Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
|
91 |
|
92 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8095043015157722
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8864961866307761
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8462526766595291
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9620984425621609
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2133
|
48 |
+
- Precision: 0.8095
|
49 |
+
- Recall: 0.8865
|
50 |
+
- F1: 0.8463
|
51 |
+
- Accuracy: 0.9621
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.4081 | 1.7 | 500 | 0.1879 | 0.7183 | 0.8430 | 0.7756 | 0.9505 |
|
83 |
+
| 0.1806 | 3.4 | 1000 | 0.1816 | 0.7703 | 0.8681 | 0.8163 | 0.9567 |
|
84 |
+
| 0.131 | 5.1 | 1500 | 0.1695 | 0.7756 | 0.8712 | 0.8206 | 0.9592 |
|
85 |
+
| 0.0975 | 6.8 | 2000 | 0.1861 | 0.7640 | 0.8744 | 0.8155 | 0.9571 |
|
86 |
+
| 0.0778 | 8.5 | 2500 | 0.1908 | 0.7989 | 0.8807 | 0.8378 | 0.9591 |
|
87 |
+
| 0.0596 | 10.2 | 3000 | 0.1922 | 0.7916 | 0.8829 | 0.8348 | 0.9592 |
|
88 |
+
| 0.0506 | 11.9 | 3500 | 0.2070 | 0.8016 | 0.8811 | 0.8395 | 0.9598 |
|
89 |
+
| 0.0407 | 13.61 | 4000 | 0.2133 | 0.8095 | 0.8865 | 0.8463 | 0.9621 |
|
90 |
|
91 |
|
92 |
### Framework versions
|
runs/Mar05_22-48-51_n21/events.out.tfevents.1709675332.n21.2238640.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d8d28fc92fcb88cedcfebbc503211045768cc981d3a3e59539660d11316e01b
|
3 |
+
size 10494
|