Upload scripts/train_qwen3_dpo_reasoning.py with huggingface_hub
Browse files
scripts/train_qwen3_dpo_reasoning.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "transformers>=4.45.0",
|
| 5 |
+
# "trl>=0.12.0",
|
| 6 |
+
# "peft>=0.13.0",
|
| 7 |
+
# "datasets>=3.0.0",
|
| 8 |
+
# "accelerate>=1.0.0",
|
| 9 |
+
# "huggingface_hub>=0.26.0",
|
| 10 |
+
# "torch>=2.4.0",
|
| 11 |
+
# "bitsandbytes>=0.44.0",
|
| 12 |
+
# ]
|
| 13 |
+
# [tool.uv]
|
| 14 |
+
# index-strategy = "unsafe-best-match"
|
| 15 |
+
# extra-index-url = ["https://download.pytorch.org/whl/cu124"]
|
| 16 |
+
# ///
|
| 17 |
+
"""
|
| 18 |
+
DPO Training Script for Qwen3-0.6B on n8n Workflow Reasoning
|
| 19 |
+
|
| 20 |
+
This script fine-tunes Qwen3-0.6B using Direct Preference Optimization (DPO)
|
| 21 |
+
to improve reasoning quality when generating n8n workflows.
|
| 22 |
+
|
| 23 |
+
The dataset contains:
|
| 24 |
+
- prompt: task description for generating n8n workflow
|
| 25 |
+
- chosen: high-quality response with detailed <thinking> reasoning
|
| 26 |
+
- rejected: low-quality response with superficial reasoning or errors
|
| 27 |
+
|
| 28 |
+
Usage:
|
| 29 |
+
hf jobs uv run \
|
| 30 |
+
--script train_qwen3_dpo_reasoning.py \
|
| 31 |
+
--flavor l40sx1 \
|
| 32 |
+
--name qwen3-dpo-reasoning \
|
| 33 |
+
--timeout 12h
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
import os
|
| 37 |
+
import torch
|
| 38 |
+
from datasets import load_dataset
|
| 39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 40 |
+
from peft import LoraConfig
|
| 41 |
+
from trl import DPOConfig, DPOTrainer
|
| 42 |
+
from huggingface_hub import login
|
| 43 |
+
|
| 44 |
+
# ============================================================================
|
| 45 |
+
# CONFIGURATION
|
| 46 |
+
# ============================================================================
|
| 47 |
+
|
| 48 |
+
# Base model
|
| 49 |
+
MODEL_NAME = os.environ.get("BASE_MODEL", "Qwen/Qwen3-0.6B")
|
| 50 |
+
|
| 51 |
+
# Dataset
|
| 52 |
+
DATASET_REPO = "stmasson/n8n-workflows-thinking"
|
| 53 |
+
DATA_DIR = "data/dpo"
|
| 54 |
+
|
| 55 |
+
# Output
|
| 56 |
+
OUTPUT_DIR = "./qwen3-dpo-reasoning"
|
| 57 |
+
HF_REPO = os.environ.get("HF_REPO", "stmasson/qwen3-0.6b-n8n-reasoning")
|
| 58 |
+
|
| 59 |
+
# Hyperparameters
|
| 60 |
+
NUM_EPOCHS = int(os.environ.get("NUM_EPOCHS", "1"))
|
| 61 |
+
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", "1"))
|
| 62 |
+
GRAD_ACCUM = int(os.environ.get("GRAD_ACCUM", "8"))
|
| 63 |
+
LEARNING_RATE = float(os.environ.get("LEARNING_RATE", "5e-6"))
|
| 64 |
+
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", "4096"))
|
| 65 |
+
MAX_PROMPT_LENGTH = int(os.environ.get("MAX_PROMPT_LENGTH", "512"))
|
| 66 |
+
BETA = float(os.environ.get("BETA", "0.1")) # DPO beta parameter
|
| 67 |
+
|
| 68 |
+
# LoRA configuration
|
| 69 |
+
LORA_R = int(os.environ.get("LORA_R", "32"))
|
| 70 |
+
LORA_ALPHA = int(os.environ.get("LORA_ALPHA", "64"))
|
| 71 |
+
LORA_DROPOUT = float(os.environ.get("LORA_DROPOUT", "0.05"))
|
| 72 |
+
|
| 73 |
+
# ============================================================================
|
| 74 |
+
# AUTHENTICATION
|
| 75 |
+
# ============================================================================
|
| 76 |
+
|
| 77 |
+
print("=" * 60)
|
| 78 |
+
print("DPO TRAINING - QWEN3-0.6B N8N REASONING")
|
| 79 |
+
print("=" * 60)
|
| 80 |
+
|
| 81 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 82 |
+
if hf_token:
|
| 83 |
+
login(token=hf_token)
|
| 84 |
+
print("Authenticated with HuggingFace")
|
| 85 |
+
else:
|
| 86 |
+
print("Warning: HF_TOKEN not set, push disabled")
|
| 87 |
+
|
| 88 |
+
# ============================================================================
|
| 89 |
+
# LOAD MODEL AND TOKENIZER
|
| 90 |
+
# ============================================================================
|
| 91 |
+
|
| 92 |
+
print(f"\nLoading model: {MODEL_NAME}")
|
| 93 |
+
|
| 94 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 95 |
+
MODEL_NAME,
|
| 96 |
+
torch_dtype=torch.bfloat16,
|
| 97 |
+
attn_implementation="sdpa",
|
| 98 |
+
device_map="auto",
|
| 99 |
+
trust_remote_code=True,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 103 |
+
if tokenizer.pad_token is None:
|
| 104 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 105 |
+
tokenizer.padding_side = "left" # Important for DPO
|
| 106 |
+
|
| 107 |
+
print(f"Model loaded: {model.config.num_hidden_layers} layers, {model.config.hidden_size} hidden size")
|
| 108 |
+
|
| 109 |
+
# ============================================================================
|
| 110 |
+
# LORA CONFIGURATION
|
| 111 |
+
# ============================================================================
|
| 112 |
+
|
| 113 |
+
print(f"\nLoRA config: r={LORA_R}, alpha={LORA_ALPHA}")
|
| 114 |
+
|
| 115 |
+
peft_config = LoraConfig(
|
| 116 |
+
r=LORA_R,
|
| 117 |
+
lora_alpha=LORA_ALPHA,
|
| 118 |
+
target_modules=[
|
| 119 |
+
"q_proj", "k_proj", "v_proj", "o_proj",
|
| 120 |
+
"gate_proj", "up_proj", "down_proj"
|
| 121 |
+
],
|
| 122 |
+
lora_dropout=LORA_DROPOUT,
|
| 123 |
+
bias="none",
|
| 124 |
+
task_type="CAUSAL_LM"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# ============================================================================
|
| 128 |
+
# LOAD DATASET
|
| 129 |
+
# ============================================================================
|
| 130 |
+
|
| 131 |
+
print(f"\nLoading dataset: {DATASET_REPO}")
|
| 132 |
+
|
| 133 |
+
train_dataset = load_dataset(DATASET_REPO, data_dir=DATA_DIR, split="train")
|
| 134 |
+
eval_dataset = load_dataset(DATASET_REPO, data_dir=DATA_DIR, split="validation")
|
| 135 |
+
|
| 136 |
+
print(f"Train: {len(train_dataset)} examples")
|
| 137 |
+
print(f"Validation: {len(eval_dataset)} examples")
|
| 138 |
+
|
| 139 |
+
# Filter out extremely long examples to avoid OOM
|
| 140 |
+
def filter_by_length(example):
|
| 141 |
+
prompt_len = len(example["prompt"])
|
| 142 |
+
chosen_len = len(example["chosen"])
|
| 143 |
+
rejected_len = len(example["rejected"])
|
| 144 |
+
# Filter examples where total chars > 50000 (roughly 12500 tokens)
|
| 145 |
+
return (prompt_len + max(chosen_len, rejected_len)) < 50000
|
| 146 |
+
|
| 147 |
+
train_dataset = train_dataset.filter(filter_by_length)
|
| 148 |
+
eval_dataset = eval_dataset.filter(filter_by_length)
|
| 149 |
+
|
| 150 |
+
print(f"After filtering - Train: {len(train_dataset)}, Val: {len(eval_dataset)}")
|
| 151 |
+
|
| 152 |
+
# Show example
|
| 153 |
+
print("\nExample prompt:", train_dataset[0]["prompt"][:100], "...")
|
| 154 |
+
|
| 155 |
+
# ============================================================================
|
| 156 |
+
# DPO TRAINING CONFIGURATION
|
| 157 |
+
# ============================================================================
|
| 158 |
+
|
| 159 |
+
print(f"\nTraining configuration:")
|
| 160 |
+
print(f" - Epochs: {NUM_EPOCHS}")
|
| 161 |
+
print(f" - Batch size: {BATCH_SIZE}")
|
| 162 |
+
print(f" - Gradient accumulation: {GRAD_ACCUM}")
|
| 163 |
+
print(f" - Effective batch size: {BATCH_SIZE * GRAD_ACCUM}")
|
| 164 |
+
print(f" - Learning rate: {LEARNING_RATE}")
|
| 165 |
+
print(f" - Max length: {MAX_LENGTH}")
|
| 166 |
+
print(f" - DPO beta: {BETA}")
|
| 167 |
+
|
| 168 |
+
training_args = DPOConfig(
|
| 169 |
+
output_dir=OUTPUT_DIR,
|
| 170 |
+
num_train_epochs=NUM_EPOCHS,
|
| 171 |
+
per_device_train_batch_size=BATCH_SIZE,
|
| 172 |
+
per_device_eval_batch_size=BATCH_SIZE,
|
| 173 |
+
gradient_accumulation_steps=GRAD_ACCUM,
|
| 174 |
+
learning_rate=LEARNING_RATE,
|
| 175 |
+
lr_scheduler_type="cosine",
|
| 176 |
+
warmup_ratio=0.1,
|
| 177 |
+
weight_decay=0.01,
|
| 178 |
+
bf16=True,
|
| 179 |
+
tf32=True,
|
| 180 |
+
logging_steps=10,
|
| 181 |
+
save_strategy="steps",
|
| 182 |
+
save_steps=500,
|
| 183 |
+
save_total_limit=3,
|
| 184 |
+
eval_strategy="steps",
|
| 185 |
+
eval_steps=500,
|
| 186 |
+
max_length=MAX_LENGTH,
|
| 187 |
+
max_prompt_length=MAX_PROMPT_LENGTH,
|
| 188 |
+
beta=BETA,
|
| 189 |
+
loss_type="sigmoid", # Standard DPO loss
|
| 190 |
+
gradient_checkpointing=True,
|
| 191 |
+
gradient_checkpointing_kwargs={"use_reentrant": False},
|
| 192 |
+
report_to="none",
|
| 193 |
+
run_name="qwen3-dpo-reasoning",
|
| 194 |
+
hub_model_id=HF_REPO if hf_token else None,
|
| 195 |
+
push_to_hub=bool(hf_token),
|
| 196 |
+
hub_strategy="checkpoint",
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# ============================================================================
|
| 200 |
+
# TRAINING
|
| 201 |
+
# ============================================================================
|
| 202 |
+
|
| 203 |
+
print("\nInitializing DPO trainer...")
|
| 204 |
+
|
| 205 |
+
trainer = DPOTrainer(
|
| 206 |
+
model=model,
|
| 207 |
+
args=training_args,
|
| 208 |
+
train_dataset=train_dataset,
|
| 209 |
+
eval_dataset=eval_dataset,
|
| 210 |
+
peft_config=peft_config,
|
| 211 |
+
processing_class=tokenizer,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Show trainable parameters
|
| 215 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 216 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 217 |
+
print(f"\nTrainable parameters: {trainable_params:,} / {total_params:,} ({100 * trainable_params / total_params:.2f}%)")
|
| 218 |
+
|
| 219 |
+
print("\n" + "=" * 60)
|
| 220 |
+
print("STARTING DPO TRAINING")
|
| 221 |
+
print("=" * 60)
|
| 222 |
+
|
| 223 |
+
trainer.train()
|
| 224 |
+
|
| 225 |
+
# ============================================================================
|
| 226 |
+
# SAVE MODEL
|
| 227 |
+
# ============================================================================
|
| 228 |
+
|
| 229 |
+
print("\nSaving model...")
|
| 230 |
+
trainer.save_model(f"{OUTPUT_DIR}/final")
|
| 231 |
+
|
| 232 |
+
if hf_token:
|
| 233 |
+
print(f"Pushing to {HF_REPO}...")
|
| 234 |
+
trainer.push_to_hub()
|
| 235 |
+
print(f"Model available at: https://huggingface.co/{HF_REPO}")
|
| 236 |
+
|
| 237 |
+
print("\n" + "=" * 60)
|
| 238 |
+
print("DPO TRAINING COMPLETE")
|
| 239 |
+
print("=" * 60)
|