071705373209328e-05,
|
722 |
+
"loss": 0.6884,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.17331314151102137,
|
727 |
+
"grad_norm": 1.1163745403124403,
|
728 |
+
"learning_rate": 2.803223007481252e-05,
|
729 |
+
"loss": 0.6885,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.17499579337035168,
|
734 |
+
"grad_norm": 1.2686557979094786,
|
735 |
+
"learning_rate": 2.7992383138723034e-05,
|
736 |
+
"loss": 0.7037,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.17667844522968199,
|
741 |
+
"grad_norm": 4.648945448875594,
|
742 |
+
"learning_rate": 2.7952165701248573e-05,
|
743 |
+
"loss": 0.6933,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.1783610970890123,
|
748 |
+
"grad_norm": 4.723564874595428,
|
749 |
+
"learning_rate": 2.7911578909262353e-05,
|
750 |
+
"loss": 0.7144,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.18004374894834257,
|
755 |
+
"grad_norm": 5.211806926801946,
|
756 |
+
"learning_rate": 2.787062392017041e-05,
|
757 |
+
"loss": 0.7266,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.18172640080767288,
|
762 |
+
"grad_norm": 1.3725560316172503,
|
763 |
+
"learning_rate": 2.7829301901878592e-05,
|
764 |
+
"loss": 0.7445,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.1834090526670032,
|
769 |
+
"grad_norm": 0.9012241436004484,
|
770 |
+
"learning_rate": 2.7787614032759243e-05,
|
771 |
+
"loss": 0.6986,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.1850917045263335,
|
776 |
+
"grad_norm": 2.912544243603394,
|
777 |
+
"learning_rate": 2.7745561501617605e-05,
|
778 |
+
"loss": 0.7173,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.1867743563856638,
|
783 |
+
"grad_norm": 1.4248442614931247,
|
784 |
+
"learning_rate": 2.7703145507657923e-05,
|
785 |
+
"loss": 0.7035,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.18845700824499412,
|
790 |
+
"grad_norm": 2.186609904533333,
|
791 |
+
"learning_rate": 2.766036726044926e-05,
|
792 |
+
"loss": 0.7371,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.19013966010432443,
|
797 |
+
"grad_norm": 2.0524595532166603,
|
798 |
+
"learning_rate": 2.7617227979890957e-05,
|
799 |
+
"loss": 0.6986,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.1918223119636547,
|
804 |
+
"grad_norm": 1.8227045280907195,
|
805 |
+
"learning_rate": 2.7573728896177897e-05,
|
806 |
+
"loss": 0.7075,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.19350496382298502,
|
811 |
+
"grad_norm": 1.8425998009576734,
|
812 |
+
"learning_rate": 2.7529871249765397e-05,
|
813 |
+
"loss": 0.6897,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.19518761568231532,
|
818 |
+
"grad_norm": 5.3035191638420836,
|
819 |
+
"learning_rate": 2.7485656291333845e-05,
|
820 |
+
"loss": 0.7027,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.19687026754164563,
|
825 |
+
"grad_norm": 3.3228474353685504,
|
826 |
+
"learning_rate": 2.7441085281753028e-05,
|
827 |
+
"loss": 0.7091,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.19855291940097594,
|
832 |
+
"grad_norm": 3.5016968564731283,
|
833 |
+
"learning_rate": 2.739615949204617e-05,
|
834 |
+
"loss": 0.7241,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.20023557126030625,
|
839 |
+
"grad_norm": 1.7190048028902127,
|
840 |
+
"learning_rate": 2.7350880203353703e-05,
|
841 |
+
"loss": 0.7192,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.20191822311963656,
|
846 |
+
"grad_norm": 3.7186824247487515,
|
847 |
+
"learning_rate": 2.7305248706896722e-05,
|
848 |
+
"loss": 0.7063,
|
849 |
+
"step": 1200
|
850 |
+
}
|
851 |
+
],
|
852 |
+
"logging_steps": 10,
|
853 |
+
"max_steps": 5943,
|
854 |
+
"num_input_tokens_seen": 0,
|
855 |
+
"num_train_epochs": 1,
|
856 |
+
"save_steps": 400,
|
857 |
+
"stateful_callbacks": {
|
858 |
+
"TrainerControl": {
|
859 |
+
"args": {
|
860 |
+
"should_epoch_stop": false,
|
861 |
+
"should_evaluate": false,
|
862 |
+
"should_log": false,
|
863 |
+
"should_save": true,
|
864 |
+
"should_training_stop": false
|
865 |
+
},
|
866 |
+
"attributes": {}
|
867 |
+
}
|
868 |
+
},
|
869 |
+
"total_flos": 5.467141180489728e+18,
|
870 |
+
"train_batch_size": 4,
|
871 |
+
"trial_name": null,
|
872 |
+
"trial_params": null
|
873 |
+
}
|
checkpoint-1200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e95a8f5e7f8a0f6f3e1f415e9606de2bf6f80315b55f9012ea921093e8d88264
|
3 |
+
size 6520
|
checkpoint-1200/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-1600/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-1600/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.h.17.attn.c_proj",
|
24 |
+
"transformer.h.20.mlp.c_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
26 |
+
"transformer.h.3.attn.c_attn",
|
27 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
29 |
+
"transformer.h.28.mlp.w2",
|
30 |
+
"transformer.h.6.mlp.w2",
|
31 |
+
"transformer.h.13.mlp.w1",
|
32 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
33 |
+
"transformer.h.2.mlp.c_proj",
|
34 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
35 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
36 |
+
"transformer.h.4.attn.c_proj",
|
37 |
+
"transformer.h.22.mlp.c_proj",
|
38 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
39 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
40 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
42 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
43 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
44 |
+
"transformer.h.0.attn.c_attn",
|
45 |
+
"transformer.h.19.mlp.w2",
|
46 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
48 |
+
"transformer.h.31.mlp.c_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
50 |
+
"transformer.h.18.mlp.w1",
|
51 |
+
"transformer.h.23.mlp.w2",
|
52 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
54 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
55 |
+
"transformer.h.12.mlp.w2",
|
56 |
+
"transformer.h.23.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
58 |
+
"transformer.h.10.mlp.w1",
|
59 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
61 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
62 |
+
"transformer.h.9.mlp.w1",
|
63 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
64 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
65 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
67 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
69 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
70 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
71 |
+
"transformer.h.24.attn.c_proj",
|
72 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
73 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
74 |
+
"transformer.h.10.attn.c_attn",
|
75 |
+
"transformer.h.26.attn.c_attn",
|
76 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
78 |
+
"transformer.h.7.attn.c_proj",
|
79 |
+
"transformer.h.24.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
81 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
82 |
+
"transformer.h.12.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
84 |
+
"transformer.h.18.attn.c_attn",
|
85 |
+
"transformer.h.23.attn.c_proj",
|
86 |
+
"transformer.h.27.mlp.c_proj",
|
87 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
88 |
+
"transformer.h.3.mlp.w1",
|
89 |
+
"transformer.h.2.mlp.w2",
|
90 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
92 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
93 |
+
"transformer.h.25.mlp.w1",
|
94 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
96 |
+
"transformer.h.1.attn.c_proj",
|
97 |
+
"transformer.h.1.attn.c_attn",
|
98 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
99 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
100 |
+
"transformer.h.13.attn.c_attn",
|
101 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
102 |
+
"transformer.h.7.mlp.w2",
|
103 |
+
"transformer.h.9.attn.c_proj",
|
104 |
+
"transformer.h.15.attn.c_attn",
|
105 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
106 |
+
"transformer.h.27.attn.c_attn",
|
107 |
+
"transformer.h.15.mlp.c_proj",
|
108 |
+
"transformer.h.21.mlp.w2",
|
109 |
+
"transformer.h.28.attn.c_proj",
|
110 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
111 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
112 |
+
"transformer.h.9.mlp.w2",
|
113 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
115 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
116 |
+
"transformer.h.11.mlp.w1",
|
117 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
118 |
+
"transformer.h.10.attn.c_proj",
|
119 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
120 |
+
"transformer.h.31.attn.c_attn",
|
121 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
122 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
123 |
+
"transformer.h.24.mlp.w1",
|
124 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
125 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
126 |
+
"transformer.h.8.mlp.c_proj",
|
127 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
128 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
129 |
+
"transformer.h.22.mlp.w2",
|
130 |
+
"transformer.h.29.mlp.w2",
|
131 |
+
"transformer.h.0.mlp.c_proj",
|
132 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
133 |
+
"transformer.h.8.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.w1",
|
135 |
+
"transformer.h.26.mlp.w2",
|
136 |
+
"transformer.h.25.attn.c_proj",
|
137 |
+
"transformer.h.27.mlp.w1",
|
138 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
140 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
141 |
+
"transformer.h.29.attn.c_attn",
|
142 |
+
"transformer.h.24.attn.c_attn",
|
143 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
144 |
+
"transformer.h.2.attn.c_proj",
|
145 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
146 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
148 |
+
"transformer.h.11.mlp.c_proj",
|
149 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
150 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
151 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
152 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
154 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
155 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
156 |
+
"transformer.h.1.mlp.w2",
|
157 |
+
"transformer.h.21.mlp.c_proj",
|
158 |
+
"transformer.h.23.attn.c_attn",
|
159 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
160 |
+
"transformer.h.14.attn.c_attn",
|
161 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
162 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
163 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
164 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
165 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
167 |
+
"transformer.h.9.mlp.c_proj",
|
168 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
169 |
+
"transformer.h.18.mlp.c_proj",
|
170 |
+
"transformer.h.19.mlp.w1",
|
171 |
+
"transformer.h.9.attn.c_attn",
|
172 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
175 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
177 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
178 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
180 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
181 |
+
"transformer.h.25.attn.c_attn",
|
182 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
183 |
+
"transformer.h.16.mlp.w1",
|
184 |
+
"transformer.h.28.mlp.c_proj",
|
185 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
186 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
187 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
189 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
190 |
+
"transformer.h.30.mlp.w1",
|
191 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
192 |
+
"transformer.h.15.mlp.w1",
|
193 |
+
"transformer.h.16.attn.c_proj",
|
194 |
+
"transformer.h.20.mlp.w1",
|
195 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
196 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
197 |
+
"transformer.h.10.mlp.c_proj",
|
198 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
199 |
+
"transformer.h.13.mlp.w2",
|
200 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
202 |
+
"transformer.h.22.attn.c_proj",
|
203 |
+
"transformer.h.6.mlp.w1",
|
204 |
+
"transformer.h.18.mlp.w2",
|
205 |
+
"transformer.h.4.mlp.c_proj",
|
206 |
+
"transformer.h.3.mlp.c_proj",
|
207 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
208 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
209 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
211 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
214 |
+
"transformer.h.22.mlp.w1",
|
215 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
216 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
217 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
218 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
219 |
+
"transformer.h.18.attn.c_proj",
|
220 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
221 |
+
"transformer.h.5.attn.c_attn",
|
222 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
223 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
224 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
225 |
+
"transformer.h.5.attn.c_proj",
|
226 |
+
"transformer.h.7.attn.c_attn",
|
227 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
229 |
+
"transformer.h.29.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
231 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
232 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
233 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
234 |
+
"transformer.h.23.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
236 |
+
"transformer.h.12.attn.c_proj",
|
237 |
+
"transformer.h.16.mlp.w2",
|
238 |
+
"transformer.h.27.mlp.w2",
|
239 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
240 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
242 |
+
"transformer.h.26.attn.c_proj",
|
243 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
244 |
+
"transformer.h.8.mlp.w2",
|
245 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
246 |
+
"transformer.h.17.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.w2",
|
248 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
249 |
+
"transformer.h.28.mlp.w1",
|
250 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
251 |
+
"transformer.h.12.mlp.w1",
|
252 |
+
"transformer.h.30.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
254 |
+
"transformer.h.6.attn.c_attn",
|
255 |
+
"transformer.h.5.mlp.c_proj",
|
256 |
+
"transformer.h.6.mlp.c_proj",
|
257 |
+
"transformer.h.22.attn.c_attn",
|
258 |
+
"transformer.h.13.attn.c_proj",
|
259 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
260 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
261 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
262 |
+
"transformer.h.17.mlp.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
264 |
+
"transformer.h.4.mlp.w2",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
266 |
+
"transformer.h.11.mlp.w2",
|
267 |
+
"transformer.h.19.attn.c_attn",
|
268 |
+
"transformer.h.14.mlp.w1",
|
269 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
270 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
271 |
+
"transformer.h.21.attn.c_attn",
|
272 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
273 |
+
"transformer.h.2.mlp.w1",
|
274 |
+
"transformer.h.14.attn.c_proj",
|
275 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
276 |
+
"transformer.h.6.attn.c_proj",
|
277 |
+
"transformer.h.0.mlp.w2",
|
278 |
+
"transformer.h.5.mlp.w1",
|
279 |
+
"transformer.h.30.attn.c_proj",
|
280 |
+
"transformer.h.24.mlp.w2",
|
281 |
+
"transformer.h.0.attn.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
283 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
284 |
+
"transformer.h.10.mlp.w2",
|
285 |
+
"transformer.h.17.mlp.w2",
|
286 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
287 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
288 |
+
"transformer.h.20.mlp.w2",
|
289 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
290 |
+
"transformer.h.29.mlp.w1",
|
291 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
292 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
293 |
+
"transformer.h.15.attn.c_proj",
|
294 |
+
"transformer.h.3.mlp.w2",
|
295 |
+
"transformer.h.30.attn.c_attn",
|
296 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
297 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
298 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
299 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
300 |
+
"transformer.h.20.attn.c_attn",
|
301 |
+
"transformer.h.19.mlp.c_proj",
|
302 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
304 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
307 |
+
"transformer.h.11.attn.c_proj",
|
308 |
+
"transformer.h.12.attn.c_attn",
|
309 |
+
"transformer.visual.conv1",
|
310 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
311 |
+
"transformer.h.25.mlp.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
313 |
+
"transformer.h.26.mlp.w1",
|
314 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
315 |
+
"transformer.h.7.mlp.c_proj",
|
316 |
+
"transformer.h.29.attn.c_proj",
|
317 |
+
"transformer.h.1.mlp.c_proj",
|
318 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
319 |
+
"transformer.h.14.mlp.c_proj",
|
320 |
+
"transformer.h.3.attn.c_proj",
|
321 |
+
"transformer.h.25.mlp.w2",
|
322 |
+
"transformer.h.20.attn.c_proj",
|
323 |
+
"transformer.h.16.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
325 |
+
"transformer.h.17.attn.c_attn",
|
326 |
+
"transformer.h.14.mlp.w2",
|
327 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
328 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
330 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
331 |
+
"transformer.h.15.mlp.w2",
|
332 |
+
"transformer.h.4.attn.c_attn",
|
333 |
+
"transformer.h.31.mlp.w1",
|
334 |
+
"transformer.h.11.attn.c_attn",
|
335 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
336 |
+
"transformer.h.7.mlp.w1",
|
337 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
338 |
+
"transformer.h.1.mlp.w1",
|
339 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
340 |
+
"transformer.h.21.attn.c_proj",
|
341 |
+
"transformer.h.30.mlp.c_proj",
|
342 |
+
"transformer.h.21.mlp.w1",
|
343 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
344 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
345 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
346 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
347 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
348 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
350 |
+
"transformer.h.13.mlp.c_proj",
|
351 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
353 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
354 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
355 |
+
"transformer.h.4.mlp.w1",
|
356 |
+
"transformer.h.8.attn.c_attn",
|
357 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
359 |
+
"transformer.h.28.attn.c_attn",
|
360 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
361 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
362 |
+
"transformer.h.19.attn.c_proj",
|
363 |
+
"transformer.h.2.attn.c_attn",
|
364 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
365 |
+
"transformer.h.26.mlp.c_proj",
|
366 |
+
"transformer.h.8.attn.c_proj",
|
367 |
+
"transformer.h.27.attn.c_proj",
|
368 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
369 |
+
"transformer.h.16.attn.c_attn",
|
370 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
372 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
373 |
+
"transformer.h.31.attn.c_proj",
|
374 |
+
"transformer.h.5.mlp.w2",
|
375 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-1600/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4132637e7818ab04e79770c537ecce329ad66d75a5084c122da7b6e24018491d
|
3 |
+
size 469105640
|
checkpoint-1600/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1600
|
checkpoint-1600/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1600/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0943be1d73f8cd864a8d86cf602e01a0ee9483c4bbd1287ca1aa6a70a07a7d78
|
3 |
+
size 14960
|
checkpoint-1600/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1814e986cf45968069746e25fb44856688645b26635b32a478bed3330978b28
|
3 |
+
size 14960
|
checkpoint-1600/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfdaf471dc63d05f3a4e9aff471d87f770511c8529541d9f1d14a82ae9e16fd9
|
3 |
+
size 14960
|
checkpoint-1600/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8557ae681bc439c82fd4086d0ae897ebef2a086d2acbb923505fe7e63067cbd2
|
3 |
+
size 14960
|
checkpoint-1600/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0d0794962fd5d327d9bc0d61b8681692b6df3d1030d5844836ce2192acb24b7
|
3 |
+
size 1064
|
checkpoint-1600/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-1600/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 1280,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-1600/trainer_state.json
ADDED
@@ -0,0 +1,1153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.2692242974928487,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1600,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0016826518593303045,
|
13 |
+
"grad_norm": 5.367858933563703,
|
14 |
+
"learning_rate": 4.9999999999999996e-06,
|
15 |
+
"loss": 0.9537,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.003365303718660609,
|
20 |
+
"grad_norm": 9.386746384686745,
|
21 |
+
"learning_rate": 9.999999999999999e-06,
|
22 |
+
"loss": 0.943,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.005047955577990914,
|
27 |
+
"grad_norm": 7.387362447577942,
|
28 |
+
"learning_rate": 1.5e-05,
|
29 |
+
"loss": 0.934,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.006730607437321218,
|
34 |
+
"grad_norm": 6.9256319824932655,
|
35 |
+
"learning_rate": 1.9999999999999998e-05,
|
36 |
+
"loss": 0.8376,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.008413259296651522,
|
41 |
+
"grad_norm": 9.1148382590838,
|
42 |
+
"learning_rate": 2.5e-05,
|
43 |
+
"loss": 0.8484,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.010095911155981827,
|
48 |
+
"grad_norm": 3.9989232759892426,
|
49 |
+
"learning_rate": 3e-05,
|
50 |
+
"loss": 0.8097,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.011778563015312132,
|
55 |
+
"grad_norm": 3.892371218590039,
|
56 |
+
"learning_rate": 2.9999786123888308e-05,
|
57 |
+
"loss": 0.7811,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.013461214874642436,
|
62 |
+
"grad_norm": 8.096662196282066,
|
63 |
+
"learning_rate": 2.9999144501652298e-05,
|
64 |
+
"loss": 0.7446,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.01514386673397274,
|
69 |
+
"grad_norm": 1.5769306611206149,
|
70 |
+
"learning_rate": 2.9998075151588992e-05,
|
71 |
+
"loss": 0.7258,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.016826518593303044,
|
76 |
+
"grad_norm": 8.47430485487969,
|
77 |
+
"learning_rate": 2.999657810419285e-05,
|
78 |
+
"loss": 0.7052,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01850917045263335,
|
83 |
+
"grad_norm": 2.363071299913598,
|
84 |
+
"learning_rate": 2.999465340215489e-05,
|
85 |
+
"loss": 0.7657,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.020191822311963654,
|
90 |
+
"grad_norm": 1.9252385425154874,
|
91 |
+
"learning_rate": 2.999230110036149e-05,
|
92 |
+
"loss": 0.7329,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.02187447417129396,
|
97 |
+
"grad_norm": 8.946028475031488,
|
98 |
+
"learning_rate": 2.99895212658928e-05,
|
99 |
+
"loss": 0.7304,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.023557126030624265,
|
104 |
+
"grad_norm": 6.877609312630206,
|
105 |
+
"learning_rate": 2.9986313978020846e-05,
|
106 |
+
"loss": 0.7453,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02523977788995457,
|
111 |
+
"grad_norm": 2.5256324882367993,
|
112 |
+
"learning_rate": 2.9982679328207262e-05,
|
113 |
+
"loss": 0.7366,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.02692242974928487,
|
118 |
+
"grad_norm": 2.709550398238738,
|
119 |
+
"learning_rate": 2.9978617420100692e-05,
|
120 |
+
"loss": 0.7258,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.028605081608615177,
|
125 |
+
"grad_norm": 1.543550019689774,
|
126 |
+
"learning_rate": 2.9974128369533805e-05,
|
127 |
+
"loss": 0.7372,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.03028773346794548,
|
132 |
+
"grad_norm": 3.3453966881155504,
|
133 |
+
"learning_rate": 2.9969212304520034e-05,
|
134 |
+
"loss": 0.743,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.03197038532727579,
|
139 |
+
"grad_norm": 1.922001656181265,
|
140 |
+
"learning_rate": 2.9963869365249895e-05,
|
141 |
+
"loss": 0.7819,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.03365303718660609,
|
146 |
+
"grad_norm": 2.0611188483400036,
|
147 |
+
"learning_rate": 2.995809970408699e-05,
|
148 |
+
"loss": 0.7155,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0353356890459364,
|
153 |
+
"grad_norm": 1.5313041833127259,
|
154 |
+
"learning_rate": 2.9951903485563685e-05,
|
155 |
+
"loss": 0.7322,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.0370183409052667,
|
160 |
+
"grad_norm": 2.0124191694435085,
|
161 |
+
"learning_rate": 2.99452808863764e-05,
|
162 |
+
"loss": 0.6759,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03870099276459701,
|
167 |
+
"grad_norm": 3.182123324389477,
|
168 |
+
"learning_rate": 2.993823209538056e-05,
|
169 |
+
"loss": 0.6953,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.04038364462392731,
|
174 |
+
"grad_norm": 1.6122782177661379,
|
175 |
+
"learning_rate": 2.9930757313585238e-05,
|
176 |
+
"loss": 0.6953,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.04206629648325761,
|
181 |
+
"grad_norm": 2.2027482596695647,
|
182 |
+
"learning_rate": 2.9922856754147406e-05,
|
183 |
+
"loss": 0.7301,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.04374894834258792,
|
188 |
+
"grad_norm": 2.6782477155989213,
|
189 |
+
"learning_rate": 2.9914530642365852e-05,
|
190 |
+
"loss": 0.6891,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.04543160020191822,
|
195 |
+
"grad_norm": 1.9740401144541417,
|
196 |
+
"learning_rate": 2.990577921567476e-05,
|
197 |
+
"loss": 0.7231,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.04711425206124853,
|
202 |
+
"grad_norm": 1.719874620968932,
|
203 |
+
"learning_rate": 2.989660272363696e-05,
|
204 |
+
"loss": 0.7505,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.04879690392057883,
|
209 |
+
"grad_norm": 1.3138364164203409,
|
210 |
+
"learning_rate": 2.988700142793676e-05,
|
211 |
+
"loss": 0.7116,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.05047955577990914,
|
216 |
+
"grad_norm": 5.853627389344256,
|
217 |
+
"learning_rate": 2.9876975602372536e-05,
|
218 |
+
"loss": 0.719,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.05216220763923944,
|
223 |
+
"grad_norm": 2.347259437170711,
|
224 |
+
"learning_rate": 2.9866525532848906e-05,
|
225 |
+
"loss": 0.6803,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.05384485949856974,
|
230 |
+
"grad_norm": 1.937679220955038,
|
231 |
+
"learning_rate": 2.9855651517368567e-05,
|
232 |
+
"loss": 0.7461,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.05552751135790005,
|
237 |
+
"grad_norm": 1.6661300351569575,
|
238 |
+
"learning_rate": 2.9844353866023802e-05,
|
239 |
+
"loss": 0.7472,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.05721016321723035,
|
244 |
+
"grad_norm": 2.357915869204484,
|
245 |
+
"learning_rate": 2.9832632900987642e-05,
|
246 |
+
"loss": 0.7148,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.05889281507656066,
|
251 |
+
"grad_norm": 4.398815186243292,
|
252 |
+
"learning_rate": 2.982048895650468e-05,
|
253 |
+
"loss": 0.6992,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.06057546693589096,
|
258 |
+
"grad_norm": 12.662682224480092,
|
259 |
+
"learning_rate": 2.9807922378881537e-05,
|
260 |
+
"loss": 0.7539,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.06225811879522127,
|
265 |
+
"grad_norm": 0.8642696401357872,
|
266 |
+
"learning_rate": 2.979493352647697e-05,
|
267 |
+
"loss": 0.7212,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.06394077065455157,
|
272 |
+
"grad_norm": 27.047937858232604,
|
273 |
+
"learning_rate": 2.9781522769691686e-05,
|
274 |
+
"loss": 0.722,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.06562342251388188,
|
279 |
+
"grad_norm": 2.598805292448644,
|
280 |
+
"learning_rate": 2.9767690490957758e-05,
|
281 |
+
"loss": 0.7065,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.06730607437321218,
|
286 |
+
"grad_norm": 1.2314762895092763,
|
287 |
+
"learning_rate": 2.9753437084727713e-05,
|
288 |
+
"loss": 0.7498,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.06898872623254249,
|
293 |
+
"grad_norm": 1.6421909669790502,
|
294 |
+
"learning_rate": 2.9738762957463292e-05,
|
295 |
+
"loss": 0.6992,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.0706713780918728,
|
300 |
+
"grad_norm": 2.023552968622588,
|
301 |
+
"learning_rate": 2.9723668527623877e-05,
|
302 |
+
"loss": 0.6943,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.0723540299512031,
|
307 |
+
"grad_norm": 1.5172337910969138,
|
308 |
+
"learning_rate": 2.9708154225654526e-05,
|
309 |
+
"loss": 0.6987,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0740366818105334,
|
314 |
+
"grad_norm": 1.197852135730745,
|
315 |
+
"learning_rate": 2.9692220493973712e-05,
|
316 |
+
"loss": 0.7302,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.0757193336698637,
|
321 |
+
"grad_norm": 2.4396443837967183,
|
322 |
+
"learning_rate": 2.9675867786960718e-05,
|
323 |
+
"loss": 0.7318,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.07740198552919401,
|
328 |
+
"grad_norm": 1.4599851880563282,
|
329 |
+
"learning_rate": 2.9659096570942654e-05,
|
330 |
+
"loss": 0.6941,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.07908463738852431,
|
335 |
+
"grad_norm": 1.117755825364562,
|
336 |
+
"learning_rate": 2.9641907324181194e-05,
|
337 |
+
"loss": 0.7399,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.08076728924785462,
|
342 |
+
"grad_norm": 2.9235378164576242,
|
343 |
+
"learning_rate": 2.96243005368589e-05,
|
344 |
+
"loss": 0.7207,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.08244994110718493,
|
349 |
+
"grad_norm": 7.308883163781362,
|
350 |
+
"learning_rate": 2.960627671106527e-05,
|
351 |
+
"loss": 0.682,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.08413259296651522,
|
356 |
+
"grad_norm": 3.4394827932955234,
|
357 |
+
"learning_rate": 2.9587836360782405e-05,
|
358 |
+
"loss": 0.708,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.08581524482584553,
|
363 |
+
"grad_norm": 3.2314529856927634,
|
364 |
+
"learning_rate": 2.9568980011870357e-05,
|
365 |
+
"loss": 0.7335,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.08749789668517584,
|
370 |
+
"grad_norm": 1.825724533695325,
|
371 |
+
"learning_rate": 2.954970820205214e-05,
|
372 |
+
"loss": 0.6951,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.08918054854450615,
|
377 |
+
"grad_norm": 3.3231741746640076,
|
378 |
+
"learning_rate": 2.9530021480898393e-05,
|
379 |
+
"loss": 0.7793,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.09086320040383644,
|
384 |
+
"grad_norm": 1.3097651462571123,
|
385 |
+
"learning_rate": 2.9509920409811696e-05,
|
386 |
+
"loss": 0.7087,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.09254585226316675,
|
391 |
+
"grad_norm": 6.685911471215255,
|
392 |
+
"learning_rate": 2.9489405562010565e-05,
|
393 |
+
"loss": 0.6906,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.09422850412249706,
|
398 |
+
"grad_norm": 2.870746617513948,
|
399 |
+
"learning_rate": 2.9468477522513132e-05,
|
400 |
+
"loss": 0.7028,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.09591115598182735,
|
405 |
+
"grad_norm": 1.782555352805469,
|
406 |
+
"learning_rate": 2.9447136888120408e-05,
|
407 |
+
"loss": 0.6901,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.09759380784115766,
|
412 |
+
"grad_norm": 2.336519711000487,
|
413 |
+
"learning_rate": 2.9425384267399327e-05,
|
414 |
+
"loss": 0.7779,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.09927645970048797,
|
419 |
+
"grad_norm": 8.935574410818228,
|
420 |
+
"learning_rate": 2.940322028066534e-05,
|
421 |
+
"loss": 0.7503,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.10095911155981828,
|
426 |
+
"grad_norm": 2.754713786882031,
|
427 |
+
"learning_rate": 2.938064555996476e-05,
|
428 |
+
"loss": 0.7208,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.10264176341914857,
|
433 |
+
"grad_norm": 1.5082503557652136,
|
434 |
+
"learning_rate": 2.9357660749056713e-05,
|
435 |
+
"loss": 0.7169,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.10432441527847888,
|
440 |
+
"grad_norm": 9.04522194526273,
|
441 |
+
"learning_rate": 2.9334266503394803e-05,
|
442 |
+
"loss": 0.6927,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.10600706713780919,
|
447 |
+
"grad_norm": 55.28278686388287,
|
448 |
+
"learning_rate": 2.9310463490108397e-05,
|
449 |
+
"loss": 0.7107,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.10768971899713949,
|
454 |
+
"grad_norm": 3.721916069105249,
|
455 |
+
"learning_rate": 2.928625238798362e-05,
|
456 |
+
"loss": 0.6951,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.1093723708564698,
|
461 |
+
"grad_norm": 2.5040797323750112,
|
462 |
+
"learning_rate": 2.9261633887443993e-05,
|
463 |
+
"loss": 0.6916,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.1110550227158001,
|
468 |
+
"grad_norm": 3.5468924769840617,
|
469 |
+
"learning_rate": 2.9236608690530738e-05,
|
470 |
+
"loss": 0.7077,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.11273767457513041,
|
475 |
+
"grad_norm": 3.0266819778200746,
|
476 |
+
"learning_rate": 2.921117751088276e-05,
|
477 |
+
"loss": 0.6952,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.1144203264344607,
|
482 |
+
"grad_norm": 1.634743894298146,
|
483 |
+
"learning_rate": 2.91853410737163e-05,
|
484 |
+
"loss": 0.6936,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.11610297829379101,
|
489 |
+
"grad_norm": 1.0925365801520501,
|
490 |
+
"learning_rate": 2.915910011580426e-05,
|
491 |
+
"loss": 0.7317,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.11778563015312132,
|
496 |
+
"grad_norm": 1.6959112138540386,
|
497 |
+
"learning_rate": 2.9132455385455176e-05,
|
498 |
+
"loss": 0.6917,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.11946828201245162,
|
503 |
+
"grad_norm": 1.9723433746891168,
|
504 |
+
"learning_rate": 2.9105407642491895e-05,
|
505 |
+
"loss": 0.7209,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.12115093387178193,
|
510 |
+
"grad_norm": 2.1537215293733833,
|
511 |
+
"learning_rate": 2.907795765822989e-05,
|
512 |
+
"loss": 0.7488,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.12283358573111224,
|
517 |
+
"grad_norm": 3.227101869737169,
|
518 |
+
"learning_rate": 2.9050106215455283e-05,
|
519 |
+
"loss": 0.7152,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.12451623759044254,
|
524 |
+
"grad_norm": 2.7222358893572554,
|
525 |
+
"learning_rate": 2.9021854108402516e-05,
|
526 |
+
"loss": 0.708,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.12619888944977284,
|
531 |
+
"grad_norm": 2.1054843767538136,
|
532 |
+
"learning_rate": 2.8993202142731693e-05,
|
533 |
+
"loss": 0.7251,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.12788154130910315,
|
538 |
+
"grad_norm": 2.11845883419618,
|
539 |
+
"learning_rate": 2.8964151135505616e-05,
|
540 |
+
"loss": 0.7405,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.12956419316843346,
|
545 |
+
"grad_norm": 13.171512404187755,
|
546 |
+
"learning_rate": 2.8934701915166477e-05,
|
547 |
+
"loss": 0.6844,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.13124684502776376,
|
552 |
+
"grad_norm": 2.7633375632879127,
|
553 |
+
"learning_rate": 2.890485532151225e-05,
|
554 |
+
"loss": 0.6766,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.13292949688709407,
|
559 |
+
"grad_norm": 1.8420785342693768,
|
560 |
+
"learning_rate": 2.887461220567271e-05,
|
561 |
+
"loss": 0.7037,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.13461214874642435,
|
566 |
+
"grad_norm": 1.5557447509529954,
|
567 |
+
"learning_rate": 2.8843973430085204e-05,
|
568 |
+
"loss": 0.6991,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.13629480060575466,
|
573 |
+
"grad_norm": 1.9295826624758823,
|
574 |
+
"learning_rate": 2.8812939868470016e-05,
|
575 |
+
"loss": 0.6956,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.13797745246508497,
|
580 |
+
"grad_norm": 3.3211216557707126,
|
581 |
+
"learning_rate": 2.878151240580548e-05,
|
582 |
+
"loss": 0.6774,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.13966010432441528,
|
587 |
+
"grad_norm": 4.196064403930616,
|
588 |
+
"learning_rate": 2.874969193830274e-05,
|
589 |
+
"loss": 0.6752,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.1413427561837456,
|
594 |
+
"grad_norm": 5.574976270137628,
|
595 |
+
"learning_rate": 2.871747937338016e-05,
|
596 |
+
"loss": 0.6553,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1430254080430759,
|
601 |
+
"grad_norm": 1.6494038718740478,
|
602 |
+
"learning_rate": 2.8684875629637505e-05,
|
603 |
+
"loss": 0.7152,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.1447080599024062,
|
608 |
+
"grad_norm": 1.3061892609414858,
|
609 |
+
"learning_rate": 2.8651881636829698e-05,
|
610 |
+
"loss": 0.7462,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.1463907117617365,
|
615 |
+
"grad_norm": 4.321044418392694,
|
616 |
+
"learning_rate": 2.861849833584032e-05,
|
617 |
+
"loss": 0.6902,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1480733636210668,
|
622 |
+
"grad_norm": 2.9444722968009764,
|
623 |
+
"learning_rate": 2.8584726678654787e-05,
|
624 |
+
"loss": 0.6813,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.1497560154803971,
|
629 |
+
"grad_norm": 1.4940245340163587,
|
630 |
+
"learning_rate": 2.85505676283332e-05,
|
631 |
+
"loss": 0.689,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.1514386673397274,
|
636 |
+
"grad_norm": 3.3704010040589565,
|
637 |
+
"learning_rate": 2.851602215898287e-05,
|
638 |
+
"loss": 0.6953,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.15312131919905772,
|
643 |
+
"grad_norm": 1.6597144402924948,
|
644 |
+
"learning_rate": 2.8481091255730552e-05,
|
645 |
+
"loss": 0.7277,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.15480397105838803,
|
650 |
+
"grad_norm": 10.969872224353953,
|
651 |
+
"learning_rate": 2.844577591469435e-05,
|
652 |
+
"loss": 0.7142,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.15648662291771834,
|
657 |
+
"grad_norm": 8.45616831264245,
|
658 |
+
"learning_rate": 2.8410077142955304e-05,
|
659 |
+
"loss": 0.7197,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.15816927477704862,
|
664 |
+
"grad_norm": 2.9594258901214427,
|
665 |
+
"learning_rate": 2.8373995958528683e-05,
|
666 |
+
"loss": 0.7351,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.15985192663637893,
|
671 |
+
"grad_norm": 2.168676312428759,
|
672 |
+
"learning_rate": 2.8337533390334942e-05,
|
673 |
+
"loss": 0.7544,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.16153457849570924,
|
678 |
+
"grad_norm": 7.898767360662744,
|
679 |
+
"learning_rate": 2.8300690478170388e-05,
|
680 |
+
"loss": 0.7015,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.16321723035503954,
|
685 |
+
"grad_norm": 16.83650212945308,
|
686 |
+
"learning_rate": 2.826346827267753e-05,
|
687 |
+
"loss": 0.7139,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.16489988221436985,
|
692 |
+
"grad_norm": 2.3791337429068977,
|
693 |
+
"learning_rate": 2.8225867835315114e-05,
|
694 |
+
"loss": 0.7053,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.16658253407370016,
|
699 |
+
"grad_norm": 1.9679363325295285,
|
700 |
+
"learning_rate": 2.8187890238327842e-05,
|
701 |
+
"loss": 0.7313,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.16826518593303044,
|
706 |
+
"grad_norm": 1.4822625638777076,
|
707 |
+
"learning_rate": 2.814953656471583e-05,
|
708 |
+
"loss": 0.7085,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.16994783779236075,
|
713 |
+
"grad_norm": 2.647291447509443,
|
714 |
+
"learning_rate": 2.8110807908203682e-05,
|
715 |
+
"loss": 0.6638,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.17163048965169106,
|
720 |
+
"grad_norm": 2.969379719654364,
|
721 |
+
"learning_rate": 2.8071705373209328e-05,
|
722 |
+
"loss": 0.6884,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.17331314151102137,
|
727 |
+
"grad_norm": 1.1163745403124403,
|
728 |
+
"learning_rate": 2.803223007481252e-05,
|
729 |
+
"loss": 0.6885,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.17499579337035168,
|
734 |
+
"grad_norm": 1.2686557979094786,
|
735 |
+
"learning_rate": 2.7992383138723034e-05,
|
736 |
+
"loss": 0.7037,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.17667844522968199,
|
741 |
+
"grad_norm": 4.648945448875594,
|
742 |
+
"learning_rate": 2.7952165701248573e-05,
|
743 |
+
"loss": 0.6933,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.1783610970890123,
|
748 |
+
"grad_norm": 4.723564874595428,
|
749 |
+
"learning_rate": 2.7911578909262353e-05,
|
750 |
+
"loss": 0.7144,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.18004374894834257,
|
755 |
+
"grad_norm": 5.211806926801946,
|
756 |
+
"learning_rate": 2.787062392017041e-05,
|
757 |
+
"loss": 0.7266,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.18172640080767288,
|
762 |
+
"grad_norm": 1.3725560316172503,
|
763 |
+
"learning_rate": 2.7829301901878592e-05,
|
764 |
+
"loss": 0.7445,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.1834090526670032,
|
769 |
+
"grad_norm": 0.9012241436004484,
|
770 |
+
"learning_rate": 2.7787614032759243e-05,
|
771 |
+
"loss": 0.6986,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.1850917045263335,
|
776 |
+
"grad_norm": 2.912544243603394,
|
777 |
+
"learning_rate": 2.7745561501617605e-05,
|
778 |
+
"loss": 0.7173,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.1867743563856638,
|
783 |
+
"grad_norm": 1.4248442614931247,
|
784 |
+
"learning_rate": 2.7703145507657923e-05,
|
785 |
+
"loss": 0.7035,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.18845700824499412,
|
790 |
+
"grad_norm": 2.186609904533333,
|
791 |
+
"learning_rate": 2.766036726044926e-05,
|
792 |
+
"loss": 0.7371,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.19013966010432443,
|
797 |
+
"grad_norm": 2.0524595532166603,
|
798 |
+
"learning_rate": 2.7617227979890957e-05,
|
799 |
+
"loss": 0.6986,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.1918223119636547,
|
804 |
+
"grad_norm": 1.8227045280907195,
|
805 |
+
"learning_rate": 2.7573728896177897e-05,
|
806 |
+
"loss": 0.7075,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.19350496382298502,
|
811 |
+
"grad_norm": 1.8425998009576734,
|
812 |
+
"learning_rate": 2.7529871249765397e-05,
|
813 |
+
"loss": 0.6897,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.19518761568231532,
|
818 |
+
"grad_norm": 5.3035191638420836,
|
819 |
+
"learning_rate": 2.7485656291333845e-05,
|
820 |
+
"loss": 0.7027,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.19687026754164563,
|
825 |
+
"grad_norm": 3.3228474353685504,
|
826 |
+
"learning_rate": 2.7441085281753028e-05,
|
827 |
+
"loss": 0.7091,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.19855291940097594,
|
832 |
+
"grad_norm": 3.5016968564731283,
|
833 |
+
"learning_rate": 2.739615949204617e-05,
|
834 |
+
"loss": 0.7241,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.20023557126030625,
|
839 |
+
"grad_norm": 1.7190048028902127,
|
840 |
+
"learning_rate": 2.7350880203353703e-05,
|
841 |
+
"loss": 0.7192,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.20191822311963656,
|
846 |
+
"grad_norm": 3.7186824247487515,
|
847 |
+
"learning_rate": 2.7305248706896722e-05,
|
848 |
+
"loss": 0.7063,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.20360087497896684,
|
853 |
+
"grad_norm": 4.1717869895766935,
|
854 |
+
"learning_rate": 2.7259266303940164e-05,
|
855 |
+
"loss": 0.7088,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.20528352683829715,
|
860 |
+
"grad_norm": 2.5124857963805804,
|
861 |
+
"learning_rate": 2.7212934305755697e-05,
|
862 |
+
"loss": 0.7198,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.20696617869762746,
|
867 |
+
"grad_norm": 2.095136268936366,
|
868 |
+
"learning_rate": 2.7166254033584343e-05,
|
869 |
+
"loss": 0.753,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.20864883055695777,
|
874 |
+
"grad_norm": 3.2661098868577256,
|
875 |
+
"learning_rate": 2.7119226818598784e-05,
|
876 |
+
"loss": 0.6779,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.21033148241628807,
|
881 |
+
"grad_norm": 3.055506603735091,
|
882 |
+
"learning_rate": 2.7071854001865402e-05,
|
883 |
+
"loss": 0.7013,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.21201413427561838,
|
888 |
+
"grad_norm": 12.522953778477769,
|
889 |
+
"learning_rate": 2.702413693430604e-05,
|
890 |
+
"loss": 0.7088,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.2136967861349487,
|
895 |
+
"grad_norm": 3.476240301739368,
|
896 |
+
"learning_rate": 2.697607697665948e-05,
|
897 |
+
"loss": 0.689,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.21537943799427897,
|
902 |
+
"grad_norm": 1.1862686197570156,
|
903 |
+
"learning_rate": 2.6927675499442648e-05,
|
904 |
+
"loss": 0.7243,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.21706208985360928,
|
909 |
+
"grad_norm": 1.6505042403801382,
|
910 |
+
"learning_rate": 2.68789338829115e-05,
|
911 |
+
"loss": 0.7083,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.2187447417129396,
|
916 |
+
"grad_norm": 4.74071740077375,
|
917 |
+
"learning_rate": 2.6829853517021698e-05,
|
918 |
+
"loss": 0.7016,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.2204273935722699,
|
923 |
+
"grad_norm": 4.124079283639458,
|
924 |
+
"learning_rate": 2.6780435801388945e-05,
|
925 |
+
"loss": 0.7077,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.2221100454316002,
|
930 |
+
"grad_norm": 1.9487864410536297,
|
931 |
+
"learning_rate": 2.6730682145249093e-05,
|
932 |
+
"loss": 0.7355,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.22379269729093051,
|
937 |
+
"grad_norm": 2.4839241050514733,
|
938 |
+
"learning_rate": 2.668059396741795e-05,
|
939 |
+
"loss": 0.7092,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.22547534915026082,
|
944 |
+
"grad_norm": 2.841913657394254,
|
945 |
+
"learning_rate": 2.6630172696250804e-05,
|
946 |
+
"loss": 0.7303,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.2271580010095911,
|
951 |
+
"grad_norm": 2.7442870185873347,
|
952 |
+
"learning_rate": 2.6579419769601715e-05,
|
953 |
+
"loss": 0.6739,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.2288406528689214,
|
958 |
+
"grad_norm": 1.3854365909071105,
|
959 |
+
"learning_rate": 2.6528336634782493e-05,
|
960 |
+
"loss": 0.7073,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.23052330472825172,
|
965 |
+
"grad_norm": 3.115941001607779,
|
966 |
+
"learning_rate": 2.6476924748521443e-05,
|
967 |
+
"loss": 0.7267,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.23220595658758203,
|
972 |
+
"grad_norm": 6.9185951332741,
|
973 |
+
"learning_rate": 2.6425185576921812e-05,
|
974 |
+
"loss": 0.7456,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.23388860844691234,
|
979 |
+
"grad_norm": 2.378601355345996,
|
980 |
+
"learning_rate": 2.637312059541997e-05,
|
981 |
+
"loss": 0.6912,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.23557126030624265,
|
986 |
+
"grad_norm": 2.7929947858543906,
|
987 |
+
"learning_rate": 2.632073128874336e-05,
|
988 |
+
"loss": 0.7184,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.23725391216557296,
|
993 |
+
"grad_norm": 1.5382855773213957,
|
994 |
+
"learning_rate": 2.6268019150868144e-05,
|
995 |
+
"loss": 0.7099,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.23893656402490324,
|
1000 |
+
"grad_norm": 6.1010563795570025,
|
1001 |
+
"learning_rate": 2.62149856849766e-05,
|
1002 |
+
"loss": 0.6895,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.24061921588423354,
|
1007 |
+
"grad_norm": 5.999491987974443,
|
1008 |
+
"learning_rate": 2.616163240341426e-05,
|
1009 |
+
"loss": 0.7493,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.24230186774356385,
|
1014 |
+
"grad_norm": 2.837037600849311,
|
1015 |
+
"learning_rate": 2.6107960827646774e-05,
|
1016 |
+
"loss": 0.7176,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.24398451960289416,
|
1021 |
+
"grad_norm": 1.7029089834427125,
|
1022 |
+
"learning_rate": 2.6053972488216538e-05,
|
1023 |
+
"loss": 0.6852,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.24566717146222447,
|
1028 |
+
"grad_norm": 1.382189249222589,
|
1029 |
+
"learning_rate": 2.5999668924699035e-05,
|
1030 |
+
"loss": 0.685,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.24734982332155478,
|
1035 |
+
"grad_norm": 1.9496045543050813,
|
1036 |
+
"learning_rate": 2.5945051685658923e-05,
|
1037 |
+
"loss": 0.6591,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.2490324751808851,
|
1042 |
+
"grad_norm": 5.479390805764353,
|
1043 |
+
"learning_rate": 2.5890122328605908e-05,
|
1044 |
+
"loss": 0.7085,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.25071512704021537,
|
1049 |
+
"grad_norm": 1.7567995670915637,
|
1050 |
+
"learning_rate": 2.5834882419950295e-05,
|
1051 |
+
"loss": 0.7091,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.2523977788995457,
|
1056 |
+
"grad_norm": 1.9685911084195309,
|
1057 |
+
"learning_rate": 2.577933353495833e-05,
|
1058 |
+
"loss": 0.7218,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.254080430758876,
|
1063 |
+
"grad_norm": 3.400633915540874,
|
1064 |
+
"learning_rate": 2.5723477257707293e-05,
|
1065 |
+
"loss": 0.7148,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.2557630826182063,
|
1070 |
+
"grad_norm": 1.2116738326443663,
|
1071 |
+
"learning_rate": 2.566731518104029e-05,
|
1072 |
+
"loss": 0.7321,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.2574457344775366,
|
1077 |
+
"grad_norm": 1.3376343864594256,
|
1078 |
+
"learning_rate": 2.5610848906520878e-05,
|
1079 |
+
"loss": 0.748,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.2591283863368669,
|
1084 |
+
"grad_norm": 2.6089861003232055,
|
1085 |
+
"learning_rate": 2.5554080044387344e-05,
|
1086 |
+
"loss": 0.7127,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.2608110381961972,
|
1091 |
+
"grad_norm": 3.2047926120640526,
|
1092 |
+
"learning_rate": 2.5497010213506825e-05,
|
1093 |
+
"loss": 0.7262,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.26249369005552753,
|
1098 |
+
"grad_norm": 1.4899957348295265,
|
1099 |
+
"learning_rate": 2.5439641041329128e-05,
|
1100 |
+
"loss": 0.7122,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.26417634191485784,
|
1105 |
+
"grad_norm": 3.595968473922136,
|
1106 |
+
"learning_rate": 2.5381974163840313e-05,
|
1107 |
+
"loss": 0.7092,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.26585899377418815,
|
1112 |
+
"grad_norm": 3.5232117574234003,
|
1113 |
+
"learning_rate": 2.532401122551605e-05,
|
1114 |
+
"loss": 0.6924,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2675416456335184,
|
1119 |
+
"grad_norm": 2.618947453668302,
|
1120 |
+
"learning_rate": 2.526575387927473e-05,
|
1121 |
+
"loss": 0.7067,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.2692242974928487,
|
1126 |
+
"grad_norm": 3.6282673284589566,
|
1127 |
+
"learning_rate": 2.52072037864303e-05,
|
1128 |
+
"loss": 0.6945,
|
1129 |
+
"step": 1600
|
1130 |
+
}
|
1131 |
+
],
|
1132 |
+
"logging_steps": 10,
|
1133 |
+
"max_steps": 5943,
|
1134 |
+
"num_input_tokens_seen": 0,
|
1135 |
+
"num_train_epochs": 1,
|
1136 |
+
"save_steps": 400,
|
1137 |
+
"stateful_callbacks": {
|
1138 |
+
"TrainerControl": {
|
1139 |
+
"args": {
|
1140 |
+
"should_epoch_stop": false,
|
1141 |
+
"should_evaluate": false,
|
1142 |
+
"should_log": false,
|
1143 |
+
"should_save": true,
|
1144 |
+
"should_training_stop": false
|
1145 |
+
},
|
1146 |
+
"attributes": {}
|
1147 |
+
}
|
1148 |
+
},
|
1149 |
+
"total_flos": 7.289521573986304e+18,
|
1150 |
+
"train_batch_size": 4,
|
1151 |
+
"trial_name": null,
|
1152 |
+
"trial_params": null
|
1153 |
+
}
|
checkpoint-1600/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e95a8f5e7f8a0f6f3e1f415e9606de2bf6f80315b55f9012ea921093e8d88264
|
3 |
+
size 6520
|
checkpoint-1600/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-2000/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-2000/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.h.17.attn.c_proj",
|
24 |
+
"transformer.h.20.mlp.c_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
26 |
+
"transformer.h.3.attn.c_attn",
|
27 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
29 |
+
"transformer.h.28.mlp.w2",
|
30 |
+
"transformer.h.6.mlp.w2",
|
31 |
+
"transformer.h.13.mlp.w1",
|
32 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
33 |
+
"transformer.h.2.mlp.c_proj",
|
34 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
35 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
36 |
+
"transformer.h.4.attn.c_proj",
|
37 |
+
"transformer.h.22.mlp.c_proj",
|
38 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
39 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
40 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
42 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
43 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
44 |
+
"transformer.h.0.attn.c_attn",
|
45 |
+
"transformer.h.19.mlp.w2",
|
46 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
48 |
+
"transformer.h.31.mlp.c_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
50 |
+
"transformer.h.18.mlp.w1",
|
51 |
+
"transformer.h.23.mlp.w2",
|
52 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
54 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
55 |
+
"transformer.h.12.mlp.w2",
|
56 |
+
"transformer.h.23.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
58 |
+
"transformer.h.10.mlp.w1",
|
59 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
61 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
62 |
+
"transformer.h.9.mlp.w1",
|
63 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
64 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
65 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
67 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
69 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
70 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
71 |
+
"transformer.h.24.attn.c_proj",
|
72 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
73 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
74 |
+
"transformer.h.10.attn.c_attn",
|
75 |
+
"transformer.h.26.attn.c_attn",
|
76 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
78 |
+
"transformer.h.7.attn.c_proj",
|
79 |
+
"transformer.h.24.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
81 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
82 |
+
"transformer.h.12.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
84 |
+
"transformer.h.18.attn.c_attn",
|
85 |
+
"transformer.h.23.attn.c_proj",
|
86 |
+
"transformer.h.27.mlp.c_proj",
|
87 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
88 |
+
"transformer.h.3.mlp.w1",
|
89 |
+
"transformer.h.2.mlp.w2",
|
90 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
92 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
93 |
+
"transformer.h.25.mlp.w1",
|
94 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
96 |
+
"transformer.h.1.attn.c_proj",
|
97 |
+
"transformer.h.1.attn.c_attn",
|
98 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
99 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
100 |
+
"transformer.h.13.attn.c_attn",
|
101 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
102 |
+
"transformer.h.7.mlp.w2",
|
103 |
+
"transformer.h.9.attn.c_proj",
|
104 |
+
"transformer.h.15.attn.c_attn",
|
105 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
106 |
+
"transformer.h.27.attn.c_attn",
|
107 |
+
"transformer.h.15.mlp.c_proj",
|
108 |
+
"transformer.h.21.mlp.w2",
|
109 |
+
"transformer.h.28.attn.c_proj",
|
110 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
111 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
112 |
+
"transformer.h.9.mlp.w2",
|
113 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
115 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
116 |
+
"transformer.h.11.mlp.w1",
|
117 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
118 |
+
"transformer.h.10.attn.c_proj",
|
119 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
120 |
+
"transformer.h.31.attn.c_attn",
|
121 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
122 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
123 |
+
"transformer.h.24.mlp.w1",
|
124 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
125 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
126 |
+
"transformer.h.8.mlp.c_proj",
|
127 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
128 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
129 |
+
"transformer.h.22.mlp.w2",
|
130 |
+
"transformer.h.29.mlp.w2",
|
131 |
+
"transformer.h.0.mlp.c_proj",
|
132 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
133 |
+
"transformer.h.8.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.w1",
|
135 |
+
"transformer.h.26.mlp.w2",
|
136 |
+
"transformer.h.25.attn.c_proj",
|
137 |
+
"transformer.h.27.mlp.w1",
|
138 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
140 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
141 |
+
"transformer.h.29.attn.c_attn",
|
142 |
+
"transformer.h.24.attn.c_attn",
|
143 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
144 |
+
"transformer.h.2.attn.c_proj",
|
145 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
146 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
148 |
+
"transformer.h.11.mlp.c_proj",
|
149 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
150 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
151 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
152 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
154 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
155 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
156 |
+
"transformer.h.1.mlp.w2",
|
157 |
+
"transformer.h.21.mlp.c_proj",
|
158 |
+
"transformer.h.23.attn.c_attn",
|
159 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
160 |
+
"transformer.h.14.attn.c_attn",
|
161 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
162 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
163 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
164 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
165 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
167 |
+
"transformer.h.9.mlp.c_proj",
|
168 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
169 |
+
"transformer.h.18.mlp.c_proj",
|
170 |
+
"transformer.h.19.mlp.w1",
|
171 |
+
"transformer.h.9.attn.c_attn",
|
172 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
175 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
177 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
178 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
180 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
181 |
+
"transformer.h.25.attn.c_attn",
|
182 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
183 |
+
"transformer.h.16.mlp.w1",
|
184 |
+
"transformer.h.28.mlp.c_proj",
|
185 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
186 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
187 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
189 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
190 |
+
"transformer.h.30.mlp.w1",
|
191 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
192 |
+
"transformer.h.15.mlp.w1",
|
193 |
+
"transformer.h.16.attn.c_proj",
|
194 |
+
"transformer.h.20.mlp.w1",
|
195 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
196 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
197 |
+
"transformer.h.10.mlp.c_proj",
|
198 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
199 |
+
"transformer.h.13.mlp.w2",
|
200 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
202 |
+
"transformer.h.22.attn.c_proj",
|
203 |
+
"transformer.h.6.mlp.w1",
|
204 |
+
"transformer.h.18.mlp.w2",
|
205 |
+
"transformer.h.4.mlp.c_proj",
|
206 |
+
"transformer.h.3.mlp.c_proj",
|
207 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
208 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
209 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
211 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
214 |
+
"transformer.h.22.mlp.w1",
|
215 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
216 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
217 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
218 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
219 |
+
"transformer.h.18.attn.c_proj",
|
220 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
221 |
+
"transformer.h.5.attn.c_attn",
|
222 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
223 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
224 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
225 |
+
"transformer.h.5.attn.c_proj",
|
226 |
+
"transformer.h.7.attn.c_attn",
|
227 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
229 |
+
"transformer.h.29.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
231 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
232 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
233 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
234 |
+
"transformer.h.23.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
236 |
+
"transformer.h.12.attn.c_proj",
|
237 |
+
"transformer.h.16.mlp.w2",
|
238 |
+
"transformer.h.27.mlp.w2",
|
239 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
240 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
242 |
+
"transformer.h.26.attn.c_proj",
|
243 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
244 |
+
"transformer.h.8.mlp.w2",
|
245 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
246 |
+
"transformer.h.17.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.w2",
|
248 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
249 |
+
"transformer.h.28.mlp.w1",
|
250 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
251 |
+
"transformer.h.12.mlp.w1",
|
252 |
+
"transformer.h.30.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
254 |
+
"transformer.h.6.attn.c_attn",
|
255 |
+
"transformer.h.5.mlp.c_proj",
|
256 |
+
"transformer.h.6.mlp.c_proj",
|
257 |
+
"transformer.h.22.attn.c_attn",
|
258 |
+
"transformer.h.13.attn.c_proj",
|
259 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
260 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
261 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
262 |
+
"transformer.h.17.mlp.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
264 |
+
"transformer.h.4.mlp.w2",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
266 |
+
"transformer.h.11.mlp.w2",
|
267 |
+
"transformer.h.19.attn.c_attn",
|
268 |
+
"transformer.h.14.mlp.w1",
|
269 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
270 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
271 |
+
"transformer.h.21.attn.c_attn",
|
272 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
273 |
+
"transformer.h.2.mlp.w1",
|
274 |
+
"transformer.h.14.attn.c_proj",
|
275 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
276 |
+
"transformer.h.6.attn.c_proj",
|
277 |
+
"transformer.h.0.mlp.w2",
|
278 |
+
"transformer.h.5.mlp.w1",
|
279 |
+
"transformer.h.30.attn.c_proj",
|
280 |
+
"transformer.h.24.mlp.w2",
|
281 |
+
"transformer.h.0.attn.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
283 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
284 |
+
"transformer.h.10.mlp.w2",
|
285 |
+
"transformer.h.17.mlp.w2",
|
286 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
287 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
288 |
+
"transformer.h.20.mlp.w2",
|
289 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
290 |
+
"transformer.h.29.mlp.w1",
|
291 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
292 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
293 |
+
"transformer.h.15.attn.c_proj",
|
294 |
+
"transformer.h.3.mlp.w2",
|
295 |
+
"transformer.h.30.attn.c_attn",
|
296 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
297 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
298 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
299 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
300 |
+
"transformer.h.20.attn.c_attn",
|
301 |
+
"transformer.h.19.mlp.c_proj",
|
302 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
304 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
307 |
+
"transformer.h.11.attn.c_proj",
|
308 |
+
"transformer.h.12.attn.c_attn",
|
309 |
+
"transformer.visual.conv1",
|
310 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
311 |
+
"transformer.h.25.mlp.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
313 |
+
"transformer.h.26.mlp.w1",
|
314 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
315 |
+
"transformer.h.7.mlp.c_proj",
|
316 |
+
"transformer.h.29.attn.c_proj",
|
317 |
+
"transformer.h.1.mlp.c_proj",
|
318 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
319 |
+
"transformer.h.14.mlp.c_proj",
|
320 |
+
"transformer.h.3.attn.c_proj",
|
321 |
+
"transformer.h.25.mlp.w2",
|
322 |
+
"transformer.h.20.attn.c_proj",
|
323 |
+
"transformer.h.16.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
325 |
+
"transformer.h.17.attn.c_attn",
|
326 |
+
"transformer.h.14.mlp.w2",
|
327 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
328 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
330 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
331 |
+
"transformer.h.15.mlp.w2",
|
332 |
+
"transformer.h.4.attn.c_attn",
|
333 |
+
"transformer.h.31.mlp.w1",
|
334 |
+
"transformer.h.11.attn.c_attn",
|
335 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
336 |
+
"transformer.h.7.mlp.w1",
|
337 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
338 |
+
"transformer.h.1.mlp.w1",
|
339 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
340 |
+
"transformer.h.21.attn.c_proj",
|
341 |
+
"transformer.h.30.mlp.c_proj",
|
342 |
+
"transformer.h.21.mlp.w1",
|
343 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
344 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
345 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
346 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
347 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
348 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
350 |
+
"transformer.h.13.mlp.c_proj",
|
351 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
353 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
354 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
355 |
+
"transformer.h.4.mlp.w1",
|
356 |
+
"transformer.h.8.attn.c_attn",
|
357 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
359 |
+
"transformer.h.28.attn.c_attn",
|
360 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
361 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
362 |
+
"transformer.h.19.attn.c_proj",
|
363 |
+
"transformer.h.2.attn.c_attn",
|
364 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
365 |
+
"transformer.h.26.mlp.c_proj",
|
366 |
+
"transformer.h.8.attn.c_proj",
|
367 |
+
"transformer.h.27.attn.c_proj",
|
368 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
369 |
+
"transformer.h.16.attn.c_attn",
|
370 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
372 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
373 |
+
"transformer.h.31.attn.c_proj",
|
374 |
+
"transformer.h.5.mlp.w2",
|
375 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-2000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:278f1300ea67a75f5c5a17bdd7a6059b913709dd5abe64e411b97609915f4bab
|
3 |
+
size 469105640
|
checkpoint-2000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2000
|
checkpoint-2000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f6c02405ec3457460084b0bccc1f52114416050135941d1b86a40847a3901cd
|
3 |
+
size 14960
|
checkpoint-2000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8b8c688657b62198cfea2b0bfe429c988dc9d8749e2d0e57204088b7624fcfb
|
3 |
+
size 14960
|
checkpoint-2000/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:836759327c6fc5baec90582cf262c9e057b66ddd65bd799ca61947470534bfd5
|
3 |
+
size 14960
|
checkpoint-2000/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a63a9100ca1a6600d9304f9d2a8977a8b49d8a7a30c82ba884c0cce68472ba4b
|
3 |
+
size 14960
|
checkpoint-2000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51900721eac30baaf24efb0aa845d2e4f9b1fb9c462b5a0523edfc3c327d92c0
|
3 |
+
size 1064
|
checkpoint-2000/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-2000/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 1280,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,1433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.3365303718660609,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0016826518593303045,
|
13 |
+
"grad_norm": 5.367858933563703,
|
14 |
+
"learning_rate": 4.9999999999999996e-06,
|
15 |
+
"loss": 0.9537,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.003365303718660609,
|
20 |
+
"grad_norm": 9.386746384686745,
|
21 |
+
"learning_rate": 9.999999999999999e-06,
|
22 |
+
"loss": 0.943,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.005047955577990914,
|
27 |
+
"grad_norm": 7.387362447577942,
|
28 |
+
"learning_rate": 1.5e-05,
|
29 |
+
"loss": 0.934,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.006730607437321218,
|
34 |
+
"grad_norm": 6.9256319824932655,
|
35 |
+
"learning_rate": 1.9999999999999998e-05,
|
36 |
+
"loss": 0.8376,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.008413259296651522,
|
41 |
+
"grad_norm": 9.1148382590838,
|
42 |
+
"learning_rate": 2.5e-05,
|
43 |
+
"loss": 0.8484,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.010095911155981827,
|
48 |
+
"grad_norm": 3.9989232759892426,
|
49 |
+
"learning_rate": 3e-05,
|
50 |
+
"loss": 0.8097,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.011778563015312132,
|
55 |
+
"grad_norm": 3.892371218590039,
|
56 |
+
"learning_rate": 2.9999786123888308e-05,
|
57 |
+
"loss": 0.7811,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.013461214874642436,
|
62 |
+
"grad_norm": 8.096662196282066,
|
63 |
+
"learning_rate": 2.9999144501652298e-05,
|
64 |
+
"loss": 0.7446,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.01514386673397274,
|
69 |
+
"grad_norm": 1.5769306611206149,
|
70 |
+
"learning_rate": 2.9998075151588992e-05,
|
71 |
+
"loss": 0.7258,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.016826518593303044,
|
76 |
+
"grad_norm": 8.47430485487969,
|
77 |
+
"learning_rate": 2.999657810419285e-05,
|
78 |
+
"loss": 0.7052,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.01850917045263335,
|
83 |
+
"grad_norm": 2.363071299913598,
|
84 |
+
"learning_rate": 2.999465340215489e-05,
|
85 |
+
"loss": 0.7657,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.020191822311963654,
|
90 |
+
"grad_norm": 1.9252385425154874,
|
91 |
+
"learning_rate": 2.999230110036149e-05,
|
92 |
+
"loss": 0.7329,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.02187447417129396,
|
97 |
+
"grad_norm": 8.946028475031488,
|
98 |
+
"learning_rate": 2.99895212658928e-05,
|
99 |
+
"loss": 0.7304,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.023557126030624265,
|
104 |
+
"grad_norm": 6.877609312630206,
|
105 |
+
"learning_rate": 2.9986313978020846e-05,
|
106 |
+
"loss": 0.7453,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02523977788995457,
|
111 |
+
"grad_norm": 2.5256324882367993,
|
112 |
+
"learning_rate": 2.9982679328207262e-05,
|
113 |
+
"loss": 0.7366,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.02692242974928487,
|
118 |
+
"grad_norm": 2.709550398238738,
|
119 |
+
"learning_rate": 2.9978617420100692e-05,
|
120 |
+
"loss": 0.7258,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.028605081608615177,
|
125 |
+
"grad_norm": 1.543550019689774,
|
126 |
+
"learning_rate": 2.9974128369533805e-05,
|
127 |
+
"loss": 0.7372,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.03028773346794548,
|
132 |
+
"grad_norm": 3.3453966881155504,
|
133 |
+
"learning_rate": 2.9969212304520034e-05,
|
134 |
+
"loss": 0.743,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.03197038532727579,
|
139 |
+
"grad_norm": 1.922001656181265,
|
140 |
+
"learning_rate": 2.9963869365249895e-05,
|
141 |
+
"loss": 0.7819,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.03365303718660609,
|
146 |
+
"grad_norm": 2.0611188483400036,
|
147 |
+
"learning_rate": 2.995809970408699e-05,
|
148 |
+
"loss": 0.7155,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0353356890459364,
|
153 |
+
"grad_norm": 1.5313041833127259,
|
154 |
+
"learning_rate": 2.9951903485563685e-05,
|
155 |
+
"loss": 0.7322,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.0370183409052667,
|
160 |
+
"grad_norm": 2.0124191694435085,
|
161 |
+
"learning_rate": 2.99452808863764e-05,
|
162 |
+
"loss": 0.6759,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03870099276459701,
|
167 |
+
"grad_norm": 3.182123324389477,
|
168 |
+
"learning_rate": 2.993823209538056e-05,
|
169 |
+
"loss": 0.6953,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.04038364462392731,
|
174 |
+
"grad_norm": 1.6122782177661379,
|
175 |
+
"learning_rate": 2.9930757313585238e-05,
|
176 |
+
"loss": 0.6953,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.04206629648325761,
|
181 |
+
"grad_norm": 2.2027482596695647,
|
182 |
+
"learning_rate": 2.9922856754147406e-05,
|
183 |
+
"loss": 0.7301,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.04374894834258792,
|
188 |
+
"grad_norm": 2.6782477155989213,
|
189 |
+
"learning_rate": 2.9914530642365852e-05,
|
190 |
+
"loss": 0.6891,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.04543160020191822,
|
195 |
+
"grad_norm": 1.9740401144541417,
|
196 |
+
"learning_rate": 2.990577921567476e-05,
|
197 |
+
"loss": 0.7231,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.04711425206124853,
|
202 |
+
"grad_norm": 1.719874620968932,
|
203 |
+
"learning_rate": 2.989660272363696e-05,
|
204 |
+
"loss": 0.7505,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.04879690392057883,
|
209 |
+
"grad_norm": 1.3138364164203409,
|
210 |
+
"learning_rate": 2.988700142793676e-05,
|
211 |
+
"loss": 0.7116,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.05047955577990914,
|
216 |
+
"grad_norm": 5.853627389344256,
|
217 |
+
"learning_rate": 2.9876975602372536e-05,
|
218 |
+
"loss": 0.719,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.05216220763923944,
|
223 |
+
"grad_norm": 2.347259437170711,
|
224 |
+
"learning_rate": 2.9866525532848906e-05,
|
225 |
+
"loss": 0.6803,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.05384485949856974,
|
230 |
+
"grad_norm": 1.937679220955038,
|
231 |
+
"learning_rate": 2.9855651517368567e-05,
|
232 |
+
"loss": 0.7461,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.05552751135790005,
|
237 |
+
"grad_norm": 1.6661300351569575,
|
238 |
+
"learning_rate": 2.9844353866023802e-05,
|
239 |
+
"loss": 0.7472,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.05721016321723035,
|
244 |
+
"grad_norm": 2.357915869204484,
|
245 |
+
"learning_rate": 2.9832632900987642e-05,
|
246 |
+
"loss": 0.7148,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.05889281507656066,
|
251 |
+
"grad_norm": 4.398815186243292,
|
252 |
+
"learning_rate": 2.982048895650468e-05,
|
253 |
+
"loss": 0.6992,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.06057546693589096,
|
258 |
+
"grad_norm": 12.662682224480092,
|
259 |
+
"learning_rate": 2.9807922378881537e-05,
|
260 |
+
"loss": 0.7539,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.06225811879522127,
|
265 |
+
"grad_norm": 0.8642696401357872,
|
266 |
+
"learning_rate": 2.979493352647697e-05,
|
267 |
+
"loss": 0.7212,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.06394077065455157,
|
272 |
+
"grad_norm": 27.047937858232604,
|
273 |
+
"learning_rate": 2.9781522769691686e-05,
|
274 |
+
"loss": 0.722,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.06562342251388188,
|
279 |
+
"grad_norm": 2.598805292448644,
|
280 |
+
"learning_rate": 2.9767690490957758e-05,
|
281 |
+
"loss": 0.7065,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.06730607437321218,
|
286 |
+
"grad_norm": 1.2314762895092763,
|
287 |
+
"learning_rate": 2.9753437084727713e-05,
|
288 |
+
"loss": 0.7498,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.06898872623254249,
|
293 |
+
"grad_norm": 1.6421909669790502,
|
294 |
+
"learning_rate": 2.9738762957463292e-05,
|
295 |
+
"loss": 0.6992,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.0706713780918728,
|
300 |
+
"grad_norm": 2.023552968622588,
|
301 |
+
"learning_rate": 2.9723668527623877e-05,
|
302 |
+
"loss": 0.6943,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.0723540299512031,
|
307 |
+
"grad_norm": 1.5172337910969138,
|
308 |
+
"learning_rate": 2.9708154225654526e-05,
|
309 |
+
"loss": 0.6987,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0740366818105334,
|
314 |
+
"grad_norm": 1.197852135730745,
|
315 |
+
"learning_rate": 2.9692220493973712e-05,
|
316 |
+
"loss": 0.7302,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.0757193336698637,
|
321 |
+
"grad_norm": 2.4396443837967183,
|
322 |
+
"learning_rate": 2.9675867786960718e-05,
|
323 |
+
"loss": 0.7318,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.07740198552919401,
|
328 |
+
"grad_norm": 1.4599851880563282,
|
329 |
+
"learning_rate": 2.9659096570942654e-05,
|
330 |
+
"loss": 0.6941,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.07908463738852431,
|
335 |
+
"grad_norm": 1.117755825364562,
|
336 |
+
"learning_rate": 2.9641907324181194e-05,
|
337 |
+
"loss": 0.7399,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.08076728924785462,
|
342 |
+
"grad_norm": 2.9235378164576242,
|
343 |
+
"learning_rate": 2.96243005368589e-05,
|
344 |
+
"loss": 0.7207,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.08244994110718493,
|
349 |
+
"grad_norm": 7.308883163781362,
|
350 |
+
"learning_rate": 2.960627671106527e-05,
|
351 |
+
"loss": 0.682,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.08413259296651522,
|
356 |
+
"grad_norm": 3.4394827932955234,
|
357 |
+
"learning_rate": 2.9587836360782405e-05,
|
358 |
+
"loss": 0.708,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.08581524482584553,
|
363 |
+
"grad_norm": 3.2314529856927634,
|
364 |
+
"learning_rate": 2.9568980011870357e-05,
|
365 |
+
"loss": 0.7335,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.08749789668517584,
|
370 |
+
"grad_norm": 1.825724533695325,
|
371 |
+
"learning_rate": 2.954970820205214e-05,
|
372 |
+
"loss": 0.6951,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.08918054854450615,
|
377 |
+
"grad_norm": 3.3231741746640076,
|
378 |
+
"learning_rate": 2.9530021480898393e-05,
|
379 |
+
"loss": 0.7793,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.09086320040383644,
|
384 |
+
"grad_norm": 1.3097651462571123,
|
385 |
+
"learning_rate": 2.9509920409811696e-05,
|
386 |
+
"loss": 0.7087,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.09254585226316675,
|
391 |
+
"grad_norm": 6.685911471215255,
|
392 |
+
"learning_rate": 2.9489405562010565e-05,
|
393 |
+
"loss": 0.6906,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.09422850412249706,
|
398 |
+
"grad_norm": 2.870746617513948,
|
399 |
+
"learning_rate": 2.9468477522513132e-05,
|
400 |
+
"loss": 0.7028,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.09591115598182735,
|
405 |
+
"grad_norm": 1.782555352805469,
|
406 |
+
"learning_rate": 2.9447136888120408e-05,
|
407 |
+
"loss": 0.6901,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.09759380784115766,
|
412 |
+
"grad_norm": 2.336519711000487,
|
413 |
+
"learning_rate": 2.9425384267399327e-05,
|
414 |
+
"loss": 0.7779,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.09927645970048797,
|
419 |
+
"grad_norm": 8.935574410818228,
|
420 |
+
"learning_rate": 2.940322028066534e-05,
|
421 |
+
"loss": 0.7503,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.10095911155981828,
|
426 |
+
"grad_norm": 2.754713786882031,
|
427 |
+
"learning_rate": 2.938064555996476e-05,
|
428 |
+
"loss": 0.7208,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.10264176341914857,
|
433 |
+
"grad_norm": 1.5082503557652136,
|
434 |
+
"learning_rate": 2.9357660749056713e-05,
|
435 |
+
"loss": 0.7169,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.10432441527847888,
|
440 |
+
"grad_norm": 9.04522194526273,
|
441 |
+
"learning_rate": 2.9334266503394803e-05,
|
442 |
+
"loss": 0.6927,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.10600706713780919,
|
447 |
+
"grad_norm": 55.28278686388287,
|
448 |
+
"learning_rate": 2.9310463490108397e-05,
|
449 |
+
"loss": 0.7107,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.10768971899713949,
|
454 |
+
"grad_norm": 3.721916069105249,
|
455 |
+
"learning_rate": 2.928625238798362e-05,
|
456 |
+
"loss": 0.6951,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.1093723708564698,
|
461 |
+
"grad_norm": 2.5040797323750112,
|
462 |
+
"learning_rate": 2.9261633887443993e-05,
|
463 |
+
"loss": 0.6916,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.1110550227158001,
|
468 |
+
"grad_norm": 3.5468924769840617,
|
469 |
+
"learning_rate": 2.9236608690530738e-05,
|
470 |
+
"loss": 0.7077,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.11273767457513041,
|
475 |
+
"grad_norm": 3.0266819778200746,
|
476 |
+
"learning_rate": 2.921117751088276e-05,
|
477 |
+
"loss": 0.6952,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.1144203264344607,
|
482 |
+
"grad_norm": 1.634743894298146,
|
483 |
+
"learning_rate": 2.91853410737163e-05,
|
484 |
+
"loss": 0.6936,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.11610297829379101,
|
489 |
+
"grad_norm": 1.0925365801520501,
|
490 |
+
"learning_rate": 2.915910011580426e-05,
|
491 |
+
"loss": 0.7317,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.11778563015312132,
|
496 |
+
"grad_norm": 1.6959112138540386,
|
497 |
+
"learning_rate": 2.9132455385455176e-05,
|
498 |
+
"loss": 0.6917,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.11946828201245162,
|
503 |
+
"grad_norm": 1.9723433746891168,
|
504 |
+
"learning_rate": 2.9105407642491895e-05,
|
505 |
+
"loss": 0.7209,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.12115093387178193,
|
510 |
+
"grad_norm": 2.1537215293733833,
|
511 |
+
"learning_rate": 2.907795765822989e-05,
|
512 |
+
"loss": 0.7488,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.12283358573111224,
|
517 |
+
"grad_norm": 3.227101869737169,
|
518 |
+
"learning_rate": 2.9050106215455283e-05,
|
519 |
+
"loss": 0.7152,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.12451623759044254,
|
524 |
+
"grad_norm": 2.7222358893572554,
|
525 |
+
"learning_rate": 2.9021854108402516e-05,
|
526 |
+
"loss": 0.708,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.12619888944977284,
|
531 |
+
"grad_norm": 2.1054843767538136,
|
532 |
+
"learning_rate": 2.8993202142731693e-05,
|
533 |
+
"loss": 0.7251,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.12788154130910315,
|
538 |
+
"grad_norm": 2.11845883419618,
|
539 |
+
"learning_rate": 2.8964151135505616e-05,
|
540 |
+
"loss": 0.7405,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.12956419316843346,
|
545 |
+
"grad_norm": 13.171512404187755,
|
546 |
+
"learning_rate": 2.8934701915166477e-05,
|
547 |
+
"loss": 0.6844,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.13124684502776376,
|
552 |
+
"grad_norm": 2.7633375632879127,
|
553 |
+
"learning_rate": 2.890485532151225e-05,
|
554 |
+
"loss": 0.6766,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.13292949688709407,
|
559 |
+
"grad_norm": 1.8420785342693768,
|
560 |
+
"learning_rate": 2.887461220567271e-05,
|
561 |
+
"loss": 0.7037,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.13461214874642435,
|
566 |
+
"grad_norm": 1.5557447509529954,
|
567 |
+
"learning_rate": 2.8843973430085204e-05,
|
568 |
+
"loss": 0.6991,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.13629480060575466,
|
573 |
+
"grad_norm": 1.9295826624758823,
|
574 |
+
"learning_rate": 2.8812939868470016e-05,
|
575 |
+
"loss": 0.6956,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.13797745246508497,
|
580 |
+
"grad_norm": 3.3211216557707126,
|
581 |
+
"learning_rate": 2.878151240580548e-05,
|
582 |
+
"loss": 0.6774,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.13966010432441528,
|
587 |
+
"grad_norm": 4.196064403930616,
|
588 |
+
"learning_rate": 2.874969193830274e-05,
|
589 |
+
"loss": 0.6752,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.1413427561837456,
|
594 |
+
"grad_norm": 5.574976270137628,
|
595 |
+
"learning_rate": 2.871747937338016e-05,
|
596 |
+
"loss": 0.6553,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1430254080430759,
|
601 |
+
"grad_norm": 1.6494038718740478,
|
602 |
+
"learning_rate": 2.8684875629637505e-05,
|
603 |
+
"loss": 0.7152,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.1447080599024062,
|
608 |
+
"grad_norm": 1.3061892609414858,
|
609 |
+
"learning_rate": 2.8651881636829698e-05,
|
610 |
+
"loss": 0.7462,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.1463907117617365,
|
615 |
+
"grad_norm": 4.321044418392694,
|
616 |
+
"learning_rate": 2.861849833584032e-05,
|
617 |
+
"loss": 0.6902,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1480733636210668,
|
622 |
+
"grad_norm": 2.9444722968009764,
|
623 |
+
"learning_rate": 2.8584726678654787e-05,
|
624 |
+
"loss": 0.6813,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.1497560154803971,
|
629 |
+
"grad_norm": 1.4940245340163587,
|
630 |
+
"learning_rate": 2.85505676283332e-05,
|
631 |
+
"loss": 0.689,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.1514386673397274,
|
636 |
+
"grad_norm": 3.3704010040589565,
|
637 |
+
"learning_rate": 2.851602215898287e-05,
|
638 |
+
"loss": 0.6953,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.15312131919905772,
|
643 |
+
"grad_norm": 1.6597144402924948,
|
644 |
+
"learning_rate": 2.8481091255730552e-05,
|
645 |
+
"loss": 0.7277,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.15480397105838803,
|
650 |
+
"grad_norm": 10.969872224353953,
|
651 |
+
"learning_rate": 2.844577591469435e-05,
|
652 |
+
"loss": 0.7142,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.15648662291771834,
|
657 |
+
"grad_norm": 8.45616831264245,
|
658 |
+
"learning_rate": 2.8410077142955304e-05,
|
659 |
+
"loss": 0.7197,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.15816927477704862,
|
664 |
+
"grad_norm": 2.9594258901214427,
|
665 |
+
"learning_rate": 2.8373995958528683e-05,
|
666 |
+
"loss": 0.7351,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.15985192663637893,
|
671 |
+
"grad_norm": 2.168676312428759,
|
672 |
+
"learning_rate": 2.8337533390334942e-05,
|
673 |
+
"loss": 0.7544,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.16153457849570924,
|
678 |
+
"grad_norm": 7.898767360662744,
|
679 |
+
"learning_rate": 2.8300690478170388e-05,
|
680 |
+
"loss": 0.7015,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.16321723035503954,
|
685 |
+
"grad_norm": 16.83650212945308,
|
686 |
+
"learning_rate": 2.826346827267753e-05,
|
687 |
+
"loss": 0.7139,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.16489988221436985,
|
692 |
+
"grad_norm": 2.3791337429068977,
|
693 |
+
"learning_rate": 2.8225867835315114e-05,
|
694 |
+
"loss": 0.7053,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.16658253407370016,
|
699 |
+
"grad_norm": 1.9679363325295285,
|
700 |
+
"learning_rate": 2.8187890238327842e-05,
|
701 |
+
"loss": 0.7313,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.16826518593303044,
|
706 |
+
"grad_norm": 1.4822625638777076,
|
707 |
+
"learning_rate": 2.814953656471583e-05,
|
708 |
+
"loss": 0.7085,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.16994783779236075,
|
713 |
+
"grad_norm": 2.647291447509443,
|
714 |
+
"learning_rate": 2.8110807908203682e-05,
|
715 |
+
"loss": 0.6638,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.17163048965169106,
|
720 |
+
"grad_norm": 2.969379719654364,
|
721 |
+
"learning_rate": 2.8071705373209328e-05,
|
722 |
+
"loss": 0.6884,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.17331314151102137,
|
727 |
+
"grad_norm": 1.1163745403124403,
|
728 |
+
"learning_rate": 2.803223007481252e-05,
|
729 |
+
"loss": 0.6885,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.17499579337035168,
|
734 |
+
"grad_norm": 1.2686557979094786,
|
735 |
+
"learning_rate": 2.7992383138723034e-05,
|
736 |
+
"loss": 0.7037,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.17667844522968199,
|
741 |
+
"grad_norm": 4.648945448875594,
|
742 |
+
"learning_rate": 2.7952165701248573e-05,
|
743 |
+
"loss": 0.6933,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.1783610970890123,
|
748 |
+
"grad_norm": 4.723564874595428,
|
749 |
+
"learning_rate": 2.7911578909262353e-05,
|
750 |
+
"loss": 0.7144,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.18004374894834257,
|
755 |
+
"grad_norm": 5.211806926801946,
|
756 |
+
"learning_rate": 2.787062392017041e-05,
|
757 |
+
"loss": 0.7266,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.18172640080767288,
|
762 |
+
"grad_norm": 1.3725560316172503,
|
763 |
+
"learning_rate": 2.7829301901878592e-05,
|
764 |
+
"loss": 0.7445,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.1834090526670032,
|
769 |
+
"grad_norm": 0.9012241436004484,
|
770 |
+
"learning_rate": 2.7787614032759243e-05,
|
771 |
+
"loss": 0.6986,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.1850917045263335,
|
776 |
+
"grad_norm": 2.912544243603394,
|
777 |
+
"learning_rate": 2.7745561501617605e-05,
|
778 |
+
"loss": 0.7173,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.1867743563856638,
|
783 |
+
"grad_norm": 1.4248442614931247,
|
784 |
+
"learning_rate": 2.7703145507657923e-05,
|
785 |
+
"loss": 0.7035,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.18845700824499412,
|
790 |
+
"grad_norm": 2.186609904533333,
|
791 |
+
"learning_rate": 2.766036726044926e-05,
|
792 |
+
"loss": 0.7371,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.19013966010432443,
|
797 |
+
"grad_norm": 2.0524595532166603,
|
798 |
+
"learning_rate": 2.7617227979890957e-05,
|
799 |
+
"loss": 0.6986,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.1918223119636547,
|
804 |
+
"grad_norm": 1.8227045280907195,
|
805 |
+
"learning_rate": 2.7573728896177897e-05,
|
806 |
+
"loss": 0.7075,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.19350496382298502,
|
811 |
+
"grad_norm": 1.8425998009576734,
|
812 |
+
"learning_rate": 2.7529871249765397e-05,
|
813 |
+
"loss": 0.6897,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.19518761568231532,
|
818 |
+
"grad_norm": 5.3035191638420836,
|
819 |
+
"learning_rate": 2.7485656291333845e-05,
|
820 |
+
"loss": 0.7027,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.19687026754164563,
|
825 |
+
"grad_norm": 3.3228474353685504,
|
826 |
+
"learning_rate": 2.7441085281753028e-05,
|
827 |
+
"loss": 0.7091,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.19855291940097594,
|
832 |
+
"grad_norm": 3.5016968564731283,
|
833 |
+
"learning_rate": 2.739615949204617e-05,
|
834 |
+
"loss": 0.7241,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.20023557126030625,
|
839 |
+
"grad_norm": 1.7190048028902127,
|
840 |
+
"learning_rate": 2.7350880203353703e-05,
|
841 |
+
"loss": 0.7192,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.20191822311963656,
|
846 |
+
"grad_norm": 3.7186824247487515,
|
847 |
+
"learning_rate": 2.7305248706896722e-05,
|
848 |
+
"loss": 0.7063,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.20360087497896684,
|
853 |
+
"grad_norm": 4.1717869895766935,
|
854 |
+
"learning_rate": 2.7259266303940164e-05,
|
855 |
+
"loss": 0.7088,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.20528352683829715,
|
860 |
+
"grad_norm": 2.5124857963805804,
|
861 |
+
"learning_rate": 2.7212934305755697e-05,
|
862 |
+
"loss": 0.7198,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.20696617869762746,
|
867 |
+
"grad_norm": 2.095136268936366,
|
868 |
+
"learning_rate": 2.7166254033584343e-05,
|
869 |
+
"loss": 0.753,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.20864883055695777,
|
874 |
+
"grad_norm": 3.2661098868577256,
|
875 |
+
"learning_rate": 2.7119226818598784e-05,
|
876 |
+
"loss": 0.6779,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.21033148241628807,
|
881 |
+
"grad_norm": 3.055506603735091,
|
882 |
+
"learning_rate": 2.7071854001865402e-05,
|
883 |
+
"loss": 0.7013,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.21201413427561838,
|
888 |
+
"grad_norm": 12.522953778477769,
|
889 |
+
"learning_rate": 2.702413693430604e-05,
|
890 |
+
"loss": 0.7088,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.2136967861349487,
|
895 |
+
"grad_norm": 3.476240301739368,
|
896 |
+
"learning_rate": 2.697607697665948e-05,
|
897 |
+
"loss": 0.689,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.21537943799427897,
|
902 |
+
"grad_norm": 1.1862686197570156,
|
903 |
+
"learning_rate": 2.6927675499442648e-05,
|
904 |
+
"loss": 0.7243,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.21706208985360928,
|
909 |
+
"grad_norm": 1.6505042403801382,
|
910 |
+
"learning_rate": 2.68789338829115e-05,
|
911 |
+
"loss": 0.7083,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.2187447417129396,
|
916 |
+
"grad_norm": 4.74071740077375,
|
917 |
+
"learning_rate": 2.6829853517021698e-05,
|
918 |
+
"loss": 0.7016,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.2204273935722699,
|
923 |
+
"grad_norm": 4.124079283639458,
|
924 |
+
"learning_rate": 2.6780435801388945e-05,
|
925 |
+
"loss": 0.7077,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.2221100454316002,
|
930 |
+
"grad_norm": 1.9487864410536297,
|
931 |
+
"learning_rate": 2.6730682145249093e-05,
|
932 |
+
"loss": 0.7355,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.22379269729093051,
|
937 |
+
"grad_norm": 2.4839241050514733,
|
938 |
+
"learning_rate": 2.668059396741795e-05,
|
939 |
+
"loss": 0.7092,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.22547534915026082,
|
944 |
+
"grad_norm": 2.841913657394254,
|
945 |
+
"learning_rate": 2.6630172696250804e-05,
|
946 |
+
"loss": 0.7303,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.2271580010095911,
|
951 |
+
"grad_norm": 2.7442870185873347,
|
952 |
+
"learning_rate": 2.6579419769601715e-05,
|
953 |
+
"loss": 0.6739,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.2288406528689214,
|
958 |
+
"grad_norm": 1.3854365909071105,
|
959 |
+
"learning_rate": 2.6528336634782493e-05,
|
960 |
+
"loss": 0.7073,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.23052330472825172,
|
965 |
+
"grad_norm": 3.115941001607779,
|
966 |
+
"learning_rate": 2.6476924748521443e-05,
|
967 |
+
"loss": 0.7267,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.23220595658758203,
|
972 |
+
"grad_norm": 6.9185951332741,
|
973 |
+
"learning_rate": 2.6425185576921812e-05,
|
974 |
+
"loss": 0.7456,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.23388860844691234,
|
979 |
+
"grad_norm": 2.378601355345996,
|
980 |
+
"learning_rate": 2.637312059541997e-05,
|
981 |
+
"loss": 0.6912,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.23557126030624265,
|
986 |
+
"grad_norm": 2.7929947858543906,
|
987 |
+
"learning_rate": 2.632073128874336e-05,
|
988 |
+
"loss": 0.7184,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.23725391216557296,
|
993 |
+
"grad_norm": 1.5382855773213957,
|
994 |
+
"learning_rate": 2.6268019150868144e-05,
|
995 |
+
"loss": 0.7099,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.23893656402490324,
|
1000 |
+
"grad_norm": 6.1010563795570025,
|
1001 |
+
"learning_rate": 2.62149856849766e-05,
|
1002 |
+
"loss": 0.6895,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.24061921588423354,
|
1007 |
+
"grad_norm": 5.999491987974443,
|
1008 |
+
"learning_rate": 2.616163240341426e-05,
|
1009 |
+
"loss": 0.7493,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.24230186774356385,
|
1014 |
+
"grad_norm": 2.837037600849311,
|
1015 |
+
"learning_rate": 2.6107960827646774e-05,
|
1016 |
+
"loss": 0.7176,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.24398451960289416,
|
1021 |
+
"grad_norm": 1.7029089834427125,
|
1022 |
+
"learning_rate": 2.6053972488216538e-05,
|
1023 |
+
"loss": 0.6852,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.24566717146222447,
|
1028 |
+
"grad_norm": 1.382189249222589,
|
1029 |
+
"learning_rate": 2.5999668924699035e-05,
|
1030 |
+
"loss": 0.685,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.24734982332155478,
|
1035 |
+
"grad_norm": 1.9496045543050813,
|
1036 |
+
"learning_rate": 2.5945051685658923e-05,
|
1037 |
+
"loss": 0.6591,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.2490324751808851,
|
1042 |
+
"grad_norm": 5.479390805764353,
|
1043 |
+
"learning_rate": 2.5890122328605908e-05,
|
1044 |
+
"loss": 0.7085,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.25071512704021537,
|
1049 |
+
"grad_norm": 1.7567995670915637,
|
1050 |
+
"learning_rate": 2.5834882419950295e-05,
|
1051 |
+
"loss": 0.7091,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.2523977788995457,
|
1056 |
+
"grad_norm": 1.9685911084195309,
|
1057 |
+
"learning_rate": 2.577933353495833e-05,
|
1058 |
+
"loss": 0.7218,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.254080430758876,
|
1063 |
+
"grad_norm": 3.400633915540874,
|
1064 |
+
"learning_rate": 2.5723477257707293e-05,
|
1065 |
+
"loss": 0.7148,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.2557630826182063,
|
1070 |
+
"grad_norm": 1.2116738326443663,
|
1071 |
+
"learning_rate": 2.566731518104029e-05,
|
1072 |
+
"loss": 0.7321,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.2574457344775366,
|
1077 |
+
"grad_norm": 1.3376343864594256,
|
1078 |
+
"learning_rate": 2.5610848906520878e-05,
|
1079 |
+
"loss": 0.748,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.2591283863368669,
|
1084 |
+
"grad_norm": 2.6089861003232055,
|
1085 |
+
"learning_rate": 2.5554080044387344e-05,
|
1086 |
+
"loss": 0.7127,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.2608110381961972,
|
1091 |
+
"grad_norm": 3.2047926120640526,
|
1092 |
+
"learning_rate": 2.5497010213506825e-05,
|
1093 |
+
"loss": 0.7262,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.26249369005552753,
|
1098 |
+
"grad_norm": 1.4899957348295265,
|
1099 |
+
"learning_rate": 2.5439641041329128e-05,
|
1100 |
+
"loss": 0.7122,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.26417634191485784,
|
1105 |
+
"grad_norm": 3.595968473922136,
|
1106 |
+
"learning_rate": 2.5381974163840313e-05,
|
1107 |
+
"loss": 0.7092,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.26585899377418815,
|
1112 |
+
"grad_norm": 3.5232117574234003,
|
1113 |
+
"learning_rate": 2.532401122551605e-05,
|
1114 |
+
"loss": 0.6924,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2675416456335184,
|
1119 |
+
"grad_norm": 2.618947453668302,
|
1120 |
+
"learning_rate": 2.526575387927473e-05,
|
1121 |
+
"loss": 0.7067,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.2692242974928487,
|
1126 |
+
"grad_norm": 3.6282673284589566,
|
1127 |
+
"learning_rate": 2.52072037864303e-05,
|
1128 |
+
"loss": 0.6945,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.270906949352179,
|
1133 |
+
"grad_norm": 2.2274379147013,
|
1134 |
+
"learning_rate": 2.5148362616644926e-05,
|
1135 |
+
"loss": 0.6727,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.2725896012115093,
|
1140 |
+
"grad_norm": 2.823867881580523,
|
1141 |
+
"learning_rate": 2.508923204788135e-05,
|
1142 |
+
"loss": 0.7158,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.27427225307083963,
|
1147 |
+
"grad_norm": 2.0118901151982245,
|
1148 |
+
"learning_rate": 2.5029813766355062e-05,
|
1149 |
+
"loss": 0.7422,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.27595490493016994,
|
1154 |
+
"grad_norm": 1.2843584175617246,
|
1155 |
+
"learning_rate": 2.4970109466486202e-05,
|
1156 |
+
"loss": 0.7099,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.27763755678950025,
|
1161 |
+
"grad_norm": 3.5059277881120914,
|
1162 |
+
"learning_rate": 2.491012085085122e-05,
|
1163 |
+
"loss": 0.7164,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.27932020864883056,
|
1168 |
+
"grad_norm": 1.7458993688338285,
|
1169 |
+
"learning_rate": 2.4849849630134384e-05,
|
1170 |
+
"loss": 0.6901,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.28100286050816087,
|
1175 |
+
"grad_norm": 5.813346226937464,
|
1176 |
+
"learning_rate": 2.4789297523078924e-05,
|
1177 |
+
"loss": 0.7181,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.2826855123674912,
|
1182 |
+
"grad_norm": 2.0515286491489237,
|
1183 |
+
"learning_rate": 2.4728466256438072e-05,
|
1184 |
+
"loss": 0.7431,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.2843681642268215,
|
1189 |
+
"grad_norm": 2.6702746679350375,
|
1190 |
+
"learning_rate": 2.4667357564925798e-05,
|
1191 |
+
"loss": 0.701,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.2860508160861518,
|
1196 |
+
"grad_norm": 2.707565805299449,
|
1197 |
+
"learning_rate": 2.460597319116735e-05,
|
1198 |
+
"loss": 0.6725,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.2877334679454821,
|
1203 |
+
"grad_norm": 1.7994267796032153,
|
1204 |
+
"learning_rate": 2.4544314885649552e-05,
|
1205 |
+
"loss": 0.7043,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.2894161198048124,
|
1210 |
+
"grad_norm": 2.240627477157692,
|
1211 |
+
"learning_rate": 2.4482384406670883e-05,
|
1212 |
+
"loss": 0.7337,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.29109877166414266,
|
1217 |
+
"grad_norm": 1.4093208691675285,
|
1218 |
+
"learning_rate": 2.4420183520291354e-05,
|
1219 |
+
"loss": 0.706,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.292781423523473,
|
1224 |
+
"grad_norm": 1.5799653304195502,
|
1225 |
+
"learning_rate": 2.4357714000282127e-05,
|
1226 |
+
"loss": 0.7254,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.2944640753828033,
|
1231 |
+
"grad_norm": 1.8282839714116759,
|
1232 |
+
"learning_rate": 2.4294977628074938e-05,
|
1233 |
+
"loss": 0.68,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.2961467272421336,
|
1238 |
+
"grad_norm": 13.490769798309381,
|
1239 |
+
"learning_rate": 2.42319761927113e-05,
|
1240 |
+
"loss": 0.6984,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.2978293791014639,
|
1245 |
+
"grad_norm": 1.1660842236351188,
|
1246 |
+
"learning_rate": 2.4168711490791484e-05,
|
1247 |
+
"loss": 0.6893,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.2995120309607942,
|
1252 |
+
"grad_norm": 1.4880113732457052,
|
1253 |
+
"learning_rate": 2.4105185326423286e-05,
|
1254 |
+
"loss": 0.7371,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.3011946828201245,
|
1259 |
+
"grad_norm": 1.9796491202207207,
|
1260 |
+
"learning_rate": 2.4041399511170574e-05,
|
1261 |
+
"loss": 0.7372,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.3028773346794548,
|
1266 |
+
"grad_norm": 3.2861914347482846,
|
1267 |
+
"learning_rate": 2.3977355864001635e-05,
|
1268 |
+
"loss": 0.7145,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.30455998653878513,
|
1273 |
+
"grad_norm": 3.8536888582450595,
|
1274 |
+
"learning_rate": 2.3913056211237304e-05,
|
1275 |
+
"loss": 0.7244,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.30624263839811544,
|
1280 |
+
"grad_norm": 2.250827213388724,
|
1281 |
+
"learning_rate": 2.3848502386498866e-05,
|
1282 |
+
"loss": 0.7444,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.30792529025744575,
|
1287 |
+
"grad_norm": 1.6760548188250846,
|
1288 |
+
"learning_rate": 2.3783696230655802e-05,
|
1289 |
+
"loss": 0.7415,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.30960794211677606,
|
1294 |
+
"grad_norm": 2.83690011157284,
|
1295 |
+
"learning_rate": 2.371863959177326e-05,
|
1296 |
+
"loss": 0.6769,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.31129059397610637,
|
1301 |
+
"grad_norm": 3.6586666108883037,
|
1302 |
+
"learning_rate": 2.365333432505937e-05,
|
1303 |
+
"loss": 0.6981,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.3129732458354367,
|
1308 |
+
"grad_norm": 2.967916913846329,
|
1309 |
+
"learning_rate": 2.3587782292812323e-05,
|
1310 |
+
"loss": 0.7235,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.31465589769476693,
|
1315 |
+
"grad_norm": 2.7607388194454607,
|
1316 |
+
"learning_rate": 2.35219853643673e-05,
|
1317 |
+
"loss": 0.7202,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.31633854955409724,
|
1322 |
+
"grad_norm": 2.5793375573884925,
|
1323 |
+
"learning_rate": 2.3455945416043132e-05,
|
1324 |
+
"loss": 0.7437,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.31802120141342755,
|
1329 |
+
"grad_norm": 1.6474727320404343,
|
1330 |
+
"learning_rate": 2.338966433108879e-05,
|
1331 |
+
"loss": 0.6664,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.31970385327275785,
|
1336 |
+
"grad_norm": 2.8252072958720102,
|
1337 |
+
"learning_rate": 2.3323143999629712e-05,
|
1338 |
+
"loss": 0.6641,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.32138650513208816,
|
1343 |
+
"grad_norm": 1.8240997471681801,
|
1344 |
+
"learning_rate": 2.3256386318613877e-05,
|
1345 |
+
"loss": 0.7029,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.32306915699141847,
|
1350 |
+
"grad_norm": 1.7867386563705459,
|
1351 |
+
"learning_rate": 2.318939319175771e-05,
|
1352 |
+
"loss": 0.6806,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.3247518088507488,
|
1357 |
+
"grad_norm": 2.519605910503542,
|
1358 |
+
"learning_rate": 2.3122166529491822e-05,
|
1359 |
+
"loss": 0.6837,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.3264344607100791,
|
1364 |
+
"grad_norm": 1.5090617010699425,
|
1365 |
+
"learning_rate": 2.3054708248906483e-05,
|
1366 |
+
"loss": 0.7201,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.3281171125694094,
|
1371 |
+
"grad_norm": 1.85373627743108,
|
1372 |
+
"learning_rate": 2.2987020273696996e-05,
|
1373 |
+
"loss": 0.7007,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.3297997644287397,
|
1378 |
+
"grad_norm": 3.1668783585579714,
|
1379 |
+
"learning_rate": 2.2919104534108825e-05,
|
1380 |
+
"loss": 0.6827,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.33148241628807,
|
1385 |
+
"grad_norm": 2.802801151344103,
|
1386 |
+
"learning_rate": 2.2850962966882547e-05,
|
1387 |
+
"loss": 0.733,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.3331650681474003,
|
1392 |
+
"grad_norm": 4.351080547606847,
|
1393 |
+
"learning_rate": 2.278259751519861e-05,
|
1394 |
+
"loss": 0.7125,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.33484772000673063,
|
1399 |
+
"grad_norm": 1.4284076903376268,
|
1400 |
+
"learning_rate": 2.2714010128621957e-05,
|
1401 |
+
"loss": 0.7166,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.3365303718660609,
|
1406 |
+
"grad_norm": 1.4047557097137526,
|
1407 |
+
"learning_rate": 2.2645202763046385e-05,
|
1408 |
+
"loss": 0.7306,
|
1409 |
+
"step": 2000
|
1410 |
+
}
|
1411 |
+
],
|
1412 |
+
"logging_steps": 10,
|
1413 |
+
"max_steps": 5943,
|
1414 |
+
"num_input_tokens_seen": 0,
|
1415 |
+
"num_train_epochs": 1,
|
1416 |
+
"save_steps": 400,
|
1417 |
+
"stateful_callbacks": {
|
1418 |
+
"TrainerControl": {
|
1419 |
+
"args": {
|
1420 |
+
"should_epoch_stop": false,
|
1421 |
+
"should_evaluate": false,
|
1422 |
+
"should_log": false,
|
1423 |
+
"should_save": true,
|
1424 |
+
"should_training_stop": false
|
1425 |
+
},
|
1426 |
+
"attributes": {}
|
1427 |
+
}
|
1428 |
+
},
|
1429 |
+
"total_flos": 9.11190196748288e+18,
|
1430 |
+
"train_batch_size": 4,
|
1431 |
+
"trial_name": null,
|
1432 |
+
"trial_params": null
|
1433 |
+
}
|
checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e95a8f5e7f8a0f6f3e1f415e9606de2bf6f80315b55f9012ea921093e8d88264
|
3 |
+
size 6520
|
checkpoint-2000/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-2400/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-2400/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.h.17.attn.c_proj",
|
24 |
+
"transformer.h.20.mlp.c_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
26 |
+
"transformer.h.3.attn.c_attn",
|
27 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
29 |
+
"transformer.h.28.mlp.w2",
|
30 |
+
"transformer.h.6.mlp.w2",
|
31 |
+
"transformer.h.13.mlp.w1",
|
32 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
33 |
+
"transformer.h.2.mlp.c_proj",
|
34 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
35 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
36 |
+
"transformer.h.4.attn.c_proj",
|
37 |
+
"transformer.h.22.mlp.c_proj",
|
38 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
39 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
40 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
42 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
43 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
44 |
+
"transformer.h.0.attn.c_attn",
|
45 |
+
"transformer.h.19.mlp.w2",
|
46 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
48 |
+
"transformer.h.31.mlp.c_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
50 |
+
"transformer.h.18.mlp.w1",
|
51 |
+
"transformer.h.23.mlp.w2",
|
52 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
54 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
55 |
+
"transformer.h.12.mlp.w2",
|
56 |
+
"transformer.h.23.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
58 |
+
"transformer.h.10.mlp.w1",
|
59 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
61 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
62 |
+
"transformer.h.9.mlp.w1",
|
63 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj",
|
64 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
65 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
67 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
69 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
70 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
71 |
+
"transformer.h.24.attn.c_proj",
|
72 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
73 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
74 |
+
"transformer.h.10.attn.c_attn",
|
75 |
+
"transformer.h.26.attn.c_attn",
|
76 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
78 |
+
"transformer.h.7.attn.c_proj",
|
79 |
+
"transformer.h.24.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
81 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
82 |
+
"transformer.h.12.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
84 |
+
"transformer.h.18.attn.c_attn",
|
85 |
+
"transformer.h.23.attn.c_proj",
|
86 |
+
"transformer.h.27.mlp.c_proj",
|
87 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
88 |
+
"transformer.h.3.mlp.w1",
|
89 |
+
"transformer.h.2.mlp.w2",
|
90 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
92 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
93 |
+
"transformer.h.25.mlp.w1",
|
94 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
96 |
+
"transformer.h.1.attn.c_proj",
|
97 |
+
"transformer.h.1.attn.c_attn",
|
98 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
99 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
100 |
+
"transformer.h.13.attn.c_attn",
|
101 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
102 |
+
"transformer.h.7.mlp.w2",
|
103 |
+
"transformer.h.9.attn.c_proj",
|
104 |
+
"transformer.h.15.attn.c_attn",
|
105 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
106 |
+
"transformer.h.27.attn.c_attn",
|
107 |
+
"transformer.h.15.mlp.c_proj",
|
108 |
+
"transformer.h.21.mlp.w2",
|
109 |
+
"transformer.h.28.attn.c_proj",
|
110 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
111 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
112 |
+
"transformer.h.9.mlp.w2",
|
113 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
115 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
116 |
+
"transformer.h.11.mlp.w1",
|
117 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
118 |
+
"transformer.h.10.attn.c_proj",
|
119 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
120 |
+
"transformer.h.31.attn.c_attn",
|
121 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
122 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
123 |
+
"transformer.h.24.mlp.w1",
|
124 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
125 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
126 |
+
"transformer.h.8.mlp.c_proj",
|
127 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
128 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
129 |
+
"transformer.h.22.mlp.w2",
|
130 |
+
"transformer.h.29.mlp.w2",
|
131 |
+
"transformer.h.0.mlp.c_proj",
|
132 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
133 |
+
"transformer.h.8.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.w1",
|
135 |
+
"transformer.h.26.mlp.w2",
|
136 |
+
"transformer.h.25.attn.c_proj",
|
137 |
+
"transformer.h.27.mlp.w1",
|
138 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
140 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
141 |
+
"transformer.h.29.attn.c_attn",
|
142 |
+
"transformer.h.24.attn.c_attn",
|
143 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
144 |
+
"transformer.h.2.attn.c_proj",
|
145 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
146 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
148 |
+
"transformer.h.11.mlp.c_proj",
|
149 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
150 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
151 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
152 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
154 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
155 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
156 |
+
"transformer.h.1.mlp.w2",
|
157 |
+
"transformer.h.21.mlp.c_proj",
|
158 |
+
"transformer.h.23.attn.c_attn",
|
159 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
160 |
+
"transformer.h.14.attn.c_attn",
|
161 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
162 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
163 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
164 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
165 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
167 |
+
"transformer.h.9.mlp.c_proj",
|
168 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
169 |
+
"transformer.h.18.mlp.c_proj",
|
170 |
+
"transformer.h.19.mlp.w1",
|
171 |
+
"transformer.h.9.attn.c_attn",
|
172 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
175 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
177 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
178 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
180 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
181 |
+
"transformer.h.25.attn.c_attn",
|
182 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
183 |
+
"transformer.h.16.mlp.w1",
|
184 |
+
"transformer.h.28.mlp.c_proj",
|
185 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
186 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
187 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
189 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
190 |
+
"transformer.h.30.mlp.w1",
|
191 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
192 |
+
"transformer.h.15.mlp.w1",
|
193 |
+
"transformer.h.16.attn.c_proj",
|
194 |
+
"transformer.h.20.mlp.w1",
|
195 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
196 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
197 |
+
"transformer.h.10.mlp.c_proj",
|
198 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
199 |
+
"transformer.h.13.mlp.w2",
|
200 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
202 |
+
"transformer.h.22.attn.c_proj",
|
203 |
+
"transformer.h.6.mlp.w1",
|
204 |
+
"transformer.h.18.mlp.w2",
|
205 |
+
"transformer.h.4.mlp.c_proj",
|
206 |
+
"transformer.h.3.mlp.c_proj",
|
207 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
208 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
209 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
211 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
214 |
+
"transformer.h.22.mlp.w1",
|
215 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
216 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
217 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
218 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
219 |
+
"transformer.h.18.attn.c_proj",
|
220 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
221 |
+
"transformer.h.5.attn.c_attn",
|
222 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
223 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
224 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
225 |
+
"transformer.h.5.attn.c_proj",
|
226 |
+
"transformer.h.7.attn.c_attn",
|
227 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
229 |
+
"transformer.h.29.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
231 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
232 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
233 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
234 |
+
"transformer.h.23.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
236 |
+
"transformer.h.12.attn.c_proj",
|
237 |
+
"transformer.h.16.mlp.w2",
|
238 |
+
"transformer.h.27.mlp.w2",
|
239 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
240 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
242 |
+
"transformer.h.26.attn.c_proj",
|
243 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
244 |
+
"transformer.h.8.mlp.w2",
|
245 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
246 |
+
"transformer.h.17.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.w2",
|
248 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
249 |
+
"transformer.h.28.mlp.w1",
|
250 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
251 |
+
"transformer.h.12.mlp.w1",
|
252 |
+
"transformer.h.30.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
254 |
+
"transformer.h.6.attn.c_attn",
|
255 |
+
"transformer.h.5.mlp.c_proj",
|
256 |
+
"transformer.h.6.mlp.c_proj",
|
257 |
+
"transformer.h.22.attn.c_attn",
|
258 |
+
"transformer.h.13.attn.c_proj",
|
259 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
260 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
261 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
262 |
+
"transformer.h.17.mlp.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
264 |
+
"transformer.h.4.mlp.w2",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
266 |
+
"transformer.h.11.mlp.w2",
|
267 |
+
"transformer.h.19.attn.c_attn",
|
268 |
+
"transformer.h.14.mlp.w1",
|
269 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
270 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
271 |
+
"transformer.h.21.attn.c_attn",
|
272 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
273 |
+
"transformer.h.2.mlp.w1",
|
274 |
+
"transformer.h.14.attn.c_proj",
|
275 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
276 |
+
"transformer.h.6.attn.c_proj",
|
277 |
+
"transformer.h.0.mlp.w2",
|
278 |
+
"transformer.h.5.mlp.w1",
|
279 |
+
"transformer.h.30.attn.c_proj",
|
280 |
+
"transformer.h.24.mlp.w2",
|
281 |
+
"transformer.h.0.attn.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
283 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
284 |
+
"transformer.h.10.mlp.w2",
|
285 |
+
"transformer.h.17.mlp.w2",
|
286 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
287 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
288 |
+
"transformer.h.20.mlp.w2",
|
289 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
290 |
+
"transformer.h.29.mlp.w1",
|
291 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
292 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
293 |
+
"transformer.h.15.attn.c_proj",
|
294 |
+
"transformer.h.3.mlp.w2",
|
295 |
+
"transformer.h.30.attn.c_attn",
|
296 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
297 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
298 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
299 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
300 |
+
"transformer.h.20.attn.c_attn",
|
301 |
+
"transformer.h.19.mlp.c_proj",
|
302 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
304 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
307 |
+
"transformer.h.11.attn.c_proj",
|
308 |
+
"transformer.h.12.attn.c_attn",
|
309 |
+
"transformer.visual.conv1",
|
310 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
311 |
+
"transformer.h.25.mlp.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
313 |
+
"transformer.h.26.mlp.w1",
|
314 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
315 |
+
"transformer.h.7.mlp.c_proj",
|
316 |
+
"transformer.h.29.attn.c_proj",
|
317 |
+
"transformer.h.1.mlp.c_proj",
|
318 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
319 |
+
"transformer.h.14.mlp.c_proj",
|
320 |
+
"transformer.h.3.attn.c_proj",
|
321 |
+
"transformer.h.25.mlp.w2",
|
322 |
+
"transformer.h.20.attn.c_proj",
|
323 |
+
"transformer.h.16.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
325 |
+
"transformer.h.17.attn.c_attn",
|
326 |
+
"transformer.h.14.mlp.w2",
|
327 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
328 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
330 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
331 |
+
"transformer.h.15.mlp.w2",
|
332 |
+
"transformer.h.4.attn.c_attn",
|
333 |
+
"transformer.h.31.mlp.w1",
|
334 |
+
"transformer.h.11.attn.c_attn",
|
335 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
336 |
+
"transformer.h.7.mlp.w1",
|
337 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
338 |
+
"transformer.h.1.mlp.w1",
|
339 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
340 |
+
"transformer.h.21.attn.c_proj",
|
341 |
+
"transformer.h.30.mlp.c_proj",
|
342 |
+
"transformer.h.21.mlp.w1",
|
343 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
344 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
345 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
346 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
347 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
348 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
350 |
+
"transformer.h.13.mlp.c_proj",
|
351 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
353 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
354 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
355 |
+
"transformer.h.4.mlp.w1",
|
356 |
+
"transformer.h.8.attn.c_attn",
|
357 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
359 |
+
"transformer.h.28.attn.c_attn",
|
360 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
361 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
362 |
+
"transformer.h.19.attn.c_proj",
|
363 |
+
"transformer.h.2.attn.c_attn",
|
364 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
365 |
+
"transformer.h.26.mlp.c_proj",
|
366 |
+
"transformer.h.8.attn.c_proj",
|
367 |
+
"transformer.h.27.attn.c_proj",
|
368 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
369 |
+
"transformer.h.16.attn.c_attn",
|
370 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
372 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
373 |
+
"transformer.h.31.attn.c_proj",
|
374 |
+
"transformer.h.5.mlp.w2",
|
375 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-2400/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a459531ba07e7938863c694e6dc9433061624557f7487f95b9859dc630980fd
|
3 |
+
size 469105640
|
checkpoint-2400/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2400
|