stulcrad commited on
Commit
94cf29a
·
verified ·
1 Parent(s): 8770435

Model save

Browse files
Files changed (1) hide show
  1. README.md +19 -16
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8265817023213473
29
  - name: Recall
30
  type: recall
31
- value: 0.8764478764478765
32
  - name: F1
33
  type: f1
34
- value: 0.850784727102366
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9683326090105752
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1794
48
- - Precision: 0.8266
49
- - Recall: 0.8764
50
- - F1: 0.8508
51
- - Accuracy: 0.9683
52
 
53
  ## Model description
54
 
@@ -73,18 +73,21 @@ The following hyperparameters were used during training:
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 15
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.2748 | 2.22 | 500 | 0.1464 | 0.7658 | 0.8364 | 0.7995 | 0.9622 |
83
- | 0.0997 | 4.44 | 1000 | 0.1377 | 0.7822 | 0.8716 | 0.8245 | 0.9653 |
84
- | 0.0677 | 6.67 | 1500 | 0.1525 | 0.7997 | 0.8769 | 0.8366 | 0.9657 |
85
- | 0.0452 | 8.89 | 2000 | 0.1426 | 0.8162 | 0.8832 | 0.8484 | 0.9698 |
86
- | 0.0316 | 11.11 | 2500 | 0.1737 | 0.8232 | 0.8697 | 0.8458 | 0.9683 |
87
- | 0.023 | 13.33 | 3000 | 0.1794 | 0.8266 | 0.8764 | 0.8508 | 0.9683 |
 
 
 
88
 
89
 
90
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8359161349134002
29
  - name: Recall
30
  type: recall
31
+ value: 0.8851351351351351
32
  - name: F1
33
  type: f1
34
+ value: 0.8598218471636193
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9700420107199769
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1918
48
+ - Precision: 0.8359
49
+ - Recall: 0.8851
50
+ - F1: 0.8598
51
+ - Accuracy: 0.9700
52
 
53
  ## Model description
54
 
 
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 20
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2903 | 2.22 | 500 | 0.1438 | 0.7586 | 0.8417 | 0.7980 | 0.9626 |
83
+ | 0.1147 | 4.44 | 1000 | 0.1401 | 0.7866 | 0.8629 | 0.8230 | 0.9660 |
84
+ | 0.0796 | 6.67 | 1500 | 0.1402 | 0.7956 | 0.8755 | 0.8336 | 0.9677 |
85
+ | 0.0561 | 8.89 | 2000 | 0.1419 | 0.8094 | 0.8793 | 0.8429 | 0.9700 |
86
+ | 0.0416 | 11.11 | 2500 | 0.1562 | 0.8271 | 0.8793 | 0.8524 | 0.9687 |
87
+ | 0.0306 | 13.33 | 3000 | 0.1761 | 0.8309 | 0.8890 | 0.8589 | 0.9702 |
88
+ | 0.0233 | 15.56 | 3500 | 0.1785 | 0.8332 | 0.8798 | 0.8559 | 0.9701 |
89
+ | 0.0188 | 17.78 | 4000 | 0.1875 | 0.8362 | 0.8847 | 0.8598 | 0.9694 |
90
+ | 0.015 | 20.0 | 4500 | 0.1918 | 0.8359 | 0.8851 | 0.8598 | 0.9700 |
91
 
92
 
93
  ### Framework versions