Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,15 +79,15 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8314350797266514
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8807915057915058
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8554019217248652
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.970911198029842
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1616
|
48 |
+
- Precision: 0.8314
|
49 |
+
- Recall: 0.8808
|
50 |
+
- F1: 0.8554
|
51 |
+
- Accuracy: 0.9709
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.3363 | 1.11 | 500 | 0.1563 | 0.7344 | 0.8234 | 0.7763 | 0.9607 |
|
83 |
+
| 0.1372 | 2.22 | 1000 | 0.1308 | 0.7641 | 0.8692 | 0.8133 | 0.9652 |
|
84 |
+
| 0.0998 | 3.33 | 1500 | 0.1368 | 0.7912 | 0.8668 | 0.8273 | 0.9671 |
|
85 |
+
| 0.077 | 4.44 | 2000 | 0.1360 | 0.8079 | 0.8707 | 0.8381 | 0.9690 |
|
86 |
+
| 0.0623 | 5.56 | 2500 | 0.1421 | 0.8181 | 0.8707 | 0.8436 | 0.9686 |
|
87 |
+
| 0.0458 | 6.67 | 3000 | 0.1488 | 0.8129 | 0.8764 | 0.8435 | 0.9706 |
|
88 |
+
| 0.0382 | 7.78 | 3500 | 0.1585 | 0.8320 | 0.8745 | 0.8527 | 0.9693 |
|
89 |
+
| 0.0299 | 8.89 | 4000 | 0.1585 | 0.8291 | 0.8755 | 0.8516 | 0.9705 |
|
90 |
+
| 0.0257 | 10.0 | 4500 | 0.1616 | 0.8314 | 0.8808 | 0.8554 | 0.9709 |
|
91 |
|
92 |
|
93 |
### Framework versions
|