stulcrad commited on
Commit
0868593
·
verified ·
1 Parent(s): ab50cbe

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8294412010008341
29
  - name: Recall
30
  type: recall
31
- value: 0.892328398384926
32
  - name: F1
33
  type: f1
34
- value: 0.8597363302355738
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9629571802178071
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2118
48
- - Precision: 0.8294
49
- - Recall: 0.8923
50
- - F1: 0.8597
51
- - Accuracy: 0.9630
52
 
53
  ## Model description
54
 
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.4103 | 1.7 | 500 | 0.1933 | 0.7270 | 0.8528 | 0.7849 | 0.9513 |
83
- | 0.1838 | 3.4 | 1000 | 0.1799 | 0.7559 | 0.8573 | 0.8034 | 0.9573 |
84
- | 0.1312 | 5.1 | 1500 | 0.1710 | 0.7855 | 0.8739 | 0.8274 | 0.9589 |
85
- | 0.0949 | 6.8 | 2000 | 0.1782 | 0.7917 | 0.8766 | 0.8320 | 0.9605 |
86
- | 0.0746 | 8.5 | 2500 | 0.1810 | 0.8027 | 0.8762 | 0.8378 | 0.9603 |
87
- | 0.057 | 10.2 | 3000 | 0.2066 | 0.8277 | 0.8878 | 0.8567 | 0.9630 |
88
- | 0.0474 | 11.9 | 3500 | 0.2138 | 0.8169 | 0.8905 | 0.8521 | 0.9612 |
89
- | 0.0365 | 13.61 | 4000 | 0.2118 | 0.8294 | 0.8923 | 0.8597 | 0.9630 |
90
 
91
 
92
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8095043015157722
29
  - name: Recall
30
  type: recall
31
+ value: 0.8864961866307761
32
  - name: F1
33
  type: f1
34
+ value: 0.8462526766595291
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9620984425621609
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2133
48
+ - Precision: 0.8095
49
+ - Recall: 0.8865
50
+ - F1: 0.8463
51
+ - Accuracy: 0.9621
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.4081 | 1.7 | 500 | 0.1879 | 0.7183 | 0.8430 | 0.7756 | 0.9505 |
83
+ | 0.1806 | 3.4 | 1000 | 0.1816 | 0.7703 | 0.8681 | 0.8163 | 0.9567 |
84
+ | 0.131 | 5.1 | 1500 | 0.1695 | 0.7756 | 0.8712 | 0.8206 | 0.9592 |
85
+ | 0.0975 | 6.8 | 2000 | 0.1861 | 0.7640 | 0.8744 | 0.8155 | 0.9571 |
86
+ | 0.0778 | 8.5 | 2500 | 0.1908 | 0.7989 | 0.8807 | 0.8378 | 0.9591 |
87
+ | 0.0596 | 10.2 | 3000 | 0.1922 | 0.7916 | 0.8829 | 0.8348 | 0.9592 |
88
+ | 0.0506 | 11.9 | 3500 | 0.2070 | 0.8016 | 0.8811 | 0.8395 | 0.9598 |
89
+ | 0.0407 | 13.61 | 4000 | 0.2133 | 0.8095 | 0.8865 | 0.8463 | 0.9621 |
90
 
91
 
92
  ### Framework versions
runs/Mar05_22-48-51_n21/events.out.tfevents.1709675332.n21.2238640.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:784af97159a042b720c02e9dbbe5c3ad9a457ebef26237d94dabf9fae6d6ac0d
3
- size 10140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d8d28fc92fcb88cedcfebbc503211045768cc981d3a3e59539660d11316e01b
3
+ size 10494