End of training
Browse files
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: deepseek-ai/deepseek-coder-1.3b-base
|
3 |
+
datasets:
|
4 |
+
- generator
|
5 |
+
library_name: peft
|
6 |
+
license: other
|
7 |
+
tags:
|
8 |
+
- trl
|
9 |
+
- sft
|
10 |
+
- generated_from_trainer
|
11 |
+
model-index:
|
12 |
+
- name: lr_sft1
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/stojchets/huggingface/runs/lr_sft1)
|
20 |
+
# lr_sft1
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on the generator dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 1.1672
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.00141
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 16
|
48 |
+
- total_train_batch_size: 128
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 1
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
56 |
+
|:-------------:|:------:|:----:|:---------------:|
|
57 |
+
| 1.2662 | 0.0128 | 1 | 1.2175 |
|
58 |
+
| 1.2021 | 0.0256 | 2 | 1.1878 |
|
59 |
+
| 1.2099 | 0.0384 | 3 | 1.1839 |
|
60 |
+
| 1.1084 | 0.0512 | 4 | 1.1874 |
|
61 |
+
| 1.1652 | 0.064 | 5 | 1.1817 |
|
62 |
+
| 1.1503 | 0.0768 | 6 | 1.1817 |
|
63 |
+
| 1.1545 | 0.0896 | 7 | 1.1776 |
|
64 |
+
| 1.2043 | 0.1024 | 8 | 1.1785 |
|
65 |
+
| 1.1557 | 0.1152 | 9 | 1.1759 |
|
66 |
+
| 1.1748 | 0.128 | 10 | 1.1749 |
|
67 |
+
| 1.2061 | 0.1408 | 11 | 1.1757 |
|
68 |
+
| 1.1357 | 0.1536 | 12 | 1.1757 |
|
69 |
+
| 1.1039 | 0.1664 | 13 | 1.1753 |
|
70 |
+
| 1.2229 | 0.1792 | 14 | 1.1755 |
|
71 |
+
| 1.148 | 0.192 | 15 | 1.1750 |
|
72 |
+
| 1.1819 | 0.2048 | 16 | 1.1746 |
|
73 |
+
| 1.1758 | 0.2176 | 17 | 1.1745 |
|
74 |
+
| 1.1895 | 0.2304 | 18 | 1.1742 |
|
75 |
+
| 1.1277 | 0.2432 | 19 | 1.1741 |
|
76 |
+
| 1.1258 | 0.256 | 20 | 1.1739 |
|
77 |
+
| 1.1493 | 0.2688 | 21 | 1.1733 |
|
78 |
+
| 1.1295 | 0.2816 | 22 | 1.1733 |
|
79 |
+
| 1.1768 | 0.2944 | 23 | 1.1736 |
|
80 |
+
| 1.206 | 0.3072 | 24 | 1.1735 |
|
81 |
+
| 1.1397 | 0.32 | 25 | 1.1732 |
|
82 |
+
| 1.1736 | 0.3328 | 26 | 1.1734 |
|
83 |
+
| 1.1412 | 0.3456 | 27 | 1.1740 |
|
84 |
+
| 1.1383 | 0.3584 | 28 | 1.1745 |
|
85 |
+
| 1.1216 | 0.3712 | 29 | 1.1742 |
|
86 |
+
| 1.1127 | 0.384 | 30 | 1.1731 |
|
87 |
+
| 1.1234 | 0.3968 | 31 | 1.1724 |
|
88 |
+
| 1.1406 | 0.4096 | 32 | 1.1724 |
|
89 |
+
| 1.186 | 0.4224 | 33 | 1.1723 |
|
90 |
+
| 1.154 | 0.4352 | 34 | 1.1721 |
|
91 |
+
| 1.114 | 0.448 | 35 | 1.1724 |
|
92 |
+
| 1.1148 | 0.4608 | 36 | 1.1728 |
|
93 |
+
| 1.1422 | 0.4736 | 37 | 1.1726 |
|
94 |
+
| 1.1561 | 0.4864 | 38 | 1.1721 |
|
95 |
+
| 1.1964 | 0.4992 | 39 | 1.1716 |
|
96 |
+
| 1.1288 | 0.512 | 40 | 1.1714 |
|
97 |
+
| 1.142 | 0.5248 | 41 | 1.1713 |
|
98 |
+
| 1.149 | 0.5376 | 42 | 1.1711 |
|
99 |
+
| 1.1104 | 0.5504 | 43 | 1.1710 |
|
100 |
+
| 1.12 | 0.5632 | 44 | 1.1709 |
|
101 |
+
| 1.1256 | 0.576 | 45 | 1.1710 |
|
102 |
+
| 1.162 | 0.5888 | 46 | 1.1710 |
|
103 |
+
| 1.0982 | 0.6016 | 47 | 1.1710 |
|
104 |
+
| 1.1383 | 0.6144 | 48 | 1.1710 |
|
105 |
+
| 1.1394 | 0.6272 | 49 | 1.1708 |
|
106 |
+
| 1.1196 | 0.64 | 50 | 1.1707 |
|
107 |
+
| 1.156 | 0.6528 | 51 | 1.1705 |
|
108 |
+
| 1.105 | 0.6656 | 52 | 1.1703 |
|
109 |
+
| 1.1455 | 0.6784 | 53 | 1.1701 |
|
110 |
+
| 1.1266 | 0.6912 | 54 | 1.1698 |
|
111 |
+
| 1.1063 | 0.704 | 55 | 1.1695 |
|
112 |
+
| 1.127 | 0.7168 | 56 | 1.1693 |
|
113 |
+
| 1.1501 | 0.7296 | 57 | 1.1690 |
|
114 |
+
| 1.1383 | 0.7424 | 58 | 1.1688 |
|
115 |
+
| 1.1174 | 0.7552 | 59 | 1.1686 |
|
116 |
+
| 1.1413 | 0.768 | 60 | 1.1685 |
|
117 |
+
| 1.1871 | 0.7808 | 61 | 1.1684 |
|
118 |
+
| 1.1796 | 0.7936 | 62 | 1.1683 |
|
119 |
+
| 1.123 | 0.8064 | 63 | 1.1683 |
|
120 |
+
| 1.1645 | 0.8192 | 64 | 1.1682 |
|
121 |
+
| 1.1165 | 0.832 | 65 | 1.1681 |
|
122 |
+
| 1.0805 | 0.8448 | 66 | 1.1680 |
|
123 |
+
| 1.2018 | 0.8576 | 67 | 1.1678 |
|
124 |
+
| 1.0869 | 0.8704 | 68 | 1.1677 |
|
125 |
+
| 1.1286 | 0.8832 | 69 | 1.1676 |
|
126 |
+
| 1.0889 | 0.896 | 70 | 1.1676 |
|
127 |
+
| 1.1395 | 0.9088 | 71 | 1.1675 |
|
128 |
+
| 1.1756 | 0.9216 | 72 | 1.1674 |
|
129 |
+
| 1.1575 | 0.9344 | 73 | 1.1674 |
|
130 |
+
| 1.1073 | 0.9472 | 74 | 1.1673 |
|
131 |
+
| 1.163 | 0.96 | 75 | 1.1673 |
|
132 |
+
| 1.1789 | 0.9728 | 76 | 1.1673 |
|
133 |
+
| 1.1267 | 0.9856 | 77 | 1.1673 |
|
134 |
+
| 1.1416 | 0.9984 | 78 | 1.1672 |
|
135 |
+
|
136 |
+
|
137 |
+
### Framework versions
|
138 |
+
|
139 |
+
- PEFT 0.10.0
|
140 |
+
- Transformers 4.43.0.dev0
|
141 |
+
- Pytorch 2.2.2+cu121
|
142 |
+
- Datasets 2.19.2
|
143 |
+
- Tokenizers 0.19.1
|