stulcrad commited on
Commit
2bf23ce
·
verified ·
1 Parent(s): 2ad8dc1

Model save

Browse files
Files changed (2) hide show
  1. README.md +26 -26
  2. model.safetensors +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8543457497612226
29
  - name: Recall
30
  type: recall
31
- value: 0.8878411910669975
32
  - name: F1
33
  type: f1
34
- value: 0.8707714772450719
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9749707259953162
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1492
48
- - Precision: 0.8543
49
- - Recall: 0.8878
50
- - F1: 0.8708
51
- - Accuracy: 0.9750
52
 
53
  ## Model description
54
 
@@ -79,23 +79,23 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.4615 | 0.56 | 500 | 0.1970 | 0.6988 | 0.7057 | 0.7022 | 0.9497 |
83
- | 0.2127 | 1.12 | 1000 | 0.1455 | 0.7812 | 0.8238 | 0.8019 | 0.9626 |
84
- | 0.1765 | 1.68 | 1500 | 0.1284 | 0.8042 | 0.8357 | 0.8197 | 0.9674 |
85
- | 0.149 | 2.24 | 2000 | 0.1307 | 0.8250 | 0.8541 | 0.8393 | 0.9698 |
86
- | 0.1286 | 2.8 | 2500 | 0.1214 | 0.8178 | 0.8600 | 0.8384 | 0.9717 |
87
- | 0.1172 | 3.36 | 3000 | 0.1271 | 0.8285 | 0.8536 | 0.8409 | 0.9716 |
88
- | 0.1115 | 3.92 | 3500 | 0.1290 | 0.8305 | 0.8586 | 0.8443 | 0.9726 |
89
- | 0.0978 | 4.48 | 4000 | 0.1251 | 0.8321 | 0.8630 | 0.8473 | 0.9736 |
90
- | 0.0907 | 5.04 | 4500 | 0.1301 | 0.8417 | 0.8710 | 0.8561 | 0.9742 |
91
- | 0.0812 | 5.6 | 5000 | 0.1235 | 0.8365 | 0.8630 | 0.8495 | 0.9721 |
92
- | 0.0755 | 6.16 | 5500 | 0.1269 | 0.8201 | 0.8685 | 0.8436 | 0.9727 |
93
- | 0.0647 | 6.72 | 6000 | 0.1325 | 0.8490 | 0.8789 | 0.8637 | 0.9742 |
94
- | 0.0589 | 7.28 | 6500 | 0.1373 | 0.8529 | 0.8774 | 0.8650 | 0.9746 |
95
- | 0.0559 | 7.84 | 7000 | 0.1419 | 0.8463 | 0.8824 | 0.8639 | 0.9747 |
96
- | 0.0549 | 8.4 | 7500 | 0.1400 | 0.8444 | 0.8834 | 0.8634 | 0.9745 |
97
- | 0.0479 | 8.96 | 8000 | 0.1462 | 0.8530 | 0.8844 | 0.8684 | 0.9752 |
98
- | 0.0462 | 9.52 | 8500 | 0.1492 | 0.8543 | 0.8878 | 0.8708 | 0.9750 |
99
 
100
 
101
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8492292870905588
29
  - name: Recall
30
  type: recall
31
+ value: 0.8749379652605459
32
  - name: F1
33
  type: f1
34
+ value: 0.8618919579564899
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.973155737704918
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1467
48
+ - Precision: 0.8492
49
+ - Recall: 0.8749
50
+ - F1: 0.8619
51
+ - Accuracy: 0.9732
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.508 | 0.56 | 500 | 0.2177 | 0.6604 | 0.6928 | 0.6762 | 0.9423 |
83
+ | 0.2268 | 1.12 | 1000 | 0.1923 | 0.7158 | 0.7960 | 0.7538 | 0.9512 |
84
+ | 0.183 | 1.68 | 1500 | 0.1580 | 0.7825 | 0.8303 | 0.8057 | 0.9636 |
85
+ | 0.1558 | 2.24 | 2000 | 0.1548 | 0.8077 | 0.8382 | 0.8227 | 0.9676 |
86
+ | 0.1371 | 2.8 | 2500 | 0.1278 | 0.8233 | 0.8511 | 0.8370 | 0.9701 |
87
+ | 0.1225 | 3.36 | 3000 | 0.1430 | 0.8128 | 0.8531 | 0.8324 | 0.9667 |
88
+ | 0.1166 | 3.92 | 3500 | 0.1389 | 0.8307 | 0.8501 | 0.8403 | 0.9681 |
89
+ | 0.101 | 4.48 | 4000 | 0.1323 | 0.8277 | 0.8655 | 0.8462 | 0.9708 |
90
+ | 0.0928 | 5.04 | 4500 | 0.1332 | 0.8434 | 0.8660 | 0.8546 | 0.9715 |
91
+ | 0.0848 | 5.6 | 5000 | 0.1273 | 0.8382 | 0.8665 | 0.8521 | 0.9727 |
92
+ | 0.0798 | 6.16 | 5500 | 0.1281 | 0.8447 | 0.8774 | 0.8608 | 0.9716 |
93
+ | 0.0688 | 6.72 | 6000 | 0.1340 | 0.8482 | 0.8734 | 0.8606 | 0.9728 |
94
+ | 0.0638 | 7.28 | 6500 | 0.1346 | 0.8549 | 0.8744 | 0.8646 | 0.9746 |
95
+ | 0.0585 | 7.84 | 7000 | 0.1415 | 0.8442 | 0.8764 | 0.8600 | 0.9730 |
96
+ | 0.0565 | 8.4 | 7500 | 0.1487 | 0.8377 | 0.8809 | 0.8587 | 0.9730 |
97
+ | 0.0497 | 8.96 | 8000 | 0.1416 | 0.8473 | 0.8784 | 0.8626 | 0.9740 |
98
+ | 0.0484 | 9.52 | 8500 | 0.1467 | 0.8492 | 0.8749 | 0.8619 | 0.9732 |
99
 
100
 
101
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bcb4d064ca30c89ae3899b68c14596b555f7c39df883725e2d7ba28a5429a167
3
  size 2235473356
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9454b96ae5bca8e409e421370748e7651dc5d1a76358e278fc273587fb68e848
3
  size 2235473356