subatomicseer commited on
Commit
5c8ca39
1 Parent(s): 815e09c

Model save

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - timit_asr
6
+ metrics:
7
+ - wer
8
+ model-index:
9
+ - name: wav2vec2-base-gumbelVQ-timit-fine-tuned
10
+ results:
11
+ - task:
12
+ name: Automatic Speech Recognition
13
+ type: automatic-speech-recognition
14
+ dataset:
15
+ name: timit_asr
16
+ type: timit_asr
17
+ config: clean
18
+ split: test
19
+ args: clean
20
+ metrics:
21
+ - name: Wer
22
+ type: wer
23
+ value: 0.4901798635517883
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # wav2vec2-base-gumbelVQ-timit-fine-tuned
30
+
31
+ This model was trained from scratch on the timit_asr dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.7549
34
+ - Wer: 0.4902
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 0.0001
54
+ - train_batch_size: 32
55
+ - eval_batch_size: 1
56
+ - seed: 42
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: linear
59
+ - lr_scheduler_warmup_steps: 1000
60
+ - num_epochs: 20.0
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
65
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
66
+ | 0.4628 | 10.0 | 1450 | 0.6779 | 0.5171 |
67
+ | 0.3036 | 20.0 | 2900 | 0.7549 | 0.4902 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.36.2
73
+ - Pytorch 2.3.0.dev20231229+cu118
74
+ - Datasets 2.16.0
75
+ - Tokenizers 0.15.0