sujr commited on
Commit
7059df9
·
verified ·
1 Parent(s): 862dee0

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-VL-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-VL-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "transformer.visual.transformer.resblocks.19.attn.out_proj",
24
+ "transformer.h.11.attn.c_attn",
25
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj",
26
+ "transformer.h.26.mlp.c_proj",
27
+ "transformer.visual.transformer.resblocks.26.attn.out_proj",
28
+ "transformer.h.20.mlp.c_proj",
29
+ "transformer.visual.transformer.resblocks.37.attn.in_proj",
30
+ "transformer.visual.transformer.resblocks.31.attn.out_proj",
31
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj",
32
+ "transformer.visual.transformer.resblocks.5.attn.out_proj",
33
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc",
34
+ "transformer.visual.transformer.resblocks.4.attn.in_proj",
35
+ "transformer.h.1.mlp.c_proj",
36
+ "transformer.visual.transformer.resblocks.29.attn.out_proj",
37
+ "transformer.h.28.attn.c_attn",
38
+ "transformer.h.19.attn.c_proj",
39
+ "transformer.h.29.mlp.c_proj",
40
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc",
41
+ "transformer.h.17.attn.c_attn",
42
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj",
43
+ "transformer.h.16.mlp.c_proj",
44
+ "transformer.h.19.mlp.w2",
45
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc",
46
+ "transformer.visual.transformer.resblocks.10.attn.in_proj",
47
+ "transformer.h.0.mlp.w2",
48
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc",
49
+ "transformer.h.3.mlp.c_proj",
50
+ "transformer.visual.transformer.resblocks.47.attn.in_proj",
51
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj",
52
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc",
53
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj",
54
+ "transformer.visual.transformer.resblocks.26.attn.in_proj",
55
+ "transformer.h.0.mlp.w1",
56
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc",
57
+ "transformer.visual.transformer.resblocks.1.attn.out_proj",
58
+ "transformer.visual.conv1",
59
+ "transformer.h.22.mlp.w2",
60
+ "transformer.h.21.mlp.w2",
61
+ "transformer.h.13.attn.c_attn",
62
+ "transformer.h.10.mlp.w1",
63
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj",
64
+ "transformer.visual.transformer.resblocks.34.attn.in_proj",
65
+ "transformer.h.16.mlp.w2",
66
+ "transformer.h.8.attn.c_proj",
67
+ "transformer.h.30.mlp.w1",
68
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc",
69
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj",
70
+ "transformer.visual.transformer.resblocks.39.attn.out_proj",
71
+ "transformer.h.23.attn.c_proj",
72
+ "transformer.visual.transformer.resblocks.32.attn.in_proj",
73
+ "transformer.h.25.mlp.c_proj",
74
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc",
75
+ "transformer.h.15.attn.c_attn",
76
+ "transformer.h.2.mlp.w1",
77
+ "transformer.h.4.mlp.w1",
78
+ "transformer.visual.transformer.resblocks.13.attn.in_proj",
79
+ "transformer.visual.transformer.resblocks.0.attn.in_proj",
80
+ "transformer.h.30.attn.c_attn",
81
+ "transformer.visual.transformer.resblocks.28.attn.out_proj",
82
+ "transformer.h.8.mlp.c_proj",
83
+ "transformer.h.8.mlp.w2",
84
+ "transformer.visual.transformer.resblocks.27.attn.out_proj",
85
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc",
86
+ "transformer.visual.transformer.resblocks.20.attn.in_proj",
87
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc",
88
+ "transformer.visual.transformer.resblocks.17.attn.out_proj",
89
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc",
90
+ "transformer.h.8.mlp.w1",
91
+ "transformer.h.31.mlp.w1",
92
+ "transformer.h.4.attn.c_attn",
93
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc",
94
+ "transformer.visual.transformer.resblocks.30.attn.out_proj",
95
+ "transformer.h.13.attn.c_proj",
96
+ "transformer.h.24.attn.c_attn",
97
+ "transformer.h.27.attn.c_attn",
98
+ "transformer.visual.transformer.resblocks.14.attn.in_proj",
99
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj",
100
+ "transformer.h.31.mlp.c_proj",
101
+ "transformer.visual.transformer.resblocks.8.attn.out_proj",
102
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc",
103
+ "transformer.h.10.mlp.w2",
104
+ "transformer.h.21.attn.c_attn",
105
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj",
106
+ "transformer.visual.transformer.resblocks.20.attn.out_proj",
107
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc",
108
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj",
109
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc",
110
+ "transformer.h.18.mlp.w2",
111
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc",
112
+ "transformer.visual.transformer.resblocks.21.attn.out_proj",
113
+ "transformer.h.12.mlp.w1",
114
+ "transformer.h.7.mlp.w1",
115
+ "transformer.visual.transformer.resblocks.42.attn.out_proj",
116
+ "transformer.visual.transformer.resblocks.19.attn.in_proj",
117
+ "transformer.visual.transformer.resblocks.44.attn.in_proj",
118
+ "transformer.h.23.attn.c_attn",
119
+ "transformer.h.27.mlp.w2",
120
+ "transformer.h.17.mlp.w2",
121
+ "transformer.h.20.mlp.w2",
122
+ "transformer.h.22.mlp.c_proj",
123
+ "transformer.visual.transformer.resblocks.3.attn.out_proj",
124
+ "transformer.h.27.mlp.c_proj",
125
+ "transformer.h.0.attn.c_proj",
126
+ "transformer.h.5.attn.c_attn",
127
+ "transformer.h.24.mlp.w2",
128
+ "transformer.visual.transformer.resblocks.22.attn.out_proj",
129
+ "transformer.visual.transformer.resblocks.6.attn.in_proj",
130
+ "transformer.h.5.mlp.c_proj",
131
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj",
132
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj",
133
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj",
134
+ "transformer.h.26.attn.c_proj",
135
+ "transformer.visual.transformer.resblocks.47.attn.out_proj",
136
+ "transformer.h.29.attn.c_attn",
137
+ "transformer.h.15.attn.c_proj",
138
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj",
139
+ "transformer.h.4.mlp.c_proj",
140
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc",
141
+ "transformer.h.0.mlp.c_proj",
142
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc",
143
+ "transformer.visual.transformer.resblocks.13.attn.out_proj",
144
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc",
145
+ "transformer.visual.transformer.resblocks.40.attn.in_proj",
146
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc",
147
+ "transformer.h.15.mlp.w2",
148
+ "transformer.h.3.attn.c_attn",
149
+ "transformer.h.28.mlp.w1",
150
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj",
151
+ "transformer.visual.transformer.resblocks.23.attn.out_proj",
152
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj",
153
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc",
154
+ "transformer.h.31.attn.c_proj",
155
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj",
156
+ "transformer.h.17.mlp.w1",
157
+ "transformer.h.18.mlp.c_proj",
158
+ "transformer.h.19.mlp.c_proj",
159
+ "transformer.h.9.mlp.w2",
160
+ "transformer.visual.transformer.resblocks.37.attn.out_proj",
161
+ "transformer.visual.transformer.resblocks.4.attn.out_proj",
162
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc",
163
+ "transformer.visual.transformer.resblocks.39.attn.in_proj",
164
+ "transformer.h.30.mlp.w2",
165
+ "transformer.visual.transformer.resblocks.45.attn.out_proj",
166
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj",
167
+ "transformer.visual.transformer.resblocks.17.attn.in_proj",
168
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj",
169
+ "transformer.visual.transformer.resblocks.9.attn.out_proj",
170
+ "transformer.h.28.mlp.c_proj",
171
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj",
172
+ "transformer.h.22.attn.c_attn",
173
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj",
174
+ "transformer.visual.transformer.resblocks.22.attn.in_proj",
175
+ "transformer.h.0.attn.c_attn",
176
+ "transformer.h.11.mlp.w2",
177
+ "transformer.h.19.mlp.w1",
178
+ "transformer.h.26.mlp.w2",
179
+ "transformer.visual.transformer.resblocks.38.attn.in_proj",
180
+ "transformer.h.29.mlp.w2",
181
+ "transformer.h.27.attn.c_proj",
182
+ "transformer.visual.transformer.resblocks.16.attn.out_proj",
183
+ "transformer.h.17.mlp.c_proj",
184
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj",
185
+ "transformer.h.6.attn.c_attn",
186
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj",
187
+ "transformer.h.21.mlp.w1",
188
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj",
189
+ "transformer.h.20.mlp.w1",
190
+ "transformer.visual.transformer.resblocks.6.attn.out_proj",
191
+ "transformer.h.23.mlp.c_proj",
192
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc",
193
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc",
194
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj",
195
+ "transformer.h.9.mlp.c_proj",
196
+ "transformer.h.7.attn.c_attn",
197
+ "transformer.h.29.mlp.w1",
198
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc",
199
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc",
200
+ "transformer.h.11.mlp.w1",
201
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj",
202
+ "transformer.h.5.mlp.w2",
203
+ "transformer.h.11.attn.c_proj",
204
+ "transformer.h.18.attn.c_attn",
205
+ "transformer.h.6.mlp.w1",
206
+ "transformer.h.27.mlp.w1",
207
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc",
208
+ "transformer.visual.transformer.resblocks.32.attn.out_proj",
209
+ "transformer.h.25.attn.c_attn",
210
+ "transformer.h.1.mlp.w2",
211
+ "transformer.visual.transformer.resblocks.15.attn.out_proj",
212
+ "transformer.visual.transformer.resblocks.3.attn.in_proj",
213
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc",
214
+ "transformer.visual.transformer.resblocks.31.attn.in_proj",
215
+ "transformer.visual.transformer.resblocks.2.attn.out_proj",
216
+ "transformer.h.14.mlp.w1",
217
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj",
218
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc",
219
+ "transformer.h.16.attn.c_attn",
220
+ "transformer.h.3.mlp.w1",
221
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj",
222
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc",
223
+ "transformer.visual.transformer.resblocks.25.attn.out_proj",
224
+ "transformer.h.15.mlp.w1",
225
+ "transformer.h.9.attn.c_proj",
226
+ "transformer.visual.transformer.resblocks.11.attn.out_proj",
227
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc",
228
+ "transformer.h.12.attn.c_attn",
229
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc",
230
+ "transformer.h.28.attn.c_proj",
231
+ "transformer.h.13.mlp.w2",
232
+ "transformer.visual.transformer.resblocks.46.attn.in_proj",
233
+ "transformer.visual.transformer.resblocks.36.attn.out_proj",
234
+ "transformer.h.22.mlp.w1",
235
+ "transformer.visual.transformer.resblocks.45.attn.in_proj",
236
+ "transformer.visual.transformer.resblocks.9.attn.in_proj",
237
+ "transformer.visual.transformer.resblocks.0.attn.out_proj",
238
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj",
239
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj",
240
+ "transformer.h.24.mlp.w1",
241
+ "transformer.h.12.mlp.w2",
242
+ "transformer.h.30.mlp.c_proj",
243
+ "transformer.h.3.attn.c_proj",
244
+ "transformer.h.11.mlp.c_proj",
245
+ "transformer.visual.transformer.resblocks.18.attn.out_proj",
246
+ "transformer.visual.transformer.resblocks.11.attn.in_proj",
247
+ "transformer.visual.transformer.resblocks.16.attn.in_proj",
248
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj",
249
+ "transformer.h.18.mlp.w1",
250
+ "transformer.visual.transformer.resblocks.29.attn.in_proj",
251
+ "transformer.h.23.mlp.w1",
252
+ "transformer.visual.transformer.resblocks.18.attn.in_proj",
253
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj",
254
+ "transformer.h.1.mlp.w1",
255
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj",
256
+ "transformer.h.29.attn.c_proj",
257
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj",
258
+ "transformer.h.21.attn.c_proj",
259
+ "transformer.h.7.attn.c_proj",
260
+ "transformer.h.12.mlp.c_proj",
261
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj",
262
+ "transformer.h.17.attn.c_proj",
263
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj",
264
+ "transformer.h.20.attn.c_attn",
265
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj",
266
+ "transformer.h.14.attn.c_proj",
267
+ "transformer.h.13.mlp.c_proj",
268
+ "transformer.visual.transformer.resblocks.8.attn.in_proj",
269
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc",
270
+ "transformer.visual.transformer.resblocks.41.attn.in_proj",
271
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc",
272
+ "transformer.visual.transformer.resblocks.7.attn.out_proj",
273
+ "transformer.h.23.mlp.w2",
274
+ "transformer.visual.transformer.resblocks.38.attn.out_proj",
275
+ "transformer.h.8.attn.c_attn",
276
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc",
277
+ "transformer.h.14.mlp.w2",
278
+ "transformer.h.7.mlp.w2",
279
+ "transformer.h.26.mlp.w1",
280
+ "transformer.h.6.mlp.w2",
281
+ "transformer.h.31.attn.c_attn",
282
+ "transformer.visual.transformer.resblocks.24.attn.out_proj",
283
+ "transformer.visual.transformer.resblocks.28.attn.in_proj",
284
+ "transformer.visual.transformer.resblocks.33.attn.in_proj",
285
+ "transformer.h.28.mlp.w2",
286
+ "transformer.visual.transformer.resblocks.25.attn.in_proj",
287
+ "transformer.h.2.mlp.w2",
288
+ "transformer.h.2.attn.c_attn",
289
+ "transformer.visual.transformer.resblocks.33.attn.out_proj",
290
+ "transformer.visual.transformer.resblocks.34.attn.out_proj",
291
+ "transformer.h.18.attn.c_proj",
292
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc",
293
+ "transformer.h.12.attn.c_proj",
294
+ "transformer.visual.transformer.resblocks.23.attn.in_proj",
295
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc",
296
+ "transformer.visual.transformer.resblocks.21.attn.in_proj",
297
+ "transformer.h.24.attn.c_proj",
298
+ "transformer.visual.transformer.resblocks.40.attn.out_proj",
299
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj",
300
+ "transformer.h.26.attn.c_attn",
301
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj",
302
+ "transformer.visual.transformer.resblocks.36.attn.in_proj",
303
+ "transformer.visual.transformer.resblocks.14.attn.out_proj",
304
+ "transformer.visual.transformer.resblocks.44.attn.out_proj",
305
+ "transformer.visual.transformer.resblocks.24.attn.in_proj",
306
+ "transformer.h.21.mlp.c_proj",
307
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc",
308
+ "transformer.h.14.mlp.c_proj",
309
+ "transformer.h.24.mlp.c_proj",
310
+ "transformer.visual.transformer.resblocks.12.attn.in_proj",
311
+ "transformer.visual.transformer.resblocks.30.attn.in_proj",
312
+ "transformer.h.7.mlp.c_proj",
313
+ "transformer.h.14.attn.c_attn",
314
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc",
315
+ "transformer.visual.transformer.resblocks.46.attn.out_proj",
316
+ "transformer.h.2.attn.c_proj",
317
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj",
318
+ "transformer.h.9.attn.c_attn",
319
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj",
320
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc",
321
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj",
322
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc",
323
+ "transformer.visual.transformer.resblocks.35.attn.in_proj",
324
+ "transformer.visual.transformer.resblocks.27.attn.in_proj",
325
+ "transformer.h.25.mlp.w1",
326
+ "transformer.h.10.attn.c_proj",
327
+ "transformer.h.16.mlp.w1",
328
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc",
329
+ "transformer.visual.transformer.resblocks.12.attn.out_proj",
330
+ "transformer.visual.transformer.resblocks.15.attn.in_proj",
331
+ "transformer.h.13.mlp.w1",
332
+ "transformer.h.15.mlp.c_proj",
333
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc",
334
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj",
335
+ "transformer.h.10.mlp.c_proj",
336
+ "transformer.h.16.attn.c_proj",
337
+ "transformer.h.6.attn.c_proj",
338
+ "transformer.visual.transformer.resblocks.43.attn.in_proj",
339
+ "transformer.h.5.attn.c_proj",
340
+ "transformer.visual.transformer.resblocks.10.attn.out_proj",
341
+ "transformer.h.1.attn.c_proj",
342
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc",
343
+ "transformer.h.5.mlp.w1",
344
+ "transformer.visual.transformer.resblocks.35.attn.out_proj",
345
+ "transformer.h.6.mlp.c_proj",
346
+ "transformer.h.31.mlp.w2",
347
+ "transformer.visual.transformer.resblocks.2.attn.in_proj",
348
+ "transformer.visual.transformer.resblocks.1.attn.in_proj",
349
+ "transformer.visual.transformer.resblocks.41.attn.out_proj",
350
+ "transformer.h.10.attn.c_attn",
351
+ "transformer.visual.transformer.resblocks.7.attn.in_proj",
352
+ "transformer.visual.transformer.resblocks.42.attn.in_proj",
353
+ "transformer.visual.transformer.resblocks.43.attn.out_proj",
354
+ "transformer.h.25.attn.c_proj",
355
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj",
356
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj",
357
+ "transformer.h.4.mlp.w2",
358
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc",
359
+ "transformer.h.9.mlp.w1",
360
+ "transformer.h.2.mlp.c_proj",
361
+ "transformer.h.22.attn.c_proj",
362
+ "transformer.h.25.mlp.w2",
363
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj",
364
+ "transformer.h.30.attn.c_proj",
365
+ "transformer.h.20.attn.c_proj",
366
+ "transformer.visual.transformer.resblocks.5.attn.in_proj",
367
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc",
368
+ "transformer.h.3.mlp.w2",
369
+ "transformer.h.19.attn.c_attn",
370
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc",
371
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj",
372
+ "transformer.h.1.attn.c_attn",
373
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj",
374
+ "transformer.h.4.attn.c_proj",
375
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc"
376
+ ],
377
+ "task_type": "CAUSAL_LM",
378
+ "use_dora": false,
379
+ "use_rslora": false
380
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f63c2e3a0959afef924808c30091da443a7d56dd5fb38c1229967affbb853be7
3
+ size 469105640
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2800
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68f840911fbc7051ece0e1c060c40b82d45b8edf23e2a3872c8e02ecebf67a26
3
+ size 14960
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68b321aa3d71576dec15af0375b3693729175e49283eea87928462724dfcf745
3
+ size 14960
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73b44b88d1bba3405d2bd906b256777b38a454b132494d9962cf11750a697099
3
+ size 14960
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:916d8bb82a2aad59d5a38354a8f69f886f5bfbe84e1431e6bea937f401cec5dd
3
+ size 14960
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b28152862c82ab8bed7327b476edab940c3e9927d66ceaa0dba25e1157b3ff89
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 1280,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,1993 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4711425206124853,
5
+ "eval_steps": 500,
6
+ "global_step": 2800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0016826518593303045,
13
+ "grad_norm": 3.75418950341011,
14
+ "learning_rate": 4.9999999999999996e-06,
15
+ "loss": 0.9983,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.003365303718660609,
20
+ "grad_norm": 4.027030925274863,
21
+ "learning_rate": 9.999999999999999e-06,
22
+ "loss": 0.9697,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.005047955577990914,
27
+ "grad_norm": 4.048987349136423,
28
+ "learning_rate": 1.5e-05,
29
+ "loss": 0.9412,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.006730607437321218,
34
+ "grad_norm": 5.720158971431411,
35
+ "learning_rate": 1.9999999999999998e-05,
36
+ "loss": 0.8783,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.008413259296651522,
41
+ "grad_norm": 4.718965032869529,
42
+ "learning_rate": 2.5e-05,
43
+ "loss": 0.8454,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.010095911155981827,
48
+ "grad_norm": 3.5785181087788835,
49
+ "learning_rate": 3e-05,
50
+ "loss": 0.809,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.011778563015312132,
55
+ "grad_norm": 4.11981684712826,
56
+ "learning_rate": 2.9999786123888308e-05,
57
+ "loss": 0.7556,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.013461214874642436,
62
+ "grad_norm": 6.082559649594005,
63
+ "learning_rate": 2.9999144501652298e-05,
64
+ "loss": 0.7613,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.01514386673397274,
69
+ "grad_norm": 1.957553999291205,
70
+ "learning_rate": 2.9998075151588992e-05,
71
+ "loss": 0.7784,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.016826518593303044,
76
+ "grad_norm": 1.6706087540201593,
77
+ "learning_rate": 2.999657810419285e-05,
78
+ "loss": 0.7658,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.01850917045263335,
83
+ "grad_norm": 2.909734954037323,
84
+ "learning_rate": 2.999465340215489e-05,
85
+ "loss": 0.7331,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.020191822311963654,
90
+ "grad_norm": 1.977272298268717,
91
+ "learning_rate": 2.999230110036149e-05,
92
+ "loss": 0.7507,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.02187447417129396,
97
+ "grad_norm": 1.8089524113272115,
98
+ "learning_rate": 2.99895212658928e-05,
99
+ "loss": 0.7309,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.023557126030624265,
104
+ "grad_norm": 2.134962179309057,
105
+ "learning_rate": 2.9986313978020846e-05,
106
+ "loss": 0.721,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.02523977788995457,
111
+ "grad_norm": 11.10353091330302,
112
+ "learning_rate": 2.9982679328207262e-05,
113
+ "loss": 0.7338,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.02692242974928487,
118
+ "grad_norm": 1.4444344817739057,
119
+ "learning_rate": 2.9978617420100692e-05,
120
+ "loss": 0.7227,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.028605081608615177,
125
+ "grad_norm": 1.453288161439029,
126
+ "learning_rate": 2.9974128369533805e-05,
127
+ "loss": 0.7107,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.03028773346794548,
132
+ "grad_norm": 3.475164856876678,
133
+ "learning_rate": 2.9969212304520034e-05,
134
+ "loss": 0.7303,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.03197038532727579,
139
+ "grad_norm": 1.1636824531496957,
140
+ "learning_rate": 2.9963869365249895e-05,
141
+ "loss": 0.6688,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.03365303718660609,
146
+ "grad_norm": 1.8518695174363622,
147
+ "learning_rate": 2.995809970408699e-05,
148
+ "loss": 0.7003,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.0353356890459364,
153
+ "grad_norm": 4.09791760479377,
154
+ "learning_rate": 2.9951903485563685e-05,
155
+ "loss": 0.7442,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.0370183409052667,
160
+ "grad_norm": 2.4987929291159956,
161
+ "learning_rate": 2.99452808863764e-05,
162
+ "loss": 0.7517,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.03870099276459701,
167
+ "grad_norm": 3.4584802037194087,
168
+ "learning_rate": 2.993823209538056e-05,
169
+ "loss": 0.7537,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.04038364462392731,
174
+ "grad_norm": 2.511130636368107,
175
+ "learning_rate": 2.9930757313585238e-05,
176
+ "loss": 0.7599,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.04206629648325761,
181
+ "grad_norm": 1.7030446444812277,
182
+ "learning_rate": 2.9922856754147406e-05,
183
+ "loss": 0.7126,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.04374894834258792,
188
+ "grad_norm": 4.790377413030976,
189
+ "learning_rate": 2.9914530642365852e-05,
190
+ "loss": 0.72,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.04543160020191822,
195
+ "grad_norm": 2.0321244924961976,
196
+ "learning_rate": 2.990577921567476e-05,
197
+ "loss": 0.6733,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.04711425206124853,
202
+ "grad_norm": 2.310370624749643,
203
+ "learning_rate": 2.989660272363696e-05,
204
+ "loss": 0.7212,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.04879690392057883,
209
+ "grad_norm": 3.451763592410144,
210
+ "learning_rate": 2.988700142793676e-05,
211
+ "loss": 0.7237,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.05047955577990914,
216
+ "grad_norm": 5.317302731978485,
217
+ "learning_rate": 2.9876975602372536e-05,
218
+ "loss": 0.7558,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.05216220763923944,
223
+ "grad_norm": 2.3026448136142914,
224
+ "learning_rate": 2.9866525532848906e-05,
225
+ "loss": 0.6985,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.05384485949856974,
230
+ "grad_norm": 1.8320545447196381,
231
+ "learning_rate": 2.9855651517368567e-05,
232
+ "loss": 0.7227,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.05552751135790005,
237
+ "grad_norm": 1.9908218789466392,
238
+ "learning_rate": 2.9844353866023802e-05,
239
+ "loss": 0.7075,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.05721016321723035,
244
+ "grad_norm": 5.182840115712529,
245
+ "learning_rate": 2.9832632900987642e-05,
246
+ "loss": 0.7207,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.05889281507656066,
251
+ "grad_norm": 1.5483797249278837,
252
+ "learning_rate": 2.982048895650468e-05,
253
+ "loss": 0.7233,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.06057546693589096,
258
+ "grad_norm": 2.3382590504722693,
259
+ "learning_rate": 2.9807922378881537e-05,
260
+ "loss": 0.7002,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.06225811879522127,
265
+ "grad_norm": 3.1859655239636937,
266
+ "learning_rate": 2.979493352647697e-05,
267
+ "loss": 0.7201,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.06394077065455157,
272
+ "grad_norm": 0.9149159742557087,
273
+ "learning_rate": 2.9781522769691686e-05,
274
+ "loss": 0.7136,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.06562342251388188,
279
+ "grad_norm": 10.861566072795899,
280
+ "learning_rate": 2.9767690490957758e-05,
281
+ "loss": 0.7068,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.06730607437321218,
286
+ "grad_norm": 2.8618866775651006,
287
+ "learning_rate": 2.9753437084727713e-05,
288
+ "loss": 0.7239,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.06898872623254249,
293
+ "grad_norm": 2.8726068570785097,
294
+ "learning_rate": 2.9738762957463292e-05,
295
+ "loss": 0.7245,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.0706713780918728,
300
+ "grad_norm": 2.4481298042739112,
301
+ "learning_rate": 2.9723668527623877e-05,
302
+ "loss": 0.7752,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.0723540299512031,
307
+ "grad_norm": 1.8599931346602536,
308
+ "learning_rate": 2.9708154225654526e-05,
309
+ "loss": 0.7323,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.0740366818105334,
314
+ "grad_norm": 1.2855737813743626,
315
+ "learning_rate": 2.9692220493973712e-05,
316
+ "loss": 0.7037,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.0757193336698637,
321
+ "grad_norm": 4.629091463528233,
322
+ "learning_rate": 2.9675867786960718e-05,
323
+ "loss": 0.6867,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.07740198552919401,
328
+ "grad_norm": 6.294427059845777,
329
+ "learning_rate": 2.9659096570942654e-05,
330
+ "loss": 0.7272,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.07908463738852431,
335
+ "grad_norm": 2.4758348810051345,
336
+ "learning_rate": 2.9641907324181194e-05,
337
+ "loss": 0.6779,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.08076728924785462,
342
+ "grad_norm": 1.3455245255212915,
343
+ "learning_rate": 2.96243005368589e-05,
344
+ "loss": 0.7051,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.08244994110718493,
349
+ "grad_norm": 4.796150475871981,
350
+ "learning_rate": 2.960627671106527e-05,
351
+ "loss": 0.7547,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.08413259296651522,
356
+ "grad_norm": 2.684441445075641,
357
+ "learning_rate": 2.9587836360782405e-05,
358
+ "loss": 0.709,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.08581524482584553,
363
+ "grad_norm": 1.3869329152815553,
364
+ "learning_rate": 2.9568980011870357e-05,
365
+ "loss": 0.7073,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.08749789668517584,
370
+ "grad_norm": 2.5576974478207197,
371
+ "learning_rate": 2.954970820205214e-05,
372
+ "loss": 0.6918,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.08918054854450615,
377
+ "grad_norm": 1.1525450967004647,
378
+ "learning_rate": 2.9530021480898393e-05,
379
+ "loss": 0.6698,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.09086320040383644,
384
+ "grad_norm": 2.847083851829901,
385
+ "learning_rate": 2.9509920409811696e-05,
386
+ "loss": 0.671,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.09254585226316675,
391
+ "grad_norm": 2.561042091789346,
392
+ "learning_rate": 2.9489405562010565e-05,
393
+ "loss": 0.75,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.09422850412249706,
398
+ "grad_norm": 4.458337350053255,
399
+ "learning_rate": 2.9468477522513132e-05,
400
+ "loss": 0.7277,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.09591115598182735,
405
+ "grad_norm": 3.114622509219852,
406
+ "learning_rate": 2.9447136888120408e-05,
407
+ "loss": 0.6967,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.09759380784115766,
412
+ "grad_norm": 1.6295210229360877,
413
+ "learning_rate": 2.9425384267399327e-05,
414
+ "loss": 0.6867,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.09927645970048797,
419
+ "grad_norm": 1.7579117810504754,
420
+ "learning_rate": 2.940322028066534e-05,
421
+ "loss": 0.7236,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.10095911155981828,
426
+ "grad_norm": 1.788183804411441,
427
+ "learning_rate": 2.938064555996476e-05,
428
+ "loss": 0.6864,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.10264176341914857,
433
+ "grad_norm": 2.8340511721646373,
434
+ "learning_rate": 2.9357660749056713e-05,
435
+ "loss": 0.6847,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.10432441527847888,
440
+ "grad_norm": 2.5230840193297985,
441
+ "learning_rate": 2.9334266503394803e-05,
442
+ "loss": 0.6889,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.10600706713780919,
447
+ "grad_norm": 7.346086885083334,
448
+ "learning_rate": 2.9310463490108397e-05,
449
+ "loss": 0.7419,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.10768971899713949,
454
+ "grad_norm": 2.356832890545339,
455
+ "learning_rate": 2.928625238798362e-05,
456
+ "loss": 0.7369,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.1093723708564698,
461
+ "grad_norm": 2.4978380391841095,
462
+ "learning_rate": 2.9261633887443993e-05,
463
+ "loss": 0.6948,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.1110550227158001,
468
+ "grad_norm": 3.535487375505793,
469
+ "learning_rate": 2.9236608690530738e-05,
470
+ "loss": 0.7081,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.11273767457513041,
475
+ "grad_norm": 2.522638625540884,
476
+ "learning_rate": 2.921117751088276e-05,
477
+ "loss": 0.7191,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.1144203264344607,
482
+ "grad_norm": 3.055823541699581,
483
+ "learning_rate": 2.91853410737163e-05,
484
+ "loss": 0.74,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.11610297829379101,
489
+ "grad_norm": 3.270117047516123,
490
+ "learning_rate": 2.915910011580426e-05,
491
+ "loss": 0.6829,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.11778563015312132,
496
+ "grad_norm": 2.3219806056695367,
497
+ "learning_rate": 2.9132455385455176e-05,
498
+ "loss": 0.7062,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.11946828201245162,
503
+ "grad_norm": 1.541921603113568,
504
+ "learning_rate": 2.9105407642491895e-05,
505
+ "loss": 0.7217,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.12115093387178193,
510
+ "grad_norm": 1.557595298876376,
511
+ "learning_rate": 2.907795765822989e-05,
512
+ "loss": 0.7083,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.12283358573111224,
517
+ "grad_norm": 2.3829156571868753,
518
+ "learning_rate": 2.9050106215455283e-05,
519
+ "loss": 0.6992,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.12451623759044254,
524
+ "grad_norm": 7.536777098548366,
525
+ "learning_rate": 2.9021854108402516e-05,
526
+ "loss": 0.7248,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.12619888944977284,
531
+ "grad_norm": 1.3408030642895519,
532
+ "learning_rate": 2.8993202142731693e-05,
533
+ "loss": 0.6375,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.12788154130910315,
538
+ "grad_norm": 2.4880776314537254,
539
+ "learning_rate": 2.8964151135505616e-05,
540
+ "loss": 0.7063,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.12956419316843346,
545
+ "grad_norm": 1.5507053769862247,
546
+ "learning_rate": 2.8934701915166477e-05,
547
+ "loss": 0.73,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.13124684502776376,
552
+ "grad_norm": 3.5622930633942564,
553
+ "learning_rate": 2.890485532151225e-05,
554
+ "loss": 0.7521,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.13292949688709407,
559
+ "grad_norm": 4.188153799459233,
560
+ "learning_rate": 2.887461220567271e-05,
561
+ "loss": 0.6841,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.13461214874642435,
566
+ "grad_norm": 2.702901312773331,
567
+ "learning_rate": 2.8843973430085204e-05,
568
+ "loss": 0.694,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.13629480060575466,
573
+ "grad_norm": 3.8663384632605293,
574
+ "learning_rate": 2.8812939868470016e-05,
575
+ "loss": 0.7376,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.13797745246508497,
580
+ "grad_norm": 7.613582881082294,
581
+ "learning_rate": 2.878151240580548e-05,
582
+ "loss": 0.7082,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.13966010432441528,
587
+ "grad_norm": 2.8755666754814015,
588
+ "learning_rate": 2.874969193830274e-05,
589
+ "loss": 0.7486,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.1413427561837456,
594
+ "grad_norm": 2.049640563529798,
595
+ "learning_rate": 2.871747937338016e-05,
596
+ "loss": 0.7375,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.1430254080430759,
601
+ "grad_norm": 3.2253208680917993,
602
+ "learning_rate": 2.8684875629637505e-05,
603
+ "loss": 0.7183,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.1447080599024062,
608
+ "grad_norm": 2.0453993741696306,
609
+ "learning_rate": 2.8651881636829698e-05,
610
+ "loss": 0.6953,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.1463907117617365,
615
+ "grad_norm": 1.3478445170381042,
616
+ "learning_rate": 2.861849833584032e-05,
617
+ "loss": 0.7205,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.1480733636210668,
622
+ "grad_norm": 6.483405424500114,
623
+ "learning_rate": 2.8584726678654787e-05,
624
+ "loss": 0.7331,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.1497560154803971,
629
+ "grad_norm": 1.6912080503281164,
630
+ "learning_rate": 2.85505676283332e-05,
631
+ "loss": 0.6985,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.1514386673397274,
636
+ "grad_norm": 2.089097733011486,
637
+ "learning_rate": 2.851602215898287e-05,
638
+ "loss": 0.7291,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.15312131919905772,
643
+ "grad_norm": 3.3599665631038325,
644
+ "learning_rate": 2.8481091255730552e-05,
645
+ "loss": 0.7125,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.15480397105838803,
650
+ "grad_norm": 5.803874517218743,
651
+ "learning_rate": 2.844577591469435e-05,
652
+ "loss": 0.6614,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.15648662291771834,
657
+ "grad_norm": 4.180624256153927,
658
+ "learning_rate": 2.8410077142955304e-05,
659
+ "loss": 0.6921,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.15816927477704862,
664
+ "grad_norm": 2.51395384445247,
665
+ "learning_rate": 2.8373995958528683e-05,
666
+ "loss": 0.6788,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.15985192663637893,
671
+ "grad_norm": 2.0786229734439,
672
+ "learning_rate": 2.8337533390334942e-05,
673
+ "loss": 0.6324,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.16153457849570924,
678
+ "grad_norm": 2.1798201763285774,
679
+ "learning_rate": 2.8300690478170388e-05,
680
+ "loss": 0.7128,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.16321723035503954,
685
+ "grad_norm": 1.7736042633296192,
686
+ "learning_rate": 2.826346827267753e-05,
687
+ "loss": 0.6854,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.16489988221436985,
692
+ "grad_norm": 3.6499571810784377,
693
+ "learning_rate": 2.8225867835315114e-05,
694
+ "loss": 0.7246,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.16658253407370016,
699
+ "grad_norm": 8.401076529411414,
700
+ "learning_rate": 2.8187890238327842e-05,
701
+ "loss": 0.7166,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.16826518593303044,
706
+ "grad_norm": 1.6815155727131568,
707
+ "learning_rate": 2.814953656471583e-05,
708
+ "loss": 0.6962,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.16994783779236075,
713
+ "grad_norm": 3.59100648398944,
714
+ "learning_rate": 2.8110807908203682e-05,
715
+ "loss": 0.7271,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.17163048965169106,
720
+ "grad_norm": 2.9612400836384034,
721
+ "learning_rate": 2.8071705373209328e-05,
722
+ "loss": 0.7048,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.17331314151102137,
727
+ "grad_norm": 1.6314524411685434,
728
+ "learning_rate": 2.803223007481252e-05,
729
+ "loss": 0.7237,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.17499579337035168,
734
+ "grad_norm": 4.046292885407821,
735
+ "learning_rate": 2.7992383138723034e-05,
736
+ "loss": 0.7066,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.17667844522968199,
741
+ "grad_norm": 3.4626891652569665,
742
+ "learning_rate": 2.7952165701248573e-05,
743
+ "loss": 0.7537,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.1783610970890123,
748
+ "grad_norm": 4.129895397644279,
749
+ "learning_rate": 2.7911578909262353e-05,
750
+ "loss": 0.7348,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.18004374894834257,
755
+ "grad_norm": 2.1894044487856847,
756
+ "learning_rate": 2.787062392017041e-05,
757
+ "loss": 0.7145,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.18172640080767288,
762
+ "grad_norm": 2.988495224416439,
763
+ "learning_rate": 2.7829301901878592e-05,
764
+ "loss": 0.7091,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.1834090526670032,
769
+ "grad_norm": 2.493227176786327,
770
+ "learning_rate": 2.7787614032759243e-05,
771
+ "loss": 0.7427,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.1850917045263335,
776
+ "grad_norm": 2.9382266505350723,
777
+ "learning_rate": 2.7745561501617605e-05,
778
+ "loss": 0.7081,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.1867743563856638,
783
+ "grad_norm": 1.9294251174769146,
784
+ "learning_rate": 2.7703145507657923e-05,
785
+ "loss": 0.679,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.18845700824499412,
790
+ "grad_norm": 7.011830550553666,
791
+ "learning_rate": 2.766036726044926e-05,
792
+ "loss": 0.6962,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.19013966010432443,
797
+ "grad_norm": 1.8058177496791177,
798
+ "learning_rate": 2.7617227979890957e-05,
799
+ "loss": 0.6953,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.1918223119636547,
804
+ "grad_norm": 2.2546595962288727,
805
+ "learning_rate": 2.7573728896177897e-05,
806
+ "loss": 0.6853,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.19350496382298502,
811
+ "grad_norm": 1.7701647300358836,
812
+ "learning_rate": 2.7529871249765397e-05,
813
+ "loss": 0.737,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.19518761568231532,
818
+ "grad_norm": 3.2767535691041396,
819
+ "learning_rate": 2.7485656291333845e-05,
820
+ "loss": 0.6878,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.19687026754164563,
825
+ "grad_norm": 1.231100350207441,
826
+ "learning_rate": 2.7441085281753028e-05,
827
+ "loss": 0.7044,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.19855291940097594,
832
+ "grad_norm": 5.103379397758491,
833
+ "learning_rate": 2.739615949204617e-05,
834
+ "loss": 0.7028,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.20023557126030625,
839
+ "grad_norm": 1.745258105735824,
840
+ "learning_rate": 2.7350880203353703e-05,
841
+ "loss": 0.7123,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.20191822311963656,
846
+ "grad_norm": 2.528898960464809,
847
+ "learning_rate": 2.7305248706896722e-05,
848
+ "loss": 0.7242,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.20360087497896684,
853
+ "grad_norm": 1.329326803950539,
854
+ "learning_rate": 2.7259266303940164e-05,
855
+ "loss": 0.7315,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.20528352683829715,
860
+ "grad_norm": 3.523954433912976,
861
+ "learning_rate": 2.7212934305755697e-05,
862
+ "loss": 0.7022,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.20696617869762746,
867
+ "grad_norm": 1.3845861665687345,
868
+ "learning_rate": 2.7166254033584343e-05,
869
+ "loss": 0.6788,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.20864883055695777,
874
+ "grad_norm": 1.6893702845026013,
875
+ "learning_rate": 2.7119226818598784e-05,
876
+ "loss": 0.7083,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.21033148241628807,
881
+ "grad_norm": 3.481606379952265,
882
+ "learning_rate": 2.7071854001865402e-05,
883
+ "loss": 0.7104,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.21201413427561838,
888
+ "grad_norm": 1.3880604016054,
889
+ "learning_rate": 2.702413693430604e-05,
890
+ "loss": 0.7192,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.2136967861349487,
895
+ "grad_norm": 2.7420634271532625,
896
+ "learning_rate": 2.697607697665948e-05,
897
+ "loss": 0.7329,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.21537943799427897,
902
+ "grad_norm": 1.3383701328350484,
903
+ "learning_rate": 2.6927675499442648e-05,
904
+ "loss": 0.7523,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.21706208985360928,
909
+ "grad_norm": 5.63600709352392,
910
+ "learning_rate": 2.68789338829115e-05,
911
+ "loss": 0.6938,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.2187447417129396,
916
+ "grad_norm": 1.973997298554772,
917
+ "learning_rate": 2.6829853517021698e-05,
918
+ "loss": 0.7024,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.2204273935722699,
923
+ "grad_norm": 5.331233664305369,
924
+ "learning_rate": 2.6780435801388945e-05,
925
+ "loss": 0.6978,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.2221100454316002,
930
+ "grad_norm": 14.545018258920948,
931
+ "learning_rate": 2.6730682145249093e-05,
932
+ "loss": 0.7288,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.22379269729093051,
937
+ "grad_norm": 2.772459303589031,
938
+ "learning_rate": 2.668059396741795e-05,
939
+ "loss": 0.69,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.22547534915026082,
944
+ "grad_norm": 1.9806140492727284,
945
+ "learning_rate": 2.6630172696250804e-05,
946
+ "loss": 0.7194,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.2271580010095911,
951
+ "grad_norm": 2.5305067313330305,
952
+ "learning_rate": 2.6579419769601715e-05,
953
+ "loss": 0.7209,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.2288406528689214,
958
+ "grad_norm": 4.329479239778255,
959
+ "learning_rate": 2.6528336634782493e-05,
960
+ "loss": 0.7263,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.23052330472825172,
965
+ "grad_norm": 2.4385930080514124,
966
+ "learning_rate": 2.6476924748521443e-05,
967
+ "loss": 0.7169,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.23220595658758203,
972
+ "grad_norm": 4.486791723774815,
973
+ "learning_rate": 2.6425185576921812e-05,
974
+ "loss": 0.6791,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.23388860844691234,
979
+ "grad_norm": 2.1648975510177353,
980
+ "learning_rate": 2.637312059541997e-05,
981
+ "loss": 0.722,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.23557126030624265,
986
+ "grad_norm": 2.497984836932449,
987
+ "learning_rate": 2.632073128874336e-05,
988
+ "loss": 0.737,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.23725391216557296,
993
+ "grad_norm": 1.6911389710154248,
994
+ "learning_rate": 2.6268019150868144e-05,
995
+ "loss": 0.7027,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.23893656402490324,
1000
+ "grad_norm": 5.094854691429602,
1001
+ "learning_rate": 2.62149856849766e-05,
1002
+ "loss": 0.7431,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.24061921588423354,
1007
+ "grad_norm": 1.6056704058079299,
1008
+ "learning_rate": 2.616163240341426e-05,
1009
+ "loss": 0.7215,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.24230186774356385,
1014
+ "grad_norm": 2.0440590394408793,
1015
+ "learning_rate": 2.6107960827646774e-05,
1016
+ "loss": 0.6864,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.24398451960289416,
1021
+ "grad_norm": 1.4019933491248435,
1022
+ "learning_rate": 2.6053972488216538e-05,
1023
+ "loss": 0.7007,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.24566717146222447,
1028
+ "grad_norm": 6.4772716175425185,
1029
+ "learning_rate": 2.5999668924699035e-05,
1030
+ "loss": 0.6963,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.24734982332155478,
1035
+ "grad_norm": 1.235157923543473,
1036
+ "learning_rate": 2.5945051685658923e-05,
1037
+ "loss": 0.7158,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.2490324751808851,
1042
+ "grad_norm": 1.6576585358395288,
1043
+ "learning_rate": 2.5890122328605908e-05,
1044
+ "loss": 0.6918,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.25071512704021537,
1049
+ "grad_norm": 2.6005430314710645,
1050
+ "learning_rate": 2.5834882419950295e-05,
1051
+ "loss": 0.6666,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.2523977788995457,
1056
+ "grad_norm": 3.83061566974576,
1057
+ "learning_rate": 2.577933353495833e-05,
1058
+ "loss": 0.724,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.254080430758876,
1063
+ "grad_norm": 2.259260300802235,
1064
+ "learning_rate": 2.5723477257707293e-05,
1065
+ "loss": 0.725,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.2557630826182063,
1070
+ "grad_norm": 3.1023391020410283,
1071
+ "learning_rate": 2.566731518104029e-05,
1072
+ "loss": 0.709,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.2574457344775366,
1077
+ "grad_norm": 2.375072076607274,
1078
+ "learning_rate": 2.5610848906520878e-05,
1079
+ "loss": 0.7031,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.2591283863368669,
1084
+ "grad_norm": 1.638162563319741,
1085
+ "learning_rate": 2.5554080044387344e-05,
1086
+ "loss": 0.7031,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.2608110381961972,
1091
+ "grad_norm": 8.846026339935685,
1092
+ "learning_rate": 2.5497010213506825e-05,
1093
+ "loss": 0.7119,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.26249369005552753,
1098
+ "grad_norm": 4.589496329936434,
1099
+ "learning_rate": 2.5439641041329128e-05,
1100
+ "loss": 0.7043,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.26417634191485784,
1105
+ "grad_norm": 0.9945782670551377,
1106
+ "learning_rate": 2.5381974163840313e-05,
1107
+ "loss": 0.7026,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.26585899377418815,
1112
+ "grad_norm": 2.341138070970226,
1113
+ "learning_rate": 2.532401122551605e-05,
1114
+ "loss": 0.744,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.2675416456335184,
1119
+ "grad_norm": 3.446122331658564,
1120
+ "learning_rate": 2.526575387927473e-05,
1121
+ "loss": 0.6861,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.2692242974928487,
1126
+ "grad_norm": 4.165637435951758,
1127
+ "learning_rate": 2.52072037864303e-05,
1128
+ "loss": 0.7065,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.270906949352179,
1133
+ "grad_norm": 2.156163863520989,
1134
+ "learning_rate": 2.5148362616644926e-05,
1135
+ "loss": 0.7383,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.2725896012115093,
1140
+ "grad_norm": 1.489844754983356,
1141
+ "learning_rate": 2.508923204788135e-05,
1142
+ "loss": 0.7061,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.27427225307083963,
1147
+ "grad_norm": 1.330475018363876,
1148
+ "learning_rate": 2.5029813766355062e-05,
1149
+ "loss": 0.6916,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.27595490493016994,
1154
+ "grad_norm": 1.5166804777641398,
1155
+ "learning_rate": 2.4970109466486202e-05,
1156
+ "loss": 0.6998,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.27763755678950025,
1161
+ "grad_norm": 1.1006885605957994,
1162
+ "learning_rate": 2.491012085085122e-05,
1163
+ "loss": 0.7095,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.27932020864883056,
1168
+ "grad_norm": 3.137721907226618,
1169
+ "learning_rate": 2.4849849630134384e-05,
1170
+ "loss": 0.7204,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.28100286050816087,
1175
+ "grad_norm": 2.0954950376873747,
1176
+ "learning_rate": 2.4789297523078924e-05,
1177
+ "loss": 0.7149,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.2826855123674912,
1182
+ "grad_norm": 1.59599915913629,
1183
+ "learning_rate": 2.4728466256438072e-05,
1184
+ "loss": 0.7052,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.2843681642268215,
1189
+ "grad_norm": 8.944835293630385,
1190
+ "learning_rate": 2.4667357564925798e-05,
1191
+ "loss": 0.7161,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.2860508160861518,
1196
+ "grad_norm": 6.306096521027849,
1197
+ "learning_rate": 2.460597319116735e-05,
1198
+ "loss": 0.7219,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.2877334679454821,
1203
+ "grad_norm": 8.531648843126508,
1204
+ "learning_rate": 2.4544314885649552e-05,
1205
+ "loss": 0.7195,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.2894161198048124,
1210
+ "grad_norm": 6.214651933223859,
1211
+ "learning_rate": 2.4482384406670883e-05,
1212
+ "loss": 0.6836,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.29109877166414266,
1217
+ "grad_norm": 3.495702421141607,
1218
+ "learning_rate": 2.4420183520291354e-05,
1219
+ "loss": 0.7241,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.292781423523473,
1224
+ "grad_norm": 7.473552612209333,
1225
+ "learning_rate": 2.4357714000282127e-05,
1226
+ "loss": 0.6664,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.2944640753828033,
1231
+ "grad_norm": 2.528030042904385,
1232
+ "learning_rate": 2.4294977628074938e-05,
1233
+ "loss": 0.7415,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.2961467272421336,
1238
+ "grad_norm": 15.300967237030209,
1239
+ "learning_rate": 2.42319761927113e-05,
1240
+ "loss": 0.7336,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.2978293791014639,
1245
+ "grad_norm": 5.5616370399668345,
1246
+ "learning_rate": 2.4168711490791484e-05,
1247
+ "loss": 0.72,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.2995120309607942,
1252
+ "grad_norm": 3.7113016371508993,
1253
+ "learning_rate": 2.4105185326423286e-05,
1254
+ "loss": 0.723,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.3011946828201245,
1259
+ "grad_norm": 2.0578017620481397,
1260
+ "learning_rate": 2.4041399511170574e-05,
1261
+ "loss": 0.7008,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.3028773346794548,
1266
+ "grad_norm": 1.5192292607159725,
1267
+ "learning_rate": 2.3977355864001635e-05,
1268
+ "loss": 0.7107,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.30455998653878513,
1273
+ "grad_norm": 1.4432235055034852,
1274
+ "learning_rate": 2.3913056211237304e-05,
1275
+ "loss": 0.7112,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.30624263839811544,
1280
+ "grad_norm": 3.8368406145537577,
1281
+ "learning_rate": 2.3848502386498866e-05,
1282
+ "loss": 0.6875,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.30792529025744575,
1287
+ "grad_norm": 1.7029662451991225,
1288
+ "learning_rate": 2.3783696230655802e-05,
1289
+ "loss": 0.6797,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.30960794211677606,
1294
+ "grad_norm": 2.340409810623994,
1295
+ "learning_rate": 2.371863959177326e-05,
1296
+ "loss": 0.7211,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.31129059397610637,
1301
+ "grad_norm": 8.08876148980577,
1302
+ "learning_rate": 2.365333432505937e-05,
1303
+ "loss": 0.7208,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.3129732458354367,
1308
+ "grad_norm": 3.415957276427778,
1309
+ "learning_rate": 2.3587782292812323e-05,
1310
+ "loss": 0.707,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.31465589769476693,
1315
+ "grad_norm": 1.116630095030083,
1316
+ "learning_rate": 2.35219853643673e-05,
1317
+ "loss": 0.6863,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.31633854955409724,
1322
+ "grad_norm": 1.9365729913801322,
1323
+ "learning_rate": 2.3455945416043132e-05,
1324
+ "loss": 0.705,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.31802120141342755,
1329
+ "grad_norm": 1.401982720531144,
1330
+ "learning_rate": 2.338966433108879e-05,
1331
+ "loss": 0.6872,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.31970385327275785,
1336
+ "grad_norm": 1.6958509020945827,
1337
+ "learning_rate": 2.3323143999629712e-05,
1338
+ "loss": 0.7146,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.32138650513208816,
1343
+ "grad_norm": 1.6193006043035303,
1344
+ "learning_rate": 2.3256386318613877e-05,
1345
+ "loss": 0.6887,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.32306915699141847,
1350
+ "grad_norm": 12.979287887341894,
1351
+ "learning_rate": 2.318939319175771e-05,
1352
+ "loss": 0.7063,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.3247518088507488,
1357
+ "grad_norm": 2.053699792676608,
1358
+ "learning_rate": 2.3122166529491822e-05,
1359
+ "loss": 0.7921,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.3264344607100791,
1364
+ "grad_norm": 2.1805832639041993,
1365
+ "learning_rate": 2.3054708248906483e-05,
1366
+ "loss": 0.6892,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.3281171125694094,
1371
+ "grad_norm": 2.627137721499779,
1372
+ "learning_rate": 2.2987020273696996e-05,
1373
+ "loss": 0.6937,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.3297997644287397,
1378
+ "grad_norm": 3.4422222646515284,
1379
+ "learning_rate": 2.2919104534108825e-05,
1380
+ "loss": 0.7274,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.33148241628807,
1385
+ "grad_norm": 3.942895129812573,
1386
+ "learning_rate": 2.2850962966882547e-05,
1387
+ "loss": 0.7089,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.3331650681474003,
1392
+ "grad_norm": 2.250499246098397,
1393
+ "learning_rate": 2.278259751519861e-05,
1394
+ "loss": 0.7288,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.33484772000673063,
1399
+ "grad_norm": 1.9217973398784702,
1400
+ "learning_rate": 2.2714010128621957e-05,
1401
+ "loss": 0.6971,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.3365303718660609,
1406
+ "grad_norm": 7.4365036240913005,
1407
+ "learning_rate": 2.2645202763046385e-05,
1408
+ "loss": 0.7027,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.3382130237253912,
1413
+ "grad_norm": 3.6010458486700267,
1414
+ "learning_rate": 2.2576177380638808e-05,
1415
+ "loss": 0.7135,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.3398956755847215,
1420
+ "grad_norm": 3.6134685076054756,
1421
+ "learning_rate": 2.2506935949783277e-05,
1422
+ "loss": 0.6703,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.3415783274440518,
1427
+ "grad_norm": 2.047032124552865,
1428
+ "learning_rate": 2.243748044502485e-05,
1429
+ "loss": 0.7021,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.3432609793033821,
1434
+ "grad_norm": 7.2853023401907135,
1435
+ "learning_rate": 2.236781284701332e-05,
1436
+ "loss": 0.698,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.3449436311627124,
1441
+ "grad_norm": 10.62863599608186,
1442
+ "learning_rate": 2.229793514244666e-05,
1443
+ "loss": 0.7083,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.34662628302204274,
1448
+ "grad_norm": 2.7228396995619293,
1449
+ "learning_rate": 2.222784932401445e-05,
1450
+ "loss": 0.6714,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.34830893488137304,
1455
+ "grad_norm": 8.496361795340652,
1456
+ "learning_rate": 2.2157557390341e-05,
1457
+ "loss": 0.7215,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.34999158674070335,
1462
+ "grad_norm": 2.7703412032428885,
1463
+ "learning_rate": 2.2087061345928375e-05,
1464
+ "loss": 0.7355,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.35167423860003366,
1469
+ "grad_norm": 1.615589476440187,
1470
+ "learning_rate": 2.2016363201099205e-05,
1471
+ "loss": 0.6552,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.35335689045936397,
1476
+ "grad_norm": 2.325164551192993,
1477
+ "learning_rate": 2.1945464971939424e-05,
1478
+ "loss": 0.7059,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.3550395423186943,
1483
+ "grad_norm": 3.5764361397956113,
1484
+ "learning_rate": 2.1874368680240692e-05,
1485
+ "loss": 0.7005,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.3567221941780246,
1490
+ "grad_norm": 1.347667616644207,
1491
+ "learning_rate": 2.1803076353442806e-05,
1492
+ "loss": 0.7102,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.3584048460373549,
1497
+ "grad_norm": 2.0318308073252425,
1498
+ "learning_rate": 2.1731590024575848e-05,
1499
+ "loss": 0.7173,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.36008749789668515,
1504
+ "grad_norm": 1.3373304099117234,
1505
+ "learning_rate": 2.165991173220223e-05,
1506
+ "loss": 0.7601,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.36177014975601546,
1511
+ "grad_norm": 1.9787611361857145,
1512
+ "learning_rate": 2.158804352035855e-05,
1513
+ "loss": 0.721,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.36345280161534577,
1518
+ "grad_norm": 1.0674118498737855,
1519
+ "learning_rate": 2.1515987438497295e-05,
1520
+ "loss": 0.6998,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.3651354534746761,
1525
+ "grad_norm": 2.0137284693641386,
1526
+ "learning_rate": 2.1443745541428416e-05,
1527
+ "loss": 0.6765,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.3668181053340064,
1532
+ "grad_norm": 4.298295885455176,
1533
+ "learning_rate": 2.137131988926072e-05,
1534
+ "loss": 0.7012,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.3685007571933367,
1539
+ "grad_norm": 9.91613007277119,
1540
+ "learning_rate": 2.129871254734312e-05,
1541
+ "loss": 0.7062,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.370183409052667,
1546
+ "grad_norm": 1.6702084657906056,
1547
+ "learning_rate": 2.122592558620575e-05,
1548
+ "loss": 0.7319,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.3718660609119973,
1553
+ "grad_norm": 2.2151204900067634,
1554
+ "learning_rate": 2.1152961081500906e-05,
1555
+ "loss": 0.6853,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.3735487127713276,
1560
+ "grad_norm": 2.06281971620876,
1561
+ "learning_rate": 2.1079821113943863e-05,
1562
+ "loss": 0.7137,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.3752313646306579,
1567
+ "grad_norm": 2.865770701923554,
1568
+ "learning_rate": 2.100650776925353e-05,
1569
+ "loss": 0.7066,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.37691401648998824,
1574
+ "grad_norm": 2.36832805891566,
1575
+ "learning_rate": 2.0933023138092995e-05,
1576
+ "loss": 0.7401,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.37859666834931854,
1581
+ "grad_norm": 1.54287595832039,
1582
+ "learning_rate": 2.0859369316009877e-05,
1583
+ "loss": 0.7535,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.38027932020864885,
1588
+ "grad_norm": 2.919513911195001,
1589
+ "learning_rate": 2.0785548403376592e-05,
1590
+ "loss": 0.71,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.38196197206797916,
1595
+ "grad_norm": 1.618528464339543,
1596
+ "learning_rate": 2.0711562505330437e-05,
1597
+ "loss": 0.7181,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.3836446239273094,
1602
+ "grad_norm": 1.1878290222512224,
1603
+ "learning_rate": 2.063741373171357e-05,
1604
+ "loss": 0.732,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.3853272757866397,
1609
+ "grad_norm": 2.6515115997158554,
1610
+ "learning_rate": 2.0563104197012847e-05,
1611
+ "loss": 0.709,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.38700992764597003,
1616
+ "grad_norm": 1.3199743255372487,
1617
+ "learning_rate": 2.048863602029951e-05,
1618
+ "loss": 0.7276,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.38869257950530034,
1623
+ "grad_norm": 1.9262341939684873,
1624
+ "learning_rate": 2.0414011325168777e-05,
1625
+ "loss": 0.6964,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.39037523136463065,
1630
+ "grad_norm": 1.3563137443786035,
1631
+ "learning_rate": 2.0339232239679252e-05,
1632
+ "loss": 0.685,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.39205788322396096,
1637
+ "grad_norm": 1.6219810171886226,
1638
+ "learning_rate": 2.026430089629229e-05,
1639
+ "loss": 0.6916,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.39374053508329127,
1644
+ "grad_norm": 2.441077712269494,
1645
+ "learning_rate": 2.0189219431811123e-05,
1646
+ "loss": 0.7447,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.3954231869426216,
1651
+ "grad_norm": 2.1115157955300616,
1652
+ "learning_rate": 2.0113989987319988e-05,
1653
+ "loss": 0.6802,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.3971058388019519,
1658
+ "grad_norm": 1.4354556930544433,
1659
+ "learning_rate": 2.0038614708123023e-05,
1660
+ "loss": 0.7004,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.3987884906612822,
1665
+ "grad_norm": 2.4000999827221756,
1666
+ "learning_rate": 1.996309574368311e-05,
1667
+ "loss": 0.6898,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.4004711425206125,
1672
+ "grad_norm": 1.03142424758583,
1673
+ "learning_rate": 1.9887435247560586e-05,
1674
+ "loss": 0.7086,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.4021537943799428,
1679
+ "grad_norm": 2.8813939519904914,
1680
+ "learning_rate": 1.981163537735181e-05,
1681
+ "loss": 0.6954,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.4038364462392731,
1686
+ "grad_norm": 1.1816627689525059,
1687
+ "learning_rate": 1.9735698294627644e-05,
1688
+ "loss": 0.7142,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.4055190980986034,
1693
+ "grad_norm": 1.3945618099849828,
1694
+ "learning_rate": 1.9659626164871828e-05,
1695
+ "loss": 0.7097,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.4072017499579337,
1700
+ "grad_norm": 1.9043603505045925,
1701
+ "learning_rate": 1.95834211574192e-05,
1702
+ "loss": 0.6992,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.408884401817264,
1707
+ "grad_norm": 3.5606637873787648,
1708
+ "learning_rate": 1.9507085445393855e-05,
1709
+ "loss": 0.7118,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.4105670536765943,
1714
+ "grad_norm": 1.569864161622481,
1715
+ "learning_rate": 1.9430621205647156e-05,
1716
+ "loss": 0.6971,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.4122497055359246,
1721
+ "grad_norm": 4.4331480365167,
1722
+ "learning_rate": 1.935403061869568e-05,
1723
+ "loss": 0.6726,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.4139323573952549,
1728
+ "grad_norm": 4.432472927572385,
1729
+ "learning_rate": 1.9277315868659017e-05,
1730
+ "loss": 0.718,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.4156150092545852,
1735
+ "grad_norm": 1.8000872219993729,
1736
+ "learning_rate": 1.920047914319749e-05,
1737
+ "loss": 0.7391,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.41729766111391553,
1742
+ "grad_norm": 2.2415704708896294,
1743
+ "learning_rate": 1.9123522633449772e-05,
1744
+ "loss": 0.7093,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.41898031297324584,
1749
+ "grad_norm": 0.9860844679413583,
1750
+ "learning_rate": 1.9046448533970423e-05,
1751
+ "loss": 0.6874,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.42066296483257615,
1756
+ "grad_norm": 4.705732364227723,
1757
+ "learning_rate": 1.8969259042667255e-05,
1758
+ "loss": 0.6766,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.42234561669190646,
1763
+ "grad_norm": 3.3731463958248264,
1764
+ "learning_rate": 1.8891956360738706e-05,
1765
+ "loss": 0.7155,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.42402826855123676,
1770
+ "grad_norm": 2.2599456108772915,
1771
+ "learning_rate": 1.881454269261105e-05,
1772
+ "loss": 0.6901,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.4257109204105671,
1777
+ "grad_norm": 1.887949729545168,
1778
+ "learning_rate": 1.873702024587553e-05,
1779
+ "loss": 0.7528,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.4273935722698974,
1784
+ "grad_norm": 3.5001965876274115,
1785
+ "learning_rate": 1.865939123122541e-05,
1786
+ "loss": 0.6795,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.4290762241292277,
1791
+ "grad_norm": 3.739512720034628,
1792
+ "learning_rate": 1.858165786239293e-05,
1793
+ "loss": 0.6902,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.43075887598855794,
1798
+ "grad_norm": 2.835735723710262,
1799
+ "learning_rate": 1.850382235608618e-05,
1800
+ "loss": 0.7013,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.43244152784788825,
1805
+ "grad_norm": 3.0809412432066594,
1806
+ "learning_rate": 1.842588693192589e-05,
1807
+ "loss": 0.6916,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.43412417970721856,
1812
+ "grad_norm": 1.9629938051045357,
1813
+ "learning_rate": 1.834785381238212e-05,
1814
+ "loss": 0.7165,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.43580683156654887,
1819
+ "grad_norm": 2.2447376170957023,
1820
+ "learning_rate": 1.8269725222710895e-05,
1821
+ "loss": 0.7273,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.4374894834258792,
1826
+ "grad_norm": 2.214057365632279,
1827
+ "learning_rate": 1.8191503390890745e-05,
1828
+ "loss": 0.7073,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.4391721352852095,
1833
+ "grad_norm": 1.8172031418314936,
1834
+ "learning_rate": 1.8113190547559167e-05,
1835
+ "loss": 0.715,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.4408547871445398,
1840
+ "grad_norm": 2.835706633111018,
1841
+ "learning_rate": 1.8034788925949024e-05,
1842
+ "loss": 0.706,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.4425374390038701,
1847
+ "grad_norm": 1.1621082466184123,
1848
+ "learning_rate": 1.795630076182484e-05,
1849
+ "loss": 0.7084,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.4442200908632004,
1854
+ "grad_norm": 11.176574486878446,
1855
+ "learning_rate": 1.7877728293419067e-05,
1856
+ "loss": 0.7092,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.4459027427225307,
1861
+ "grad_norm": 10.672692821884855,
1862
+ "learning_rate": 1.7799073761368236e-05,
1863
+ "loss": 0.7247,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.44758539458186103,
1868
+ "grad_norm": 3.089797606768679,
1869
+ "learning_rate": 1.7720339408649084e-05,
1870
+ "loss": 0.7212,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.44926804644119134,
1875
+ "grad_norm": 11.51700032068762,
1876
+ "learning_rate": 1.7641527480514575e-05,
1877
+ "loss": 0.708,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.45095069830052165,
1882
+ "grad_norm": 2.9535720728987007,
1883
+ "learning_rate": 1.756264022442987e-05,
1884
+ "loss": 0.6986,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.4526333501598519,
1889
+ "grad_norm": 4.148500258838489,
1890
+ "learning_rate": 1.7483679890008247e-05,
1891
+ "loss": 0.6571,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.4543160020191822,
1896
+ "grad_norm": 1.7950072159263486,
1897
+ "learning_rate": 1.740464872894695e-05,
1898
+ "loss": 0.6751,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.4559986538785125,
1903
+ "grad_norm": 1.3583282737793725,
1904
+ "learning_rate": 1.732554899496297e-05,
1905
+ "loss": 0.7705,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.4576813057378428,
1910
+ "grad_norm": 2.184156205512354,
1911
+ "learning_rate": 1.7246382943728777e-05,
1912
+ "loss": 0.6631,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.45936395759717313,
1917
+ "grad_norm": 1.6297260663890405,
1918
+ "learning_rate": 1.7167152832807997e-05,
1919
+ "loss": 0.6946,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.46104660945650344,
1924
+ "grad_norm": 1.6037313522955436,
1925
+ "learning_rate": 1.7087860921591047e-05,
1926
+ "loss": 0.6914,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 0.46272926131583375,
1931
+ "grad_norm": 1.6197737501652023,
1932
+ "learning_rate": 1.7008509471230673e-05,
1933
+ "loss": 0.7312,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 0.46441191317516406,
1938
+ "grad_norm": 2.0167791329962395,
1939
+ "learning_rate": 1.69291007445775e-05,
1940
+ "loss": 0.6459,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 0.46609456503449437,
1945
+ "grad_norm": 7.215038584013174,
1946
+ "learning_rate": 1.684963700611548e-05,
1947
+ "loss": 0.6989,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 0.4677772168938247,
1952
+ "grad_norm": 3.3650128982999603,
1953
+ "learning_rate": 1.677012052189734e-05,
1954
+ "loss": 0.7156,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 0.469459868753155,
1959
+ "grad_norm": 1.6353091631825594,
1960
+ "learning_rate": 1.6690553559479946e-05,
1961
+ "loss": 0.6916,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 0.4711425206124853,
1966
+ "grad_norm": 2.314420263644613,
1967
+ "learning_rate": 1.6610938387859623e-05,
1968
+ "loss": 0.7351,
1969
+ "step": 2800
1970
+ }
1971
+ ],
1972
+ "logging_steps": 10,
1973
+ "max_steps": 5943,
1974
+ "num_input_tokens_seen": 0,
1975
+ "num_train_epochs": 1,
1976
+ "save_steps": 400,
1977
+ "stateful_callbacks": {
1978
+ "TrainerControl": {
1979
+ "args": {
1980
+ "should_epoch_stop": false,
1981
+ "should_evaluate": false,
1982
+ "should_log": false,
1983
+ "should_save": true,
1984
+ "should_training_stop": false
1985
+ },
1986
+ "attributes": {}
1987
+ }
1988
+ },
1989
+ "total_flos": 1.2756662754476032e+19,
1990
+ "train_batch_size": 4,
1991
+ "trial_name": null,
1992
+ "trial_params": null
1993
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fbdba9805bd0d1a205737e79e7c8cc90395bd2d30f5c02b0fe337cbf2b804f7
3
+ size 6520
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)