Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +29 -0
- generation_config.json +6 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +586 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- trainer_state.json +3013 -0
- training_args.bin +3 -0
- value_head.safetensors +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/ubuntu/tmp/models/tempesthenno-nuslerp-001",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 13824,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 48,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 40,
|
17 |
+
"num_hidden_layers": 48,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151665
|
29 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"transformers_version": "4.46.1"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step400
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcc08b2fc727b1196be1e317996ce1fe276cf108d3250058a41a558ed98e7793
|
3 |
+
size 4899283440
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:205481265ead77a0130d89f9b27014bc1e8aff5ff07e78e821c49342493be8de
|
3 |
+
size 4954847384
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c5e574e69ca270084d6a281d849732ff5f00b7e0acd89c7495fc36971572e6c
|
3 |
+
size 4954847376
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3360e7803596dcdce9900aae4b779a3416f652ba99a1ce2810787925e66c2659
|
3 |
+
size 4954847376
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dfd29c16488d8a3edca37ccffd1115cc709ebd1a40131db1d923946a36f5fa2
|
3 |
+
size 4954847376
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd52f323b90b7064b4d11cbbfa0acfa4e6cdf859679f3b79f076a9db860eca68
|
3 |
+
size 4813289432
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29531895808
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00001-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
524 |
+
"model.layers.5.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
525 |
+
"model.layers.5.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
526 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
527 |
+
"model.layers.5.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
528 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
529 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
530 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
531 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
532 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
533 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
534 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
535 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
536 |
+
"model.layers.6.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
537 |
+
"model.layers.6.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
538 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
539 |
+
"model.layers.6.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
540 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
541 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
542 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
543 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
544 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
545 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
546 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
547 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
548 |
+
"model.layers.7.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
549 |
+
"model.layers.7.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
550 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
551 |
+
"model.layers.7.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
552 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
553 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
554 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
555 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
556 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
557 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
558 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
559 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
560 |
+
"model.layers.8.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
561 |
+
"model.layers.8.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
562 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
563 |
+
"model.layers.8.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
564 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
565 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
566 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
567 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
568 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
569 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
570 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
571 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
572 |
+
"model.layers.9.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
573 |
+
"model.layers.9.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
574 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
575 |
+
"model.layers.9.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
576 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
577 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
578 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
579 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
580 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
581 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
582 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
583 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
584 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
585 |
+
}
|
586 |
+
}
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b29cea827e2ef52791356c5b22c98701f253e4d2ddceeda317c7f482e7f56e54
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>\n' }}{% endif %}{% endfor %}",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 2048,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"padding_side": "right",
|
206 |
+
"split_special_tokens": false,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"unk_token": null
|
209 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3013 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.4036326942482341,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0010090817356205853,
|
13 |
+
"grad_norm": 48.721710205078125,
|
14 |
+
"learning_rate": 8e-08,
|
15 |
+
"loss": 0.8681,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0020181634712411706,
|
20 |
+
"grad_norm": 44.42015075683594,
|
21 |
+
"learning_rate": 1.6e-07,
|
22 |
+
"loss": 0.6615,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0030272452068617556,
|
27 |
+
"grad_norm": 42.49191665649414,
|
28 |
+
"learning_rate": 2.4e-07,
|
29 |
+
"loss": 0.6742,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.004036326942482341,
|
34 |
+
"grad_norm": 40.36923599243164,
|
35 |
+
"learning_rate": 3.2e-07,
|
36 |
+
"loss": 0.7824,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.005045408678102927,
|
41 |
+
"grad_norm": 57.19468688964844,
|
42 |
+
"learning_rate": 4e-07,
|
43 |
+
"loss": 1.0009,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.006054490413723511,
|
48 |
+
"grad_norm": 48.78745651245117,
|
49 |
+
"learning_rate": 4.8e-07,
|
50 |
+
"loss": 0.7613,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.007063572149344097,
|
55 |
+
"grad_norm": 37.92594528198242,
|
56 |
+
"learning_rate": 5.6e-07,
|
57 |
+
"loss": 0.6615,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.008072653884964682,
|
62 |
+
"grad_norm": 37.87478256225586,
|
63 |
+
"learning_rate": 6.4e-07,
|
64 |
+
"loss": 0.6779,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.009081735620585268,
|
69 |
+
"grad_norm": 43.225589752197266,
|
70 |
+
"learning_rate": 7.2e-07,
|
71 |
+
"loss": 0.796,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.010090817356205853,
|
76 |
+
"grad_norm": 43.1926383972168,
|
77 |
+
"learning_rate": 8e-07,
|
78 |
+
"loss": 0.8526,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.011099899091826439,
|
83 |
+
"grad_norm": 42.08029556274414,
|
84 |
+
"learning_rate": 8.799999999999999e-07,
|
85 |
+
"loss": 0.6605,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.012108980827447022,
|
90 |
+
"grad_norm": 49.14653396606445,
|
91 |
+
"learning_rate": 9.6e-07,
|
92 |
+
"loss": 0.6774,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.013118062563067608,
|
97 |
+
"grad_norm": 47.238338470458984,
|
98 |
+
"learning_rate": 1.04e-06,
|
99 |
+
"loss": 0.7313,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.014127144298688193,
|
104 |
+
"grad_norm": 37.998931884765625,
|
105 |
+
"learning_rate": 1.12e-06,
|
106 |
+
"loss": 0.6244,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.015136226034308779,
|
111 |
+
"grad_norm": 37.945064544677734,
|
112 |
+
"learning_rate": 1.2e-06,
|
113 |
+
"loss": 0.5214,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.016145307769929364,
|
118 |
+
"grad_norm": 33.03001403808594,
|
119 |
+
"learning_rate": 1.28e-06,
|
120 |
+
"loss": 0.5042,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.017154389505549948,
|
125 |
+
"grad_norm": 32.11518096923828,
|
126 |
+
"learning_rate": 1.3600000000000001e-06,
|
127 |
+
"loss": 0.3594,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.018163471241170535,
|
132 |
+
"grad_norm": 30.64830207824707,
|
133 |
+
"learning_rate": 1.44e-06,
|
134 |
+
"loss": 0.3533,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.01917255297679112,
|
139 |
+
"grad_norm": 41.34456253051758,
|
140 |
+
"learning_rate": 1.5199999999999998e-06,
|
141 |
+
"loss": 0.6093,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.020181634712411706,
|
146 |
+
"grad_norm": 35.51686477661133,
|
147 |
+
"learning_rate": 1.6e-06,
|
148 |
+
"loss": 0.3241,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.020181634712411706,
|
153 |
+
"eval_accuracy": 0.7758229284903518,
|
154 |
+
"eval_loss": 0.3856516480445862,
|
155 |
+
"eval_runtime": 63.0132,
|
156 |
+
"eval_samples_per_second": 27.962,
|
157 |
+
"eval_steps_per_second": 3.507,
|
158 |
+
"step": 20
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.02119071644803229,
|
162 |
+
"grad_norm": 36.574764251708984,
|
163 |
+
"learning_rate": 1.6799999999999998e-06,
|
164 |
+
"loss": 0.3611,
|
165 |
+
"step": 21
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.022199798183652877,
|
169 |
+
"grad_norm": 42.98014831542969,
|
170 |
+
"learning_rate": 1.7599999999999999e-06,
|
171 |
+
"loss": 0.5187,
|
172 |
+
"step": 22
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.02320887991927346,
|
176 |
+
"grad_norm": 32.25895690917969,
|
177 |
+
"learning_rate": 1.84e-06,
|
178 |
+
"loss": 0.3201,
|
179 |
+
"step": 23
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.024217961654894045,
|
183 |
+
"grad_norm": 45.763553619384766,
|
184 |
+
"learning_rate": 1.92e-06,
|
185 |
+
"loss": 0.3977,
|
186 |
+
"step": 24
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.025227043390514632,
|
190 |
+
"grad_norm": 41.3906135559082,
|
191 |
+
"learning_rate": 2e-06,
|
192 |
+
"loss": 0.3863,
|
193 |
+
"step": 25
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.026236125126135216,
|
197 |
+
"grad_norm": 55.49371337890625,
|
198 |
+
"learning_rate": 2.08e-06,
|
199 |
+
"loss": 0.4371,
|
200 |
+
"step": 26
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.027245206861755803,
|
204 |
+
"grad_norm": 49.18912124633789,
|
205 |
+
"learning_rate": 2.16e-06,
|
206 |
+
"loss": 0.4072,
|
207 |
+
"step": 27
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.028254288597376387,
|
211 |
+
"grad_norm": 53.16490173339844,
|
212 |
+
"learning_rate": 2.24e-06,
|
213 |
+
"loss": 0.5366,
|
214 |
+
"step": 28
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.029263370332996974,
|
218 |
+
"grad_norm": 58.15668869018555,
|
219 |
+
"learning_rate": 2.32e-06,
|
220 |
+
"loss": 0.5429,
|
221 |
+
"step": 29
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.030272452068617558,
|
225 |
+
"grad_norm": 32.979671478271484,
|
226 |
+
"learning_rate": 2.4e-06,
|
227 |
+
"loss": 0.2946,
|
228 |
+
"step": 30
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.03128153380423814,
|
232 |
+
"grad_norm": 40.131385803222656,
|
233 |
+
"learning_rate": 2.48e-06,
|
234 |
+
"loss": 0.298,
|
235 |
+
"step": 31
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.03229061553985873,
|
239 |
+
"grad_norm": 45.999542236328125,
|
240 |
+
"learning_rate": 2.56e-06,
|
241 |
+
"loss": 0.27,
|
242 |
+
"step": 32
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.033299697275479316,
|
246 |
+
"grad_norm": 32.2443962097168,
|
247 |
+
"learning_rate": 2.64e-06,
|
248 |
+
"loss": 0.2337,
|
249 |
+
"step": 33
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.034308779011099896,
|
253 |
+
"grad_norm": 28.031023025512695,
|
254 |
+
"learning_rate": 2.7200000000000002e-06,
|
255 |
+
"loss": 0.1835,
|
256 |
+
"step": 34
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.035317860746720484,
|
260 |
+
"grad_norm": 22.68515396118164,
|
261 |
+
"learning_rate": 2.8e-06,
|
262 |
+
"loss": 0.1522,
|
263 |
+
"step": 35
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.03632694248234107,
|
267 |
+
"grad_norm": 38.576019287109375,
|
268 |
+
"learning_rate": 2.88e-06,
|
269 |
+
"loss": 0.3371,
|
270 |
+
"step": 36
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.03733602421796166,
|
274 |
+
"grad_norm": 23.268003463745117,
|
275 |
+
"learning_rate": 2.96e-06,
|
276 |
+
"loss": 0.161,
|
277 |
+
"step": 37
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.03834510595358224,
|
281 |
+
"grad_norm": 43.69157409667969,
|
282 |
+
"learning_rate": 3.0399999999999997e-06,
|
283 |
+
"loss": 0.4692,
|
284 |
+
"step": 38
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.039354187689202826,
|
288 |
+
"grad_norm": 33.641780853271484,
|
289 |
+
"learning_rate": 3.1199999999999998e-06,
|
290 |
+
"loss": 0.3815,
|
291 |
+
"step": 39
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.04036326942482341,
|
295 |
+
"grad_norm": 32.81157302856445,
|
296 |
+
"learning_rate": 3.2e-06,
|
297 |
+
"loss": 0.3342,
|
298 |
+
"step": 40
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.04036326942482341,
|
302 |
+
"eval_accuracy": 0.8359818388195233,
|
303 |
+
"eval_loss": 0.30243048071861267,
|
304 |
+
"eval_runtime": 62.0758,
|
305 |
+
"eval_samples_per_second": 28.385,
|
306 |
+
"eval_steps_per_second": 3.56,
|
307 |
+
"step": 40
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 0.04137235116044399,
|
311 |
+
"grad_norm": 38.70158004760742,
|
312 |
+
"learning_rate": 3.2799999999999995e-06,
|
313 |
+
"loss": 0.3523,
|
314 |
+
"step": 41
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.04238143289606458,
|
318 |
+
"grad_norm": 36.827938079833984,
|
319 |
+
"learning_rate": 3.3599999999999996e-06,
|
320 |
+
"loss": 0.3339,
|
321 |
+
"step": 42
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.04339051463168517,
|
325 |
+
"grad_norm": 40.072757720947266,
|
326 |
+
"learning_rate": 3.4399999999999997e-06,
|
327 |
+
"loss": 0.3718,
|
328 |
+
"step": 43
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.044399596367305755,
|
332 |
+
"grad_norm": 17.283546447753906,
|
333 |
+
"learning_rate": 3.5199999999999998e-06,
|
334 |
+
"loss": 0.1344,
|
335 |
+
"step": 44
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.045408678102926335,
|
339 |
+
"grad_norm": 38.25215148925781,
|
340 |
+
"learning_rate": 3.6e-06,
|
341 |
+
"loss": 0.3276,
|
342 |
+
"step": 45
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.04641775983854692,
|
346 |
+
"grad_norm": 31.07087516784668,
|
347 |
+
"learning_rate": 3.68e-06,
|
348 |
+
"loss": 0.3091,
|
349 |
+
"step": 46
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.04742684157416751,
|
353 |
+
"grad_norm": 29.617158889770508,
|
354 |
+
"learning_rate": 3.7599999999999996e-06,
|
355 |
+
"loss": 0.2113,
|
356 |
+
"step": 47
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.04843592330978809,
|
360 |
+
"grad_norm": 37.85402297973633,
|
361 |
+
"learning_rate": 3.84e-06,
|
362 |
+
"loss": 0.3061,
|
363 |
+
"step": 48
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.04944500504540868,
|
367 |
+
"grad_norm": 92.3378677368164,
|
368 |
+
"learning_rate": 3.92e-06,
|
369 |
+
"loss": 0.8413,
|
370 |
+
"step": 49
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 0.050454086781029264,
|
374 |
+
"grad_norm": 25.68213653564453,
|
375 |
+
"learning_rate": 4e-06,
|
376 |
+
"loss": 0.2466,
|
377 |
+
"step": 50
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.05146316851664985,
|
381 |
+
"grad_norm": 22.958641052246094,
|
382 |
+
"learning_rate": 4.08e-06,
|
383 |
+
"loss": 0.2127,
|
384 |
+
"step": 51
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.05247225025227043,
|
388 |
+
"grad_norm": 26.674156188964844,
|
389 |
+
"learning_rate": 4.16e-06,
|
390 |
+
"loss": 0.5098,
|
391 |
+
"step": 52
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.05348133198789102,
|
395 |
+
"grad_norm": 18.660629272460938,
|
396 |
+
"learning_rate": 4.24e-06,
|
397 |
+
"loss": 0.2416,
|
398 |
+
"step": 53
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.054490413723511606,
|
402 |
+
"grad_norm": 20.310880661010742,
|
403 |
+
"learning_rate": 4.32e-06,
|
404 |
+
"loss": 0.3086,
|
405 |
+
"step": 54
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.055499495459132187,
|
409 |
+
"grad_norm": 20.308359146118164,
|
410 |
+
"learning_rate": 4.4e-06,
|
411 |
+
"loss": 0.3001,
|
412 |
+
"step": 55
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"epoch": 0.056508577194752774,
|
416 |
+
"grad_norm": 13.419134140014648,
|
417 |
+
"learning_rate": 4.48e-06,
|
418 |
+
"loss": 0.1779,
|
419 |
+
"step": 56
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.05751765893037336,
|
423 |
+
"grad_norm": 14.848164558410645,
|
424 |
+
"learning_rate": 4.5599999999999995e-06,
|
425 |
+
"loss": 0.1883,
|
426 |
+
"step": 57
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 0.05852674066599395,
|
430 |
+
"grad_norm": 23.216663360595703,
|
431 |
+
"learning_rate": 4.64e-06,
|
432 |
+
"loss": 0.3184,
|
433 |
+
"step": 58
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.05953582240161453,
|
437 |
+
"grad_norm": 65.48796081542969,
|
438 |
+
"learning_rate": 4.72e-06,
|
439 |
+
"loss": 0.3397,
|
440 |
+
"step": 59
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.060544904137235116,
|
444 |
+
"grad_norm": 97.63284301757812,
|
445 |
+
"learning_rate": 4.8e-06,
|
446 |
+
"loss": 0.3936,
|
447 |
+
"step": 60
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.060544904137235116,
|
451 |
+
"eval_accuracy": 0.7474460839954598,
|
452 |
+
"eval_loss": 0.4690244793891907,
|
453 |
+
"eval_runtime": 62.2233,
|
454 |
+
"eval_samples_per_second": 28.317,
|
455 |
+
"eval_steps_per_second": 3.552,
|
456 |
+
"step": 60
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 0.0615539858728557,
|
460 |
+
"grad_norm": 210.90390014648438,
|
461 |
+
"learning_rate": 4.88e-06,
|
462 |
+
"loss": 0.6895,
|
463 |
+
"step": 61
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 0.06256306760847628,
|
467 |
+
"grad_norm": 46.58690643310547,
|
468 |
+
"learning_rate": 4.96e-06,
|
469 |
+
"loss": 0.29,
|
470 |
+
"step": 62
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.06357214934409687,
|
474 |
+
"grad_norm": 31.453752517700195,
|
475 |
+
"learning_rate": 5.04e-06,
|
476 |
+
"loss": 0.3071,
|
477 |
+
"step": 63
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.06458123107971746,
|
481 |
+
"grad_norm": 20.283885955810547,
|
482 |
+
"learning_rate": 5.12e-06,
|
483 |
+
"loss": 0.3571,
|
484 |
+
"step": 64
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 0.06559031281533804,
|
488 |
+
"grad_norm": 42.37957763671875,
|
489 |
+
"learning_rate": 5.2e-06,
|
490 |
+
"loss": 0.5532,
|
491 |
+
"step": 65
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.06659939455095863,
|
495 |
+
"grad_norm": 21.637910842895508,
|
496 |
+
"learning_rate": 5.28e-06,
|
497 |
+
"loss": 0.262,
|
498 |
+
"step": 66
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 0.06760847628657922,
|
502 |
+
"grad_norm": 18.54781723022461,
|
503 |
+
"learning_rate": 5.36e-06,
|
504 |
+
"loss": 0.2257,
|
505 |
+
"step": 67
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 0.06861755802219979,
|
509 |
+
"grad_norm": 20.521879196166992,
|
510 |
+
"learning_rate": 5.4400000000000004e-06,
|
511 |
+
"loss": 0.3857,
|
512 |
+
"step": 68
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.06962663975782038,
|
516 |
+
"grad_norm": 29.46757698059082,
|
517 |
+
"learning_rate": 5.52e-06,
|
518 |
+
"loss": 0.1029,
|
519 |
+
"step": 69
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.07063572149344097,
|
523 |
+
"grad_norm": 29.944223403930664,
|
524 |
+
"learning_rate": 5.6e-06,
|
525 |
+
"loss": 0.2712,
|
526 |
+
"step": 70
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 0.07164480322906155,
|
530 |
+
"grad_norm": 24.391925811767578,
|
531 |
+
"learning_rate": 5.68e-06,
|
532 |
+
"loss": 0.3976,
|
533 |
+
"step": 71
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.07265388496468214,
|
537 |
+
"grad_norm": 18.12702751159668,
|
538 |
+
"learning_rate": 5.76e-06,
|
539 |
+
"loss": 0.3472,
|
540 |
+
"step": 72
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 0.07366296670030273,
|
544 |
+
"grad_norm": 10.216832160949707,
|
545 |
+
"learning_rate": 5.84e-06,
|
546 |
+
"loss": 0.2769,
|
547 |
+
"step": 73
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 0.07467204843592332,
|
551 |
+
"grad_norm": 11.782180786132812,
|
552 |
+
"learning_rate": 5.92e-06,
|
553 |
+
"loss": 0.3737,
|
554 |
+
"step": 74
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.07568113017154389,
|
558 |
+
"grad_norm": 33.01165771484375,
|
559 |
+
"learning_rate": 6e-06,
|
560 |
+
"loss": 0.2062,
|
561 |
+
"step": 75
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.07669021190716448,
|
565 |
+
"grad_norm": 16.44459342956543,
|
566 |
+
"learning_rate": 6.079999999999999e-06,
|
567 |
+
"loss": 0.4451,
|
568 |
+
"step": 76
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 0.07769929364278506,
|
572 |
+
"grad_norm": 8.65665340423584,
|
573 |
+
"learning_rate": 6.1599999999999995e-06,
|
574 |
+
"loss": 0.2799,
|
575 |
+
"step": 77
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.07870837537840565,
|
579 |
+
"grad_norm": 9.738832473754883,
|
580 |
+
"learning_rate": 6.2399999999999995e-06,
|
581 |
+
"loss": 0.2986,
|
582 |
+
"step": 78
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 0.07971745711402624,
|
586 |
+
"grad_norm": 5.850776195526123,
|
587 |
+
"learning_rate": 6.32e-06,
|
588 |
+
"loss": 0.2548,
|
589 |
+
"step": 79
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 0.08072653884964683,
|
593 |
+
"grad_norm": 11.245881080627441,
|
594 |
+
"learning_rate": 6.4e-06,
|
595 |
+
"loss": 0.3249,
|
596 |
+
"step": 80
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.08072653884964683,
|
600 |
+
"eval_accuracy": 0.8569807037457434,
|
601 |
+
"eval_loss": 0.2707608640193939,
|
602 |
+
"eval_runtime": 62.6893,
|
603 |
+
"eval_samples_per_second": 28.107,
|
604 |
+
"eval_steps_per_second": 3.525,
|
605 |
+
"step": 80
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.08173562058526741,
|
609 |
+
"grad_norm": 9.138853073120117,
|
610 |
+
"learning_rate": 6.48e-06,
|
611 |
+
"loss": 0.2931,
|
612 |
+
"step": 81
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.08274470232088799,
|
616 |
+
"grad_norm": 7.408812999725342,
|
617 |
+
"learning_rate": 6.559999999999999e-06,
|
618 |
+
"loss": 0.276,
|
619 |
+
"step": 82
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.08375378405650857,
|
623 |
+
"grad_norm": 5.13024377822876,
|
624 |
+
"learning_rate": 6.639999999999999e-06,
|
625 |
+
"loss": 0.1842,
|
626 |
+
"step": 83
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.08476286579212916,
|
630 |
+
"grad_norm": 5.102560043334961,
|
631 |
+
"learning_rate": 6.719999999999999e-06,
|
632 |
+
"loss": 0.2041,
|
633 |
+
"step": 84
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.08577194752774975,
|
637 |
+
"grad_norm": 8.902843475341797,
|
638 |
+
"learning_rate": 6.799999999999999e-06,
|
639 |
+
"loss": 0.3015,
|
640 |
+
"step": 85
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.08678102926337034,
|
644 |
+
"grad_norm": 8.0729398727417,
|
645 |
+
"learning_rate": 6.879999999999999e-06,
|
646 |
+
"loss": 0.3637,
|
647 |
+
"step": 86
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.08779011099899092,
|
651 |
+
"grad_norm": 7.424192428588867,
|
652 |
+
"learning_rate": 6.9599999999999994e-06,
|
653 |
+
"loss": 0.1691,
|
654 |
+
"step": 87
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.08879919273461151,
|
658 |
+
"grad_norm": 19.509435653686523,
|
659 |
+
"learning_rate": 7.0399999999999995e-06,
|
660 |
+
"loss": 0.3888,
|
661 |
+
"step": 88
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.08980827447023208,
|
665 |
+
"grad_norm": 13.97599983215332,
|
666 |
+
"learning_rate": 7.12e-06,
|
667 |
+
"loss": 0.2415,
|
668 |
+
"step": 89
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.09081735620585267,
|
672 |
+
"grad_norm": 14.023358345031738,
|
673 |
+
"learning_rate": 7.2e-06,
|
674 |
+
"loss": 0.2889,
|
675 |
+
"step": 90
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.09182643794147326,
|
679 |
+
"grad_norm": 15.243273735046387,
|
680 |
+
"learning_rate": 7.28e-06,
|
681 |
+
"loss": 0.4061,
|
682 |
+
"step": 91
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.09283551967709384,
|
686 |
+
"grad_norm": 9.57010555267334,
|
687 |
+
"learning_rate": 7.36e-06,
|
688 |
+
"loss": 0.2501,
|
689 |
+
"step": 92
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.09384460141271443,
|
693 |
+
"grad_norm": 20.639694213867188,
|
694 |
+
"learning_rate": 7.44e-06,
|
695 |
+
"loss": 0.2877,
|
696 |
+
"step": 93
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.09485368314833502,
|
700 |
+
"grad_norm": 75.29905700683594,
|
701 |
+
"learning_rate": 7.519999999999999e-06,
|
702 |
+
"loss": 0.4536,
|
703 |
+
"step": 94
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.0958627648839556,
|
707 |
+
"grad_norm": 340.7889709472656,
|
708 |
+
"learning_rate": 7.599999999999999e-06,
|
709 |
+
"loss": 0.4443,
|
710 |
+
"step": 95
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.09687184661957618,
|
714 |
+
"grad_norm": 16.866931915283203,
|
715 |
+
"learning_rate": 7.68e-06,
|
716 |
+
"loss": 0.292,
|
717 |
+
"step": 96
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.09788092835519677,
|
721 |
+
"grad_norm": 12.300322532653809,
|
722 |
+
"learning_rate": 7.76e-06,
|
723 |
+
"loss": 0.2191,
|
724 |
+
"step": 97
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.09889001009081735,
|
728 |
+
"grad_norm": 18.15094566345215,
|
729 |
+
"learning_rate": 7.84e-06,
|
730 |
+
"loss": 0.1821,
|
731 |
+
"step": 98
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.09989909182643794,
|
735 |
+
"grad_norm": 31.187374114990234,
|
736 |
+
"learning_rate": 7.92e-06,
|
737 |
+
"loss": 0.1823,
|
738 |
+
"step": 99
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.10090817356205853,
|
742 |
+
"grad_norm": 64.1741943359375,
|
743 |
+
"learning_rate": 8e-06,
|
744 |
+
"loss": 0.5276,
|
745 |
+
"step": 100
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.10090817356205853,
|
749 |
+
"eval_accuracy": 0.8467650397275823,
|
750 |
+
"eval_loss": 0.28612375259399414,
|
751 |
+
"eval_runtime": 62.505,
|
752 |
+
"eval_samples_per_second": 28.19,
|
753 |
+
"eval_steps_per_second": 3.536,
|
754 |
+
"step": 100
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.10191725529767912,
|
758 |
+
"grad_norm": 12.569557189941406,
|
759 |
+
"learning_rate": 7.999975135834775e-06,
|
760 |
+
"loss": 0.3077,
|
761 |
+
"step": 101
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.1029263370332997,
|
765 |
+
"grad_norm": 7.0805277824401855,
|
766 |
+
"learning_rate": 7.999900543648217e-06,
|
767 |
+
"loss": 0.1759,
|
768 |
+
"step": 102
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 0.10393541876892028,
|
772 |
+
"grad_norm": 9.746481895446777,
|
773 |
+
"learning_rate": 7.999776224367659e-06,
|
774 |
+
"loss": 0.2064,
|
775 |
+
"step": 103
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.10494450050454086,
|
779 |
+
"grad_norm": 6.783945560455322,
|
780 |
+
"learning_rate": 7.999602179538651e-06,
|
781 |
+
"loss": 0.3028,
|
782 |
+
"step": 104
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.10595358224016145,
|
786 |
+
"grad_norm": 4.683195114135742,
|
787 |
+
"learning_rate": 7.999378411324933e-06,
|
788 |
+
"loss": 0.1767,
|
789 |
+
"step": 105
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.10696266397578204,
|
793 |
+
"grad_norm": 6.255279064178467,
|
794 |
+
"learning_rate": 7.999104922508408e-06,
|
795 |
+
"loss": 0.2984,
|
796 |
+
"step": 106
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.10797174571140263,
|
800 |
+
"grad_norm": 5.866703987121582,
|
801 |
+
"learning_rate": 7.99878171648911e-06,
|
802 |
+
"loss": 0.2472,
|
803 |
+
"step": 107
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.10898082744702321,
|
807 |
+
"grad_norm": 5.773608207702637,
|
808 |
+
"learning_rate": 7.998408797285167e-06,
|
809 |
+
"loss": 0.225,
|
810 |
+
"step": 108
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.1099899091826438,
|
814 |
+
"grad_norm": 10.58280086517334,
|
815 |
+
"learning_rate": 7.99798616953274e-06,
|
816 |
+
"loss": 0.3962,
|
817 |
+
"step": 109
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.11099899091826437,
|
821 |
+
"grad_norm": 5.545925140380859,
|
822 |
+
"learning_rate": 7.997513838485971e-06,
|
823 |
+
"loss": 0.1597,
|
824 |
+
"step": 110
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.11200807265388496,
|
828 |
+
"grad_norm": 7.84637975692749,
|
829 |
+
"learning_rate": 7.99699181001692e-06,
|
830 |
+
"loss": 0.346,
|
831 |
+
"step": 111
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.11301715438950555,
|
835 |
+
"grad_norm": 5.827946662902832,
|
836 |
+
"learning_rate": 7.996420090615486e-06,
|
837 |
+
"loss": 0.2507,
|
838 |
+
"step": 112
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 0.11402623612512613,
|
842 |
+
"grad_norm": 8.125126838684082,
|
843 |
+
"learning_rate": 7.995798687389334e-06,
|
844 |
+
"loss": 0.2496,
|
845 |
+
"step": 113
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.11503531786074672,
|
849 |
+
"grad_norm": 6.233455181121826,
|
850 |
+
"learning_rate": 7.9951276080638e-06,
|
851 |
+
"loss": 0.2129,
|
852 |
+
"step": 114
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 0.11604439959636731,
|
856 |
+
"grad_norm": 8.677657127380371,
|
857 |
+
"learning_rate": 7.994406860981797e-06,
|
858 |
+
"loss": 0.3926,
|
859 |
+
"step": 115
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.1170534813319879,
|
863 |
+
"grad_norm": 6.164268493652344,
|
864 |
+
"learning_rate": 7.99363645510371e-06,
|
865 |
+
"loss": 0.2335,
|
866 |
+
"step": 116
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.11806256306760847,
|
870 |
+
"grad_norm": 5.605584144592285,
|
871 |
+
"learning_rate": 7.992816400007294e-06,
|
872 |
+
"loss": 0.2357,
|
873 |
+
"step": 117
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.11907164480322906,
|
877 |
+
"grad_norm": 8.481727600097656,
|
878 |
+
"learning_rate": 7.991946705887537e-06,
|
879 |
+
"loss": 0.4145,
|
880 |
+
"step": 118
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 0.12008072653884964,
|
884 |
+
"grad_norm": 7.141845226287842,
|
885 |
+
"learning_rate": 7.99102738355655e-06,
|
886 |
+
"loss": 0.3807,
|
887 |
+
"step": 119
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 0.12108980827447023,
|
891 |
+
"grad_norm": 22.80964469909668,
|
892 |
+
"learning_rate": 7.990058444443424e-06,
|
893 |
+
"loss": 0.259,
|
894 |
+
"step": 120
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.12108980827447023,
|
898 |
+
"eval_accuracy": 0.7729852440408627,
|
899 |
+
"eval_loss": 0.44569578766822815,
|
900 |
+
"eval_runtime": 62.4809,
|
901 |
+
"eval_samples_per_second": 28.201,
|
902 |
+
"eval_steps_per_second": 3.537,
|
903 |
+
"step": 120
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.12209889001009082,
|
907 |
+
"grad_norm": 56.96179962158203,
|
908 |
+
"learning_rate": 7.989039900594089e-06,
|
909 |
+
"loss": 0.4721,
|
910 |
+
"step": 121
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.1231079717457114,
|
914 |
+
"grad_norm": 9.661979675292969,
|
915 |
+
"learning_rate": 7.987971764671168e-06,
|
916 |
+
"loss": 0.2308,
|
917 |
+
"step": 122
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.124117053481332,
|
921 |
+
"grad_norm": 20.324970245361328,
|
922 |
+
"learning_rate": 7.986854049953814e-06,
|
923 |
+
"loss": 0.4019,
|
924 |
+
"step": 123
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.12512613521695257,
|
928 |
+
"grad_norm": 7.678678512573242,
|
929 |
+
"learning_rate": 7.98568677033755e-06,
|
930 |
+
"loss": 0.1287,
|
931 |
+
"step": 124
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 0.12613521695257315,
|
935 |
+
"grad_norm": 5.97120475769043,
|
936 |
+
"learning_rate": 7.984469940334089e-06,
|
937 |
+
"loss": 0.3056,
|
938 |
+
"step": 125
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.12714429868819374,
|
942 |
+
"grad_norm": 4.4789509773254395,
|
943 |
+
"learning_rate": 7.983203575071166e-06,
|
944 |
+
"loss": 0.156,
|
945 |
+
"step": 126
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.12815338042381433,
|
949 |
+
"grad_norm": 7.833422660827637,
|
950 |
+
"learning_rate": 7.981887690292338e-06,
|
951 |
+
"loss": 0.3012,
|
952 |
+
"step": 127
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 0.12916246215943492,
|
956 |
+
"grad_norm": 4.627663612365723,
|
957 |
+
"learning_rate": 7.980522302356792e-06,
|
958 |
+
"loss": 0.1701,
|
959 |
+
"step": 128
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 0.1301715438950555,
|
963 |
+
"grad_norm": 23.75330924987793,
|
964 |
+
"learning_rate": 7.979107428239143e-06,
|
965 |
+
"loss": 0.5042,
|
966 |
+
"step": 129
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 0.1311806256306761,
|
970 |
+
"grad_norm": 8.093461036682129,
|
971 |
+
"learning_rate": 7.977643085529227e-06,
|
972 |
+
"loss": 0.3362,
|
973 |
+
"step": 130
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 0.13218970736629668,
|
977 |
+
"grad_norm": 8.479804992675781,
|
978 |
+
"learning_rate": 7.97612929243187e-06,
|
979 |
+
"loss": 0.2005,
|
980 |
+
"step": 131
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.13319878910191726,
|
984 |
+
"grad_norm": 8.889948844909668,
|
985 |
+
"learning_rate": 7.974566067766671e-06,
|
986 |
+
"loss": 0.4108,
|
987 |
+
"step": 132
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.13420787083753785,
|
991 |
+
"grad_norm": 6.473036289215088,
|
992 |
+
"learning_rate": 7.972953430967771e-06,
|
993 |
+
"loss": 0.3489,
|
994 |
+
"step": 133
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.13521695257315844,
|
998 |
+
"grad_norm": 5.9677863121032715,
|
999 |
+
"learning_rate": 7.971291402083606e-06,
|
1000 |
+
"loss": 0.2707,
|
1001 |
+
"step": 134
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 0.136226034308779,
|
1005 |
+
"grad_norm": 9.331769943237305,
|
1006 |
+
"learning_rate": 7.969580001776653e-06,
|
1007 |
+
"loss": 0.4528,
|
1008 |
+
"step": 135
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 0.13723511604439959,
|
1012 |
+
"grad_norm": 6.988079071044922,
|
1013 |
+
"learning_rate": 7.96781925132318e-06,
|
1014 |
+
"loss": 0.3895,
|
1015 |
+
"step": 136
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 0.13824419778002017,
|
1019 |
+
"grad_norm": 5.6570281982421875,
|
1020 |
+
"learning_rate": 7.966009172612988e-06,
|
1021 |
+
"loss": 0.2324,
|
1022 |
+
"step": 137
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.13925327951564076,
|
1026 |
+
"grad_norm": 7.507450103759766,
|
1027 |
+
"learning_rate": 7.964149788149122e-06,
|
1028 |
+
"loss": 0.3709,
|
1029 |
+
"step": 138
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.14026236125126135,
|
1033 |
+
"grad_norm": 6.912793159484863,
|
1034 |
+
"learning_rate": 7.962241121047602e-06,
|
1035 |
+
"loss": 0.2004,
|
1036 |
+
"step": 139
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 0.14127144298688193,
|
1040 |
+
"grad_norm": 7.456505298614502,
|
1041 |
+
"learning_rate": 7.960283195037138e-06,
|
1042 |
+
"loss": 0.1852,
|
1043 |
+
"step": 140
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 0.14127144298688193,
|
1047 |
+
"eval_accuracy": 0.8382519863791147,
|
1048 |
+
"eval_loss": 0.30151110887527466,
|
1049 |
+
"eval_runtime": 59.0753,
|
1050 |
+
"eval_samples_per_second": 29.826,
|
1051 |
+
"eval_steps_per_second": 3.741,
|
1052 |
+
"step": 140
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.14228052472250252,
|
1056 |
+
"grad_norm": 5.073808670043945,
|
1057 |
+
"learning_rate": 7.958276034458826e-06,
|
1058 |
+
"loss": 0.2379,
|
1059 |
+
"step": 141
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.1432896064581231,
|
1063 |
+
"grad_norm": 10.782764434814453,
|
1064 |
+
"learning_rate": 7.956219664265852e-06,
|
1065 |
+
"loss": 0.1299,
|
1066 |
+
"step": 142
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.1442986881937437,
|
1070 |
+
"grad_norm": 5.916919708251953,
|
1071 |
+
"learning_rate": 7.95411411002318e-06,
|
1072 |
+
"loss": 0.2939,
|
1073 |
+
"step": 143
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.14530776992936428,
|
1077 |
+
"grad_norm": 4.290775775909424,
|
1078 |
+
"learning_rate": 7.951959397907236e-06,
|
1079 |
+
"loss": 0.2175,
|
1080 |
+
"step": 144
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.14631685166498487,
|
1084 |
+
"grad_norm": 6.01127290725708,
|
1085 |
+
"learning_rate": 7.949755554705577e-06,
|
1086 |
+
"loss": 0.2962,
|
1087 |
+
"step": 145
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.14732593340060546,
|
1091 |
+
"grad_norm": 5.430018901824951,
|
1092 |
+
"learning_rate": 7.947502607816566e-06,
|
1093 |
+
"loss": 0.3358,
|
1094 |
+
"step": 146
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.14833501513622604,
|
1098 |
+
"grad_norm": 2.893122911453247,
|
1099 |
+
"learning_rate": 7.945200585249022e-06,
|
1100 |
+
"loss": 0.0949,
|
1101 |
+
"step": 147
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.14934409687184663,
|
1105 |
+
"grad_norm": 5.385425567626953,
|
1106 |
+
"learning_rate": 7.942849515621881e-06,
|
1107 |
+
"loss": 0.314,
|
1108 |
+
"step": 148
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.1503531786074672,
|
1112 |
+
"grad_norm": 4.384002208709717,
|
1113 |
+
"learning_rate": 7.940449428163837e-06,
|
1114 |
+
"loss": 0.2312,
|
1115 |
+
"step": 149
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.15136226034308778,
|
1119 |
+
"grad_norm": 5.955286979675293,
|
1120 |
+
"learning_rate": 7.938000352712972e-06,
|
1121 |
+
"loss": 0.1949,
|
1122 |
+
"step": 150
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.15237134207870837,
|
1126 |
+
"grad_norm": 6.1054487228393555,
|
1127 |
+
"learning_rate": 7.935502319716397e-06,
|
1128 |
+
"loss": 0.3697,
|
1129 |
+
"step": 151
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.15338042381432895,
|
1133 |
+
"grad_norm": 3.2285423278808594,
|
1134 |
+
"learning_rate": 7.932955360229862e-06,
|
1135 |
+
"loss": 0.1118,
|
1136 |
+
"step": 152
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.15438950554994954,
|
1140 |
+
"grad_norm": 7.409282684326172,
|
1141 |
+
"learning_rate": 7.930359505917381e-06,
|
1142 |
+
"loss": 0.4898,
|
1143 |
+
"step": 153
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.15539858728557013,
|
1147 |
+
"grad_norm": 4.591885566711426,
|
1148 |
+
"learning_rate": 7.927714789050827e-06,
|
1149 |
+
"loss": 0.2288,
|
1150 |
+
"step": 154
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.15640766902119072,
|
1154 |
+
"grad_norm": 5.779257297515869,
|
1155 |
+
"learning_rate": 7.925021242509538e-06,
|
1156 |
+
"loss": 0.2563,
|
1157 |
+
"step": 155
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.1574167507568113,
|
1161 |
+
"grad_norm": 4.496645927429199,
|
1162 |
+
"learning_rate": 7.92227889977991e-06,
|
1163 |
+
"loss": 0.2096,
|
1164 |
+
"step": 156
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.1584258324924319,
|
1168 |
+
"grad_norm": 6.980607509613037,
|
1169 |
+
"learning_rate": 7.919487794954972e-06,
|
1170 |
+
"loss": 0.3658,
|
1171 |
+
"step": 157
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.15943491422805248,
|
1175 |
+
"grad_norm": 5.738483905792236,
|
1176 |
+
"learning_rate": 7.91664796273397e-06,
|
1177 |
+
"loss": 0.3123,
|
1178 |
+
"step": 158
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.16044399596367306,
|
1182 |
+
"grad_norm": 6.03507137298584,
|
1183 |
+
"learning_rate": 7.913759438421932e-06,
|
1184 |
+
"loss": 0.3345,
|
1185 |
+
"step": 159
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.16145307769929365,
|
1189 |
+
"grad_norm": 31.2845458984375,
|
1190 |
+
"learning_rate": 7.910822257929234e-06,
|
1191 |
+
"loss": 0.1122,
|
1192 |
+
"step": 160
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.16145307769929365,
|
1196 |
+
"eval_accuracy": 0.8518728717366629,
|
1197 |
+
"eval_loss": 0.38947635889053345,
|
1198 |
+
"eval_runtime": 62.3612,
|
1199 |
+
"eval_samples_per_second": 28.255,
|
1200 |
+
"eval_steps_per_second": 3.544,
|
1201 |
+
"step": 160
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 0.16246215943491424,
|
1205 |
+
"grad_norm": 6.148342609405518,
|
1206 |
+
"learning_rate": 7.907836457771143e-06,
|
1207 |
+
"loss": 0.2418,
|
1208 |
+
"step": 161
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.16347124117053483,
|
1212 |
+
"grad_norm": 38.332550048828125,
|
1213 |
+
"learning_rate": 7.904802075067377e-06,
|
1214 |
+
"loss": 0.6998,
|
1215 |
+
"step": 162
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.16448032290615539,
|
1219 |
+
"grad_norm": 8.149801254272461,
|
1220 |
+
"learning_rate": 7.901719147541628e-06,
|
1221 |
+
"loss": 0.1255,
|
1222 |
+
"step": 163
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 0.16548940464177597,
|
1226 |
+
"grad_norm": 19.77474021911621,
|
1227 |
+
"learning_rate": 7.898587713521109e-06,
|
1228 |
+
"loss": 0.6065,
|
1229 |
+
"step": 164
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"epoch": 0.16649848637739656,
|
1233 |
+
"grad_norm": 5.291502952575684,
|
1234 |
+
"learning_rate": 7.895407811936064e-06,
|
1235 |
+
"loss": 0.1659,
|
1236 |
+
"step": 165
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"epoch": 0.16750756811301715,
|
1240 |
+
"grad_norm": 5.293869495391846,
|
1241 |
+
"learning_rate": 7.892179482319294e-06,
|
1242 |
+
"loss": 0.2073,
|
1243 |
+
"step": 166
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"epoch": 0.16851664984863773,
|
1247 |
+
"grad_norm": 6.291193962097168,
|
1248 |
+
"learning_rate": 7.88890276480566e-06,
|
1249 |
+
"loss": 0.3597,
|
1250 |
+
"step": 167
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.16952573158425832,
|
1254 |
+
"grad_norm": 5.216683864593506,
|
1255 |
+
"learning_rate": 7.885577700131584e-06,
|
1256 |
+
"loss": 0.2888,
|
1257 |
+
"step": 168
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.1705348133198789,
|
1261 |
+
"grad_norm": 3.573047637939453,
|
1262 |
+
"learning_rate": 7.882204329634543e-06,
|
1263 |
+
"loss": 0.1343,
|
1264 |
+
"step": 169
|
1265 |
+
},
|
1266 |
+
{
|
1267 |
+
"epoch": 0.1715438950554995,
|
1268 |
+
"grad_norm": 5.618640899658203,
|
1269 |
+
"learning_rate": 7.878782695252562e-06,
|
1270 |
+
"loss": 0.2477,
|
1271 |
+
"step": 170
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 0.17255297679112008,
|
1275 |
+
"grad_norm": 6.469369411468506,
|
1276 |
+
"learning_rate": 7.875312839523677e-06,
|
1277 |
+
"loss": 0.3563,
|
1278 |
+
"step": 171
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 0.17356205852674067,
|
1282 |
+
"grad_norm": 7.982197284698486,
|
1283 |
+
"learning_rate": 7.871794805585425e-06,
|
1284 |
+
"loss": 0.2748,
|
1285 |
+
"step": 172
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"epoch": 0.17457114026236126,
|
1289 |
+
"grad_norm": 8.727740287780762,
|
1290 |
+
"learning_rate": 7.868228637174292e-06,
|
1291 |
+
"loss": 0.2539,
|
1292 |
+
"step": 173
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.17558022199798184,
|
1296 |
+
"grad_norm": 9.52997875213623,
|
1297 |
+
"learning_rate": 7.86461437862518e-06,
|
1298 |
+
"loss": 0.2352,
|
1299 |
+
"step": 174
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.17658930373360243,
|
1303 |
+
"grad_norm": 8.447443008422852,
|
1304 |
+
"learning_rate": 7.86095207487085e-06,
|
1305 |
+
"loss": 0.3129,
|
1306 |
+
"step": 175
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 0.17759838546922302,
|
1310 |
+
"grad_norm": 7.929843425750732,
|
1311 |
+
"learning_rate": 7.857241771441364e-06,
|
1312 |
+
"loss": 0.3138,
|
1313 |
+
"step": 176
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.17860746720484358,
|
1317 |
+
"grad_norm": 7.068841934204102,
|
1318 |
+
"learning_rate": 7.853483514463521e-06,
|
1319 |
+
"loss": 0.1881,
|
1320 |
+
"step": 177
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 0.17961654894046417,
|
1324 |
+
"grad_norm": 179.09567260742188,
|
1325 |
+
"learning_rate": 7.849677350660282e-06,
|
1326 |
+
"loss": 1.6187,
|
1327 |
+
"step": 178
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"epoch": 0.18062563067608475,
|
1331 |
+
"grad_norm": 14.378893852233887,
|
1332 |
+
"learning_rate": 7.84582332735019e-06,
|
1333 |
+
"loss": 0.44,
|
1334 |
+
"step": 179
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.18163471241170534,
|
1338 |
+
"grad_norm": 10.581100463867188,
|
1339 |
+
"learning_rate": 7.841921492446781e-06,
|
1340 |
+
"loss": 0.1962,
|
1341 |
+
"step": 180
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.18163471241170534,
|
1345 |
+
"eval_accuracy": 0.8229284903518729,
|
1346 |
+
"eval_loss": 0.2842705547809601,
|
1347 |
+
"eval_runtime": 63.0695,
|
1348 |
+
"eval_samples_per_second": 27.937,
|
1349 |
+
"eval_steps_per_second": 3.504,
|
1350 |
+
"step": 180
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 0.18264379414732593,
|
1354 |
+
"grad_norm": 13.833659172058105,
|
1355 |
+
"learning_rate": 7.837971894457989e-06,
|
1356 |
+
"loss": 0.4059,
|
1357 |
+
"step": 181
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 0.18365287588294651,
|
1361 |
+
"grad_norm": 6.910711288452148,
|
1362 |
+
"learning_rate": 7.833974582485544e-06,
|
1363 |
+
"loss": 0.3115,
|
1364 |
+
"step": 182
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.1846619576185671,
|
1368 |
+
"grad_norm": 4.3872599601745605,
|
1369 |
+
"learning_rate": 7.829929606224356e-06,
|
1370 |
+
"loss": 0.1654,
|
1371 |
+
"step": 183
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.1856710393541877,
|
1375 |
+
"grad_norm": 8.301304817199707,
|
1376 |
+
"learning_rate": 7.825837015961904e-06,
|
1377 |
+
"loss": 0.3223,
|
1378 |
+
"step": 184
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 0.18668012108980828,
|
1382 |
+
"grad_norm": 6.772916316986084,
|
1383 |
+
"learning_rate": 7.82169686257761e-06,
|
1384 |
+
"loss": 0.207,
|
1385 |
+
"step": 185
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 0.18768920282542886,
|
1389 |
+
"grad_norm": 10.749194145202637,
|
1390 |
+
"learning_rate": 7.817509197542204e-06,
|
1391 |
+
"loss": 0.3322,
|
1392 |
+
"step": 186
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 0.18869828456104945,
|
1396 |
+
"grad_norm": 18.030078887939453,
|
1397 |
+
"learning_rate": 7.813274072917081e-06,
|
1398 |
+
"loss": 0.3675,
|
1399 |
+
"step": 187
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 0.18970736629667004,
|
1403 |
+
"grad_norm": 15.416492462158203,
|
1404 |
+
"learning_rate": 7.80899154135366e-06,
|
1405 |
+
"loss": 0.2049,
|
1406 |
+
"step": 188
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.19071644803229063,
|
1410 |
+
"grad_norm": 24.75461769104004,
|
1411 |
+
"learning_rate": 7.80466165609273e-06,
|
1412 |
+
"loss": 0.36,
|
1413 |
+
"step": 189
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.1917255297679112,
|
1417 |
+
"grad_norm": 11.484724044799805,
|
1418 |
+
"learning_rate": 7.800284470963781e-06,
|
1419 |
+
"loss": 0.2014,
|
1420 |
+
"step": 190
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 0.1927346115035318,
|
1424 |
+
"grad_norm": 19.571962356567383,
|
1425 |
+
"learning_rate": 7.795860040384339e-06,
|
1426 |
+
"loss": 0.5687,
|
1427 |
+
"step": 191
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 0.19374369323915236,
|
1431 |
+
"grad_norm": 6.390493392944336,
|
1432 |
+
"learning_rate": 7.791388419359292e-06,
|
1433 |
+
"loss": 0.2563,
|
1434 |
+
"step": 192
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.19475277497477295,
|
1438 |
+
"grad_norm": 9.572249412536621,
|
1439 |
+
"learning_rate": 7.786869663480201e-06,
|
1440 |
+
"loss": 0.3565,
|
1441 |
+
"step": 193
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 0.19576185671039353,
|
1445 |
+
"grad_norm": 8.426647186279297,
|
1446 |
+
"learning_rate": 7.782303828924613e-06,
|
1447 |
+
"loss": 0.5456,
|
1448 |
+
"step": 194
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.19677093844601412,
|
1452 |
+
"grad_norm": 14.882564544677734,
|
1453 |
+
"learning_rate": 7.77769097245536e-06,
|
1454 |
+
"loss": 0.2976,
|
1455 |
+
"step": 195
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.1977800201816347,
|
1459 |
+
"grad_norm": 10.191393852233887,
|
1460 |
+
"learning_rate": 7.773031151419853e-06,
|
1461 |
+
"loss": 0.4641,
|
1462 |
+
"step": 196
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"epoch": 0.1987891019172553,
|
1466 |
+
"grad_norm": 7.604254245758057,
|
1467 |
+
"learning_rate": 7.768324423749376e-06,
|
1468 |
+
"loss": 0.2364,
|
1469 |
+
"step": 197
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 0.19979818365287588,
|
1473 |
+
"grad_norm": 9.080754280090332,
|
1474 |
+
"learning_rate": 7.763570847958354e-06,
|
1475 |
+
"loss": 0.1754,
|
1476 |
+
"step": 198
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 0.20080726538849647,
|
1480 |
+
"grad_norm": 10.90381908416748,
|
1481 |
+
"learning_rate": 7.758770483143633e-06,
|
1482 |
+
"loss": 0.1799,
|
1483 |
+
"step": 199
|
1484 |
+
},
|
1485 |
+
{
|
1486 |
+
"epoch": 0.20181634712411706,
|
1487 |
+
"grad_norm": 12.508880615234375,
|
1488 |
+
"learning_rate": 7.753923388983747e-06,
|
1489 |
+
"loss": 0.2855,
|
1490 |
+
"step": 200
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.20181634712411706,
|
1494 |
+
"eval_accuracy": 0.840522133938706,
|
1495 |
+
"eval_loss": 0.29473429918289185,
|
1496 |
+
"eval_runtime": 62.4643,
|
1497 |
+
"eval_samples_per_second": 28.208,
|
1498 |
+
"eval_steps_per_second": 3.538,
|
1499 |
+
"step": 200
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 0.20282542885973764,
|
1503 |
+
"grad_norm": 20.691980361938477,
|
1504 |
+
"learning_rate": 7.749029625738169e-06,
|
1505 |
+
"loss": 0.1942,
|
1506 |
+
"step": 201
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 0.20383451059535823,
|
1510 |
+
"grad_norm": 10.143714904785156,
|
1511 |
+
"learning_rate": 7.744089254246569e-06,
|
1512 |
+
"loss": 0.2001,
|
1513 |
+
"step": 202
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 0.20484359233097882,
|
1517 |
+
"grad_norm": 17.92678451538086,
|
1518 |
+
"learning_rate": 7.739102335928053e-06,
|
1519 |
+
"loss": 0.3823,
|
1520 |
+
"step": 203
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.2058526740665994,
|
1524 |
+
"grad_norm": 12.694001197814941,
|
1525 |
+
"learning_rate": 7.734068932780405e-06,
|
1526 |
+
"loss": 0.274,
|
1527 |
+
"step": 204
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.20686175580222,
|
1531 |
+
"grad_norm": 12.30357837677002,
|
1532 |
+
"learning_rate": 7.728989107379303e-06,
|
1533 |
+
"loss": 0.3017,
|
1534 |
+
"step": 205
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 0.20787083753784055,
|
1538 |
+
"grad_norm": 7.952809810638428,
|
1539 |
+
"learning_rate": 7.72386292287756e-06,
|
1540 |
+
"loss": 0.14,
|
1541 |
+
"step": 206
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 0.20887991927346114,
|
1545 |
+
"grad_norm": 69.02944946289062,
|
1546 |
+
"learning_rate": 7.718690443004324e-06,
|
1547 |
+
"loss": 0.4633,
|
1548 |
+
"step": 207
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 0.20988900100908173,
|
1552 |
+
"grad_norm": 92.96024322509766,
|
1553 |
+
"learning_rate": 7.71347173206429e-06,
|
1554 |
+
"loss": 1.1202,
|
1555 |
+
"step": 208
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 0.21089808274470231,
|
1559 |
+
"grad_norm": 83.07585906982422,
|
1560 |
+
"learning_rate": 7.708206854936908e-06,
|
1561 |
+
"loss": 0.3752,
|
1562 |
+
"step": 209
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.2119071644803229,
|
1566 |
+
"grad_norm": 10.343903541564941,
|
1567 |
+
"learning_rate": 7.702895877075563e-06,
|
1568 |
+
"loss": 0.3543,
|
1569 |
+
"step": 210
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.2129162462159435,
|
1573 |
+
"grad_norm": 34.449188232421875,
|
1574 |
+
"learning_rate": 7.697538864506767e-06,
|
1575 |
+
"loss": 0.5488,
|
1576 |
+
"step": 211
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 0.21392532795156408,
|
1580 |
+
"grad_norm": 5.609644412994385,
|
1581 |
+
"learning_rate": 7.692135883829349e-06,
|
1582 |
+
"loss": 0.342,
|
1583 |
+
"step": 212
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 0.21493440968718466,
|
1587 |
+
"grad_norm": 6.129890441894531,
|
1588 |
+
"learning_rate": 7.686687002213609e-06,
|
1589 |
+
"loss": 0.1932,
|
1590 |
+
"step": 213
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 0.21594349142280525,
|
1594 |
+
"grad_norm": 17.425050735473633,
|
1595 |
+
"learning_rate": 7.681192287400491e-06,
|
1596 |
+
"loss": 0.4084,
|
1597 |
+
"step": 214
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 0.21695257315842584,
|
1601 |
+
"grad_norm": 24.733633041381836,
|
1602 |
+
"learning_rate": 7.675651807700748e-06,
|
1603 |
+
"loss": 0.2141,
|
1604 |
+
"step": 215
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.21796165489404642,
|
1608 |
+
"grad_norm": 33.499794006347656,
|
1609 |
+
"learning_rate": 7.670065631994078e-06,
|
1610 |
+
"loss": 0.5658,
|
1611 |
+
"step": 216
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.218970736629667,
|
1615 |
+
"grad_norm": 9.948688507080078,
|
1616 |
+
"learning_rate": 7.664433829728277e-06,
|
1617 |
+
"loss": 0.2564,
|
1618 |
+
"step": 217
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 0.2199798183652876,
|
1622 |
+
"grad_norm": 9.255337715148926,
|
1623 |
+
"learning_rate": 7.658756470918382e-06,
|
1624 |
+
"loss": 0.2294,
|
1625 |
+
"step": 218
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 0.2209889001009082,
|
1629 |
+
"grad_norm": 30.673681259155273,
|
1630 |
+
"learning_rate": 7.65303362614578e-06,
|
1631 |
+
"loss": 0.4334,
|
1632 |
+
"step": 219
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 0.22199798183652875,
|
1636 |
+
"grad_norm": 5.19248628616333,
|
1637 |
+
"learning_rate": 7.647265366557355e-06,
|
1638 |
+
"loss": 0.1593,
|
1639 |
+
"step": 220
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 0.22199798183652875,
|
1643 |
+
"eval_accuracy": 0.8382519863791147,
|
1644 |
+
"eval_loss": 0.29325050115585327,
|
1645 |
+
"eval_runtime": 62.9477,
|
1646 |
+
"eval_samples_per_second": 27.991,
|
1647 |
+
"eval_steps_per_second": 3.511,
|
1648 |
+
"step": 220
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.22300706357214933,
|
1652 |
+
"grad_norm": 5.615384101867676,
|
1653 |
+
"learning_rate": 7.641451763864587e-06,
|
1654 |
+
"loss": 0.225,
|
1655 |
+
"step": 221
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.22401614530776992,
|
1659 |
+
"grad_norm": 6.7938032150268555,
|
1660 |
+
"learning_rate": 7.63559289034266e-06,
|
1661 |
+
"loss": 0.2151,
|
1662 |
+
"step": 222
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.2250252270433905,
|
1666 |
+
"grad_norm": 2.8786470890045166,
|
1667 |
+
"learning_rate": 7.629688818829577e-06,
|
1668 |
+
"loss": 0.1089,
|
1669 |
+
"step": 223
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.2260343087790111,
|
1673 |
+
"grad_norm": 7.671812057495117,
|
1674 |
+
"learning_rate": 7.623739622725244e-06,
|
1675 |
+
"loss": 0.289,
|
1676 |
+
"step": 224
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.22704339051463168,
|
1680 |
+
"grad_norm": 5.496854782104492,
|
1681 |
+
"learning_rate": 7.617745375990556e-06,
|
1682 |
+
"loss": 0.24,
|
1683 |
+
"step": 225
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.22805247225025227,
|
1687 |
+
"grad_norm": 6.458908557891846,
|
1688 |
+
"learning_rate": 7.611706153146485e-06,
|
1689 |
+
"loss": 0.3702,
|
1690 |
+
"step": 226
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.22906155398587286,
|
1694 |
+
"grad_norm": 10.48363971710205,
|
1695 |
+
"learning_rate": 7.605622029273148e-06,
|
1696 |
+
"loss": 0.1634,
|
1697 |
+
"step": 227
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.23007063572149344,
|
1701 |
+
"grad_norm": 32.09809875488281,
|
1702 |
+
"learning_rate": 7.599493080008873e-06,
|
1703 |
+
"loss": 0.7119,
|
1704 |
+
"step": 228
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.23107971745711403,
|
1708 |
+
"grad_norm": 43.372257232666016,
|
1709 |
+
"learning_rate": 7.5933193815492675e-06,
|
1710 |
+
"loss": 0.4775,
|
1711 |
+
"step": 229
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.23208879919273462,
|
1715 |
+
"grad_norm": 21.043750762939453,
|
1716 |
+
"learning_rate": 7.587101010646259e-06,
|
1717 |
+
"loss": 0.3401,
|
1718 |
+
"step": 230
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.2330978809283552,
|
1722 |
+
"grad_norm": 13.805304527282715,
|
1723 |
+
"learning_rate": 7.58083804460715e-06,
|
1724 |
+
"loss": 0.1592,
|
1725 |
+
"step": 231
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.2341069626639758,
|
1729 |
+
"grad_norm": 6.074002265930176,
|
1730 |
+
"learning_rate": 7.574530561293649e-06,
|
1731 |
+
"loss": 0.3836,
|
1732 |
+
"step": 232
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.23511604439959638,
|
1736 |
+
"grad_norm": 4.921712875366211,
|
1737 |
+
"learning_rate": 7.5681786391209105e-06,
|
1738 |
+
"loss": 0.2796,
|
1739 |
+
"step": 233
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 0.23612512613521694,
|
1743 |
+
"grad_norm": 5.469928741455078,
|
1744 |
+
"learning_rate": 7.561782357056557e-06,
|
1745 |
+
"loss": 0.2877,
|
1746 |
+
"step": 234
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.23713420787083753,
|
1750 |
+
"grad_norm": 5.309055328369141,
|
1751 |
+
"learning_rate": 7.555341794619694e-06,
|
1752 |
+
"loss": 0.2664,
|
1753 |
+
"step": 235
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 0.23814328960645811,
|
1757 |
+
"grad_norm": 55.794979095458984,
|
1758 |
+
"learning_rate": 7.548857031879926e-06,
|
1759 |
+
"loss": 0.1148,
|
1760 |
+
"step": 236
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.2391523713420787,
|
1764 |
+
"grad_norm": 207.49688720703125,
|
1765 |
+
"learning_rate": 7.5423281494563595e-06,
|
1766 |
+
"loss": 0.3024,
|
1767 |
+
"step": 237
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.2401614530776993,
|
1771 |
+
"grad_norm": 13.331132888793945,
|
1772 |
+
"learning_rate": 7.535755228516601e-06,
|
1773 |
+
"loss": 0.353,
|
1774 |
+
"step": 238
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 0.24117053481331988,
|
1778 |
+
"grad_norm": 9.264041900634766,
|
1779 |
+
"learning_rate": 7.529138350775745e-06,
|
1780 |
+
"loss": 0.3563,
|
1781 |
+
"step": 239
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 0.24217961654894046,
|
1785 |
+
"grad_norm": 4.584170818328857,
|
1786 |
+
"learning_rate": 7.522477598495363e-06,
|
1787 |
+
"loss": 0.2153,
|
1788 |
+
"step": 240
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 0.24217961654894046,
|
1792 |
+
"eval_accuracy": 0.8376844494892168,
|
1793 |
+
"eval_loss": 0.2747989892959595,
|
1794 |
+
"eval_runtime": 62.479,
|
1795 |
+
"eval_samples_per_second": 28.201,
|
1796 |
+
"eval_steps_per_second": 3.537,
|
1797 |
+
"step": 240
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.24318869828456105,
|
1801 |
+
"grad_norm": 4.465677738189697,
|
1802 |
+
"learning_rate": 7.515773054482478e-06,
|
1803 |
+
"loss": 0.2503,
|
1804 |
+
"step": 241
|
1805 |
+
},
|
1806 |
+
{
|
1807 |
+
"epoch": 0.24419778002018164,
|
1808 |
+
"grad_norm": 4.346131324768066,
|
1809 |
+
"learning_rate": 7.509024802088534e-06,
|
1810 |
+
"loss": 0.2141,
|
1811 |
+
"step": 242
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 0.24520686175580222,
|
1815 |
+
"grad_norm": 7.381392002105713,
|
1816 |
+
"learning_rate": 7.502232925208363e-06,
|
1817 |
+
"loss": 0.2984,
|
1818 |
+
"step": 243
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 0.2462159434914228,
|
1822 |
+
"grad_norm": 4.441753387451172,
|
1823 |
+
"learning_rate": 7.49539750827914e-06,
|
1824 |
+
"loss": 0.2058,
|
1825 |
+
"step": 244
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 0.2472250252270434,
|
1829 |
+
"grad_norm": 7.497750282287598,
|
1830 |
+
"learning_rate": 7.488518636279331e-06,
|
1831 |
+
"loss": 0.4537,
|
1832 |
+
"step": 245
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 0.248234106962664,
|
1836 |
+
"grad_norm": 9.178194046020508,
|
1837 |
+
"learning_rate": 7.4815963947276436e-06,
|
1838 |
+
"loss": 0.2963,
|
1839 |
+
"step": 246
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.24924318869828457,
|
1843 |
+
"grad_norm": 7.65831184387207,
|
1844 |
+
"learning_rate": 7.474630869681954e-06,
|
1845 |
+
"loss": 0.3374,
|
1846 |
+
"step": 247
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 0.25025227043390513,
|
1850 |
+
"grad_norm": 4.4074482917785645,
|
1851 |
+
"learning_rate": 7.467622147738246e-06,
|
1852 |
+
"loss": 0.176,
|
1853 |
+
"step": 248
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 0.2512613521695257,
|
1857 |
+
"grad_norm": 3.8703436851501465,
|
1858 |
+
"learning_rate": 7.4605703160295315e-06,
|
1859 |
+
"loss": 0.1294,
|
1860 |
+
"step": 249
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 0.2522704339051463,
|
1864 |
+
"grad_norm": 14.600114822387695,
|
1865 |
+
"learning_rate": 7.453475462224763e-06,
|
1866 |
+
"loss": 0.2959,
|
1867 |
+
"step": 250
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"epoch": 0.2532795156407669,
|
1871 |
+
"grad_norm": 7.458588600158691,
|
1872 |
+
"learning_rate": 7.44633767452775e-06,
|
1873 |
+
"loss": 0.3291,
|
1874 |
+
"step": 251
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.2542885973763875,
|
1878 |
+
"grad_norm": 13.63289737701416,
|
1879 |
+
"learning_rate": 7.439157041676058e-06,
|
1880 |
+
"loss": 0.4166,
|
1881 |
+
"step": 252
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.25529767911200807,
|
1885 |
+
"grad_norm": 8.358410835266113,
|
1886 |
+
"learning_rate": 7.431933652939908e-06,
|
1887 |
+
"loss": 0.257,
|
1888 |
+
"step": 253
|
1889 |
+
},
|
1890 |
+
{
|
1891 |
+
"epoch": 0.25630676084762866,
|
1892 |
+
"grad_norm": 5.803023338317871,
|
1893 |
+
"learning_rate": 7.424667598121065e-06,
|
1894 |
+
"loss": 0.2334,
|
1895 |
+
"step": 254
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 0.25731584258324924,
|
1899 |
+
"grad_norm": 5.000588893890381,
|
1900 |
+
"learning_rate": 7.4173589675517245e-06,
|
1901 |
+
"loss": 0.2193,
|
1902 |
+
"step": 255
|
1903 |
+
},
|
1904 |
+
{
|
1905 |
+
"epoch": 0.25832492431886983,
|
1906 |
+
"grad_norm": 5.990160942077637,
|
1907 |
+
"learning_rate": 7.410007852093384e-06,
|
1908 |
+
"loss": 0.31,
|
1909 |
+
"step": 256
|
1910 |
+
},
|
1911 |
+
{
|
1912 |
+
"epoch": 0.2593340060544904,
|
1913 |
+
"grad_norm": 6.175328731536865,
|
1914 |
+
"learning_rate": 7.40261434313572e-06,
|
1915 |
+
"loss": 0.307,
|
1916 |
+
"step": 257
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.260343087790111,
|
1920 |
+
"grad_norm": 6.047603130340576,
|
1921 |
+
"learning_rate": 7.395178532595444e-06,
|
1922 |
+
"loss": 0.223,
|
1923 |
+
"step": 258
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.2613521695257316,
|
1927 |
+
"grad_norm": 5.447187423706055,
|
1928 |
+
"learning_rate": 7.387700512915168e-06,
|
1929 |
+
"loss": 0.0597,
|
1930 |
+
"step": 259
|
1931 |
+
},
|
1932 |
+
{
|
1933 |
+
"epoch": 0.2623612512613522,
|
1934 |
+
"grad_norm": 6.375972747802734,
|
1935 |
+
"learning_rate": 7.380180377062251e-06,
|
1936 |
+
"loss": 0.398,
|
1937 |
+
"step": 260
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 0.2623612512613522,
|
1941 |
+
"eval_accuracy": 0.8320090805902384,
|
1942 |
+
"eval_loss": 0.2793748378753662,
|
1943 |
+
"eval_runtime": 62.5384,
|
1944 |
+
"eval_samples_per_second": 28.175,
|
1945 |
+
"eval_steps_per_second": 3.534,
|
1946 |
+
"step": 260
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.26337033299697277,
|
1950 |
+
"grad_norm": 5.560431003570557,
|
1951 |
+
"learning_rate": 7.372618218527644e-06,
|
1952 |
+
"loss": 0.2861,
|
1953 |
+
"step": 261
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.26437941473259335,
|
1957 |
+
"grad_norm": 5.246089935302734,
|
1958 |
+
"learning_rate": 7.365014131324725e-06,
|
1959 |
+
"loss": 0.1859,
|
1960 |
+
"step": 262
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 0.26538849646821394,
|
1964 |
+
"grad_norm": 7.6310625076293945,
|
1965 |
+
"learning_rate": 7.3573682099881345e-06,
|
1966 |
+
"loss": 0.3164,
|
1967 |
+
"step": 263
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 0.26639757820383453,
|
1971 |
+
"grad_norm": 6.964735507965088,
|
1972 |
+
"learning_rate": 7.349680549572598e-06,
|
1973 |
+
"loss": 0.3655,
|
1974 |
+
"step": 264
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 0.2674066599394551,
|
1978 |
+
"grad_norm": 4.680076599121094,
|
1979 |
+
"learning_rate": 7.3419512456517455e-06,
|
1980 |
+
"loss": 0.1872,
|
1981 |
+
"step": 265
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 0.2684157416750757,
|
1985 |
+
"grad_norm": 3.2980797290802,
|
1986 |
+
"learning_rate": 7.3341803943169214e-06,
|
1987 |
+
"loss": 0.0983,
|
1988 |
+
"step": 266
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.2694248234106963,
|
1992 |
+
"grad_norm": 9.682284355163574,
|
1993 |
+
"learning_rate": 7.326368092175993e-06,
|
1994 |
+
"loss": 0.1637,
|
1995 |
+
"step": 267
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.2704339051463169,
|
1999 |
+
"grad_norm": 58.10804748535156,
|
2000 |
+
"learning_rate": 7.3185144363521435e-06,
|
2001 |
+
"loss": 1.2893,
|
2002 |
+
"step": 268
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 0.2714429868819374,
|
2006 |
+
"grad_norm": 3.9088146686553955,
|
2007 |
+
"learning_rate": 7.310619524482673e-06,
|
2008 |
+
"loss": 0.1103,
|
2009 |
+
"step": 269
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 0.272452068617558,
|
2013 |
+
"grad_norm": 8.596792221069336,
|
2014 |
+
"learning_rate": 7.302683454717778e-06,
|
2015 |
+
"loss": 0.4524,
|
2016 |
+
"step": 270
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 0.2734611503531786,
|
2020 |
+
"grad_norm": 18.94976234436035,
|
2021 |
+
"learning_rate": 7.294706325719331e-06,
|
2022 |
+
"loss": 0.3868,
|
2023 |
+
"step": 271
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 0.27447023208879917,
|
2027 |
+
"grad_norm": 28.618101119995117,
|
2028 |
+
"learning_rate": 7.28668823665966e-06,
|
2029 |
+
"loss": 1.2269,
|
2030 |
+
"step": 272
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.27547931382441976,
|
2034 |
+
"grad_norm": 7.027772903442383,
|
2035 |
+
"learning_rate": 7.2786292872203125e-06,
|
2036 |
+
"loss": 0.2546,
|
2037 |
+
"step": 273
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.27648839556004035,
|
2041 |
+
"grad_norm": 4.971069812774658,
|
2042 |
+
"learning_rate": 7.270529577590812e-06,
|
2043 |
+
"loss": 0.2229,
|
2044 |
+
"step": 274
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 0.27749747729566093,
|
2048 |
+
"grad_norm": 7.468736171722412,
|
2049 |
+
"learning_rate": 7.262389208467417e-06,
|
2050 |
+
"loss": 0.3655,
|
2051 |
+
"step": 275
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 0.2785065590312815,
|
2055 |
+
"grad_norm": 7.4164509773254395,
|
2056 |
+
"learning_rate": 7.2542082810518696e-06,
|
2057 |
+
"loss": 0.3047,
|
2058 |
+
"step": 276
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 0.2795156407669021,
|
2062 |
+
"grad_norm": 6.213995933532715,
|
2063 |
+
"learning_rate": 7.245986897050137e-06,
|
2064 |
+
"loss": 0.2879,
|
2065 |
+
"step": 277
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"epoch": 0.2805247225025227,
|
2069 |
+
"grad_norm": 6.1668548583984375,
|
2070 |
+
"learning_rate": 7.237725158671141e-06,
|
2071 |
+
"loss": 0.3405,
|
2072 |
+
"step": 278
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.2815338042381433,
|
2076 |
+
"grad_norm": 11.742606163024902,
|
2077 |
+
"learning_rate": 7.229423168625498e-06,
|
2078 |
+
"loss": 0.3894,
|
2079 |
+
"step": 279
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.28254288597376387,
|
2083 |
+
"grad_norm": 5.1043477058410645,
|
2084 |
+
"learning_rate": 7.2210810301242345e-06,
|
2085 |
+
"loss": 0.199,
|
2086 |
+
"step": 280
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 0.28254288597376387,
|
2090 |
+
"eval_accuracy": 0.8382519863791147,
|
2091 |
+
"eval_loss": 0.28534775972366333,
|
2092 |
+
"eval_runtime": 62.6946,
|
2093 |
+
"eval_samples_per_second": 28.104,
|
2094 |
+
"eval_steps_per_second": 3.525,
|
2095 |
+
"step": 280
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.28355196770938446,
|
2099 |
+
"grad_norm": 5.588554859161377,
|
2100 |
+
"learning_rate": 7.212698846877503e-06,
|
2101 |
+
"loss": 0.347,
|
2102 |
+
"step": 281
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.28456104944500504,
|
2106 |
+
"grad_norm": 4.220617294311523,
|
2107 |
+
"learning_rate": 7.204276723093301e-06,
|
2108 |
+
"loss": 0.2267,
|
2109 |
+
"step": 282
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.28557013118062563,
|
2113 |
+
"grad_norm": 36.09522247314453,
|
2114 |
+
"learning_rate": 7.195814763476164e-06,
|
2115 |
+
"loss": 0.6504,
|
2116 |
+
"step": 283
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.2865792129162462,
|
2120 |
+
"grad_norm": 5.161518096923828,
|
2121 |
+
"learning_rate": 7.187313073225876e-06,
|
2122 |
+
"loss": 0.2736,
|
2123 |
+
"step": 284
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.2875882946518668,
|
2127 |
+
"grad_norm": 5.858831882476807,
|
2128 |
+
"learning_rate": 7.178771758036152e-06,
|
2129 |
+
"loss": 0.3758,
|
2130 |
+
"step": 285
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.2885973763874874,
|
2134 |
+
"grad_norm": 14.579549789428711,
|
2135 |
+
"learning_rate": 7.170190924093326e-06,
|
2136 |
+
"loss": 0.3338,
|
2137 |
+
"step": 286
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.289606458123108,
|
2141 |
+
"grad_norm": 6.289809703826904,
|
2142 |
+
"learning_rate": 7.161570678075037e-06,
|
2143 |
+
"loss": 0.4051,
|
2144 |
+
"step": 287
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.29061553985872857,
|
2148 |
+
"grad_norm": 4.26041841506958,
|
2149 |
+
"learning_rate": 7.152911127148893e-06,
|
2150 |
+
"loss": 0.2365,
|
2151 |
+
"step": 288
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.29162462159434915,
|
2155 |
+
"grad_norm": 3.567761182785034,
|
2156 |
+
"learning_rate": 7.1442123789711495e-06,
|
2157 |
+
"loss": 0.1612,
|
2158 |
+
"step": 289
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.29263370332996974,
|
2162 |
+
"grad_norm": 4.908886432647705,
|
2163 |
+
"learning_rate": 7.135474541685359e-06,
|
2164 |
+
"loss": 0.2345,
|
2165 |
+
"step": 290
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.29364278506559033,
|
2169 |
+
"grad_norm": 5.828519821166992,
|
2170 |
+
"learning_rate": 7.126697723921041e-06,
|
2171 |
+
"loss": 0.3646,
|
2172 |
+
"step": 291
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.2946518668012109,
|
2176 |
+
"grad_norm": 5.6283674240112305,
|
2177 |
+
"learning_rate": 7.117882034792315e-06,
|
2178 |
+
"loss": 0.3539,
|
2179 |
+
"step": 292
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.2956609485368315,
|
2183 |
+
"grad_norm": 2.5755410194396973,
|
2184 |
+
"learning_rate": 7.109027583896559e-06,
|
2185 |
+
"loss": 0.072,
|
2186 |
+
"step": 293
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.2966700302724521,
|
2190 |
+
"grad_norm": 5.203614234924316,
|
2191 |
+
"learning_rate": 7.1001344813130355e-06,
|
2192 |
+
"loss": 0.2994,
|
2193 |
+
"step": 294
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.2976791120080727,
|
2197 |
+
"grad_norm": 4.4349822998046875,
|
2198 |
+
"learning_rate": 7.0912028376015315e-06,
|
2199 |
+
"loss": 0.1816,
|
2200 |
+
"step": 295
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.29868819374369326,
|
2204 |
+
"grad_norm": 3.131836175918579,
|
2205 |
+
"learning_rate": 7.082232763800982e-06,
|
2206 |
+
"loss": 0.1107,
|
2207 |
+
"step": 296
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.29969727547931385,
|
2211 |
+
"grad_norm": 7.76261568069458,
|
2212 |
+
"learning_rate": 7.073224371428083e-06,
|
2213 |
+
"loss": 0.3865,
|
2214 |
+
"step": 297
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.3007063572149344,
|
2218 |
+
"grad_norm": 8.260970115661621,
|
2219 |
+
"learning_rate": 7.064177772475912e-06,
|
2220 |
+
"loss": 0.3415,
|
2221 |
+
"step": 298
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.30171543895055497,
|
2225 |
+
"grad_norm": 7.274144172668457,
|
2226 |
+
"learning_rate": 7.055093079412536e-06,
|
2227 |
+
"loss": 0.406,
|
2228 |
+
"step": 299
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.30272452068617556,
|
2232 |
+
"grad_norm": 6.949483394622803,
|
2233 |
+
"learning_rate": 7.04597040517961e-06,
|
2234 |
+
"loss": 0.2363,
|
2235 |
+
"step": 300
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.30272452068617556,
|
2239 |
+
"eval_accuracy": 0.8422247446083996,
|
2240 |
+
"eval_loss": 0.29199618101119995,
|
2241 |
+
"eval_runtime": 62.2656,
|
2242 |
+
"eval_samples_per_second": 28.298,
|
2243 |
+
"eval_steps_per_second": 3.549,
|
2244 |
+
"step": 300
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 0.30373360242179614,
|
2248 |
+
"grad_norm": 11.153295516967773,
|
2249 |
+
"learning_rate": 7.036809863190972e-06,
|
2250 |
+
"loss": 0.367,
|
2251 |
+
"step": 301
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 0.30474268415741673,
|
2255 |
+
"grad_norm": 7.238802909851074,
|
2256 |
+
"learning_rate": 7.027611567331239e-06,
|
2257 |
+
"loss": 0.3071,
|
2258 |
+
"step": 302
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.3057517658930373,
|
2262 |
+
"grad_norm": 5.204061031341553,
|
2263 |
+
"learning_rate": 7.018375631954384e-06,
|
2264 |
+
"loss": 0.1991,
|
2265 |
+
"step": 303
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.3067608476286579,
|
2269 |
+
"grad_norm": 4.6721930503845215,
|
2270 |
+
"learning_rate": 7.0091021718823185e-06,
|
2271 |
+
"loss": 0.1833,
|
2272 |
+
"step": 304
|
2273 |
+
},
|
2274 |
+
{
|
2275 |
+
"epoch": 0.3077699293642785,
|
2276 |
+
"grad_norm": 4.843674182891846,
|
2277 |
+
"learning_rate": 6.999791302403463e-06,
|
2278 |
+
"loss": 0.2464,
|
2279 |
+
"step": 305
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 0.3087790110998991,
|
2283 |
+
"grad_norm": 5.238533973693848,
|
2284 |
+
"learning_rate": 6.990443139271317e-06,
|
2285 |
+
"loss": 0.2551,
|
2286 |
+
"step": 306
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"epoch": 0.30978809283551967,
|
2290 |
+
"grad_norm": 20.923328399658203,
|
2291 |
+
"learning_rate": 6.981057798703019e-06,
|
2292 |
+
"loss": 0.7206,
|
2293 |
+
"step": 307
|
2294 |
+
},
|
2295 |
+
{
|
2296 |
+
"epoch": 0.31079717457114026,
|
2297 |
+
"grad_norm": 4.751791954040527,
|
2298 |
+
"learning_rate": 6.971635397377895e-06,
|
2299 |
+
"loss": 0.2031,
|
2300 |
+
"step": 308
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.31180625630676084,
|
2304 |
+
"grad_norm": 9.50137996673584,
|
2305 |
+
"learning_rate": 6.962176052436019e-06,
|
2306 |
+
"loss": 0.4901,
|
2307 |
+
"step": 309
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.31281533804238143,
|
2311 |
+
"grad_norm": 10.486673355102539,
|
2312 |
+
"learning_rate": 6.952679881476746e-06,
|
2313 |
+
"loss": 0.5644,
|
2314 |
+
"step": 310
|
2315 |
+
},
|
2316 |
+
{
|
2317 |
+
"epoch": 0.313824419778002,
|
2318 |
+
"grad_norm": 8.85893726348877,
|
2319 |
+
"learning_rate": 6.94314700255726e-06,
|
2320 |
+
"loss": 0.5932,
|
2321 |
+
"step": 311
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 0.3148335015136226,
|
2325 |
+
"grad_norm": 33.33445358276367,
|
2326 |
+
"learning_rate": 6.933577534191101e-06,
|
2327 |
+
"loss": 1.3013,
|
2328 |
+
"step": 312
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 0.3158425832492432,
|
2332 |
+
"grad_norm": 29.183631896972656,
|
2333 |
+
"learning_rate": 6.923971595346686e-06,
|
2334 |
+
"loss": 0.4947,
|
2335 |
+
"step": 313
|
2336 |
+
},
|
2337 |
+
{
|
2338 |
+
"epoch": 0.3168516649848638,
|
2339 |
+
"grad_norm": 7.223900318145752,
|
2340 |
+
"learning_rate": 6.914329305445844e-06,
|
2341 |
+
"loss": 0.3102,
|
2342 |
+
"step": 314
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.31786074672048437,
|
2346 |
+
"grad_norm": 4.909074306488037,
|
2347 |
+
"learning_rate": 6.904650784362317e-06,
|
2348 |
+
"loss": 0.223,
|
2349 |
+
"step": 315
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.31886982845610495,
|
2353 |
+
"grad_norm": 5.134761333465576,
|
2354 |
+
"learning_rate": 6.89493615242028e-06,
|
2355 |
+
"loss": 0.2572,
|
2356 |
+
"step": 316
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 0.31987891019172554,
|
2360 |
+
"grad_norm": 4.783396244049072,
|
2361 |
+
"learning_rate": 6.885185530392841e-06,
|
2362 |
+
"loss": 0.2743,
|
2363 |
+
"step": 317
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 0.32088799192734613,
|
2367 |
+
"grad_norm": 6.382033824920654,
|
2368 |
+
"learning_rate": 6.875399039500535e-06,
|
2369 |
+
"loss": 0.3093,
|
2370 |
+
"step": 318
|
2371 |
+
},
|
2372 |
+
{
|
2373 |
+
"epoch": 0.3218970736629667,
|
2374 |
+
"grad_norm": 7.4557318687438965,
|
2375 |
+
"learning_rate": 6.865576801409828e-06,
|
2376 |
+
"loss": 0.4611,
|
2377 |
+
"step": 319
|
2378 |
+
},
|
2379 |
+
{
|
2380 |
+
"epoch": 0.3229061553985873,
|
2381 |
+
"grad_norm": 9.1113862991333,
|
2382 |
+
"learning_rate": 6.855718938231597e-06,
|
2383 |
+
"loss": 0.5509,
|
2384 |
+
"step": 320
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 0.3229061553985873,
|
2388 |
+
"eval_accuracy": 0.8422247446083996,
|
2389 |
+
"eval_loss": 0.2692955434322357,
|
2390 |
+
"eval_runtime": 62.6677,
|
2391 |
+
"eval_samples_per_second": 28.117,
|
2392 |
+
"eval_steps_per_second": 3.527,
|
2393 |
+
"step": 320
|
2394 |
+
},
|
2395 |
+
{
|
2396 |
+
"epoch": 0.3239152371342079,
|
2397 |
+
"grad_norm": 4.367307186126709,
|
2398 |
+
"learning_rate": 6.845825572519606e-06,
|
2399 |
+
"loss": 0.2284,
|
2400 |
+
"step": 321
|
2401 |
+
},
|
2402 |
+
{
|
2403 |
+
"epoch": 0.3249243188698285,
|
2404 |
+
"grad_norm": 4.980352878570557,
|
2405 |
+
"learning_rate": 6.8358968272689995e-06,
|
2406 |
+
"loss": 0.2197,
|
2407 |
+
"step": 322
|
2408 |
+
},
|
2409 |
+
{
|
2410 |
+
"epoch": 0.32593340060544906,
|
2411 |
+
"grad_norm": 3.6899354457855225,
|
2412 |
+
"learning_rate": 6.825932825914758e-06,
|
2413 |
+
"loss": 0.1665,
|
2414 |
+
"step": 323
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 0.32694248234106965,
|
2418 |
+
"grad_norm": 5.287685394287109,
|
2419 |
+
"learning_rate": 6.815933692330168e-06,
|
2420 |
+
"loss": 0.2254,
|
2421 |
+
"step": 324
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 0.32795156407669024,
|
2425 |
+
"grad_norm": 4.298030376434326,
|
2426 |
+
"learning_rate": 6.805899550825285e-06,
|
2427 |
+
"loss": 0.1869,
|
2428 |
+
"step": 325
|
2429 |
+
},
|
2430 |
+
{
|
2431 |
+
"epoch": 0.32896064581231077,
|
2432 |
+
"grad_norm": 6.648251533508301,
|
2433 |
+
"learning_rate": 6.795830526145385e-06,
|
2434 |
+
"loss": 0.438,
|
2435 |
+
"step": 326
|
2436 |
+
},
|
2437 |
+
{
|
2438 |
+
"epoch": 0.32996972754793136,
|
2439 |
+
"grad_norm": 8.279413223266602,
|
2440 |
+
"learning_rate": 6.785726743469415e-06,
|
2441 |
+
"loss": 0.3674,
|
2442 |
+
"step": 327
|
2443 |
+
},
|
2444 |
+
{
|
2445 |
+
"epoch": 0.33097880928355194,
|
2446 |
+
"grad_norm": 8.667623519897461,
|
2447 |
+
"learning_rate": 6.775588328408435e-06,
|
2448 |
+
"loss": 0.2876,
|
2449 |
+
"step": 328
|
2450 |
+
},
|
2451 |
+
{
|
2452 |
+
"epoch": 0.33198789101917253,
|
2453 |
+
"grad_norm": 4.858876705169678,
|
2454 |
+
"learning_rate": 6.765415407004061e-06,
|
2455 |
+
"loss": 0.2051,
|
2456 |
+
"step": 329
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 0.3329969727547931,
|
2460 |
+
"grad_norm": 5.615779876708984,
|
2461 |
+
"learning_rate": 6.75520810572689e-06,
|
2462 |
+
"loss": 0.2162,
|
2463 |
+
"step": 330
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 0.3340060544904137,
|
2467 |
+
"grad_norm": 5.255247116088867,
|
2468 |
+
"learning_rate": 6.744966551474935e-06,
|
2469 |
+
"loss": 0.2493,
|
2470 |
+
"step": 331
|
2471 |
+
},
|
2472 |
+
{
|
2473 |
+
"epoch": 0.3350151362260343,
|
2474 |
+
"grad_norm": 4.313990116119385,
|
2475 |
+
"learning_rate": 6.734690871572044e-06,
|
2476 |
+
"loss": 0.1736,
|
2477 |
+
"step": 332
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 0.3360242179616549,
|
2481 |
+
"grad_norm": 6.205388069152832,
|
2482 |
+
"learning_rate": 6.72438119376632e-06,
|
2483 |
+
"loss": 0.1372,
|
2484 |
+
"step": 333
|
2485 |
+
},
|
2486 |
+
{
|
2487 |
+
"epoch": 0.33703329969727547,
|
2488 |
+
"grad_norm": 4.961912631988525,
|
2489 |
+
"learning_rate": 6.714037646228529e-06,
|
2490 |
+
"loss": 0.1083,
|
2491 |
+
"step": 334
|
2492 |
+
},
|
2493 |
+
{
|
2494 |
+
"epoch": 0.33804238143289606,
|
2495 |
+
"grad_norm": 11.366336822509766,
|
2496 |
+
"learning_rate": 6.703660357550507e-06,
|
2497 |
+
"loss": 0.1794,
|
2498 |
+
"step": 335
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 0.33905146316851664,
|
2502 |
+
"grad_norm": 36.39216613769531,
|
2503 |
+
"learning_rate": 6.693249456743565e-06,
|
2504 |
+
"loss": 0.8015,
|
2505 |
+
"step": 336
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 0.34006054490413723,
|
2509 |
+
"grad_norm": 26.968290328979492,
|
2510 |
+
"learning_rate": 6.682805073236883e-06,
|
2511 |
+
"loss": 0.5109,
|
2512 |
+
"step": 337
|
2513 |
+
},
|
2514 |
+
{
|
2515 |
+
"epoch": 0.3410696266397578,
|
2516 |
+
"grad_norm": 12.663142204284668,
|
2517 |
+
"learning_rate": 6.672327336875899e-06,
|
2518 |
+
"loss": 0.5224,
|
2519 |
+
"step": 338
|
2520 |
+
},
|
2521 |
+
{
|
2522 |
+
"epoch": 0.3420787083753784,
|
2523 |
+
"grad_norm": 7.804121017456055,
|
2524 |
+
"learning_rate": 6.661816377920695e-06,
|
2525 |
+
"loss": 0.2021,
|
2526 |
+
"step": 339
|
2527 |
+
},
|
2528 |
+
{
|
2529 |
+
"epoch": 0.343087790110999,
|
2530 |
+
"grad_norm": 8.033084869384766,
|
2531 |
+
"learning_rate": 6.651272327044385e-06,
|
2532 |
+
"loss": 0.2942,
|
2533 |
+
"step": 340
|
2534 |
+
},
|
2535 |
+
{
|
2536 |
+
"epoch": 0.343087790110999,
|
2537 |
+
"eval_accuracy": 0.840522133938706,
|
2538 |
+
"eval_loss": 0.2765989303588867,
|
2539 |
+
"eval_runtime": 62.3633,
|
2540 |
+
"eval_samples_per_second": 28.254,
|
2541 |
+
"eval_steps_per_second": 3.544,
|
2542 |
+
"step": 340
|
2543 |
+
},
|
2544 |
+
{
|
2545 |
+
"epoch": 0.3440968718466196,
|
2546 |
+
"grad_norm": 6.994205951690674,
|
2547 |
+
"learning_rate": 6.640695315331476e-06,
|
2548 |
+
"loss": 0.422,
|
2549 |
+
"step": 341
|
2550 |
+
},
|
2551 |
+
{
|
2552 |
+
"epoch": 0.34510595358224017,
|
2553 |
+
"grad_norm": 6.707622051239014,
|
2554 |
+
"learning_rate": 6.630085474276255e-06,
|
2555 |
+
"loss": 0.4127,
|
2556 |
+
"step": 342
|
2557 |
+
},
|
2558 |
+
{
|
2559 |
+
"epoch": 0.34611503531786075,
|
2560 |
+
"grad_norm": 2.8467178344726562,
|
2561 |
+
"learning_rate": 6.619442935781141e-06,
|
2562 |
+
"loss": 0.0992,
|
2563 |
+
"step": 343
|
2564 |
+
},
|
2565 |
+
{
|
2566 |
+
"epoch": 0.34712411705348134,
|
2567 |
+
"grad_norm": 3.68339467048645,
|
2568 |
+
"learning_rate": 6.608767832155051e-06,
|
2569 |
+
"loss": 0.1661,
|
2570 |
+
"step": 344
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 0.3481331987891019,
|
2574 |
+
"grad_norm": 4.811255931854248,
|
2575 |
+
"learning_rate": 6.598060296111755e-06,
|
2576 |
+
"loss": 0.1805,
|
2577 |
+
"step": 345
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 0.3491422805247225,
|
2581 |
+
"grad_norm": 7.682583332061768,
|
2582 |
+
"learning_rate": 6.58732046076823e-06,
|
2583 |
+
"loss": 0.4899,
|
2584 |
+
"step": 346
|
2585 |
+
},
|
2586 |
+
{
|
2587 |
+
"epoch": 0.3501513622603431,
|
2588 |
+
"grad_norm": 4.097416400909424,
|
2589 |
+
"learning_rate": 6.5765484596429905e-06,
|
2590 |
+
"loss": 0.1297,
|
2591 |
+
"step": 347
|
2592 |
+
},
|
2593 |
+
{
|
2594 |
+
"epoch": 0.3511604439959637,
|
2595 |
+
"grad_norm": 6.541982650756836,
|
2596 |
+
"learning_rate": 6.565744426654449e-06,
|
2597 |
+
"loss": 0.2545,
|
2598 |
+
"step": 348
|
2599 |
+
},
|
2600 |
+
{
|
2601 |
+
"epoch": 0.3521695257315843,
|
2602 |
+
"grad_norm": 6.773824214935303,
|
2603 |
+
"learning_rate": 6.554908496119232e-06,
|
2604 |
+
"loss": 0.2685,
|
2605 |
+
"step": 349
|
2606 |
+
},
|
2607 |
+
{
|
2608 |
+
"epoch": 0.35317860746720486,
|
2609 |
+
"grad_norm": 5.670194625854492,
|
2610 |
+
"learning_rate": 6.544040802750526e-06,
|
2611 |
+
"loss": 0.3245,
|
2612 |
+
"step": 350
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 0.35418768920282545,
|
2616 |
+
"grad_norm": 5.502919673919678,
|
2617 |
+
"learning_rate": 6.5331414816563914e-06,
|
2618 |
+
"loss": 0.282,
|
2619 |
+
"step": 351
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 0.35519677093844604,
|
2623 |
+
"grad_norm": 6.195550918579102,
|
2624 |
+
"learning_rate": 6.52221066833809e-06,
|
2625 |
+
"loss": 0.3791,
|
2626 |
+
"step": 352
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 0.3562058526740666,
|
2630 |
+
"grad_norm": 6.497583866119385,
|
2631 |
+
"learning_rate": 6.511248498688395e-06,
|
2632 |
+
"loss": 0.3853,
|
2633 |
+
"step": 353
|
2634 |
+
},
|
2635 |
+
{
|
2636 |
+
"epoch": 0.35721493440968716,
|
2637 |
+
"grad_norm": 4.045083045959473,
|
2638 |
+
"learning_rate": 6.500255108989904e-06,
|
2639 |
+
"loss": 0.1618,
|
2640 |
+
"step": 354
|
2641 |
+
},
|
2642 |
+
{
|
2643 |
+
"epoch": 0.35822401614530774,
|
2644 |
+
"grad_norm": 4.328484058380127,
|
2645 |
+
"learning_rate": 6.489230635913346e-06,
|
2646 |
+
"loss": 0.2393,
|
2647 |
+
"step": 355
|
2648 |
+
},
|
2649 |
+
{
|
2650 |
+
"epoch": 0.35923309788092833,
|
2651 |
+
"grad_norm": 7.9082183837890625,
|
2652 |
+
"learning_rate": 6.478175216515884e-06,
|
2653 |
+
"loss": 0.2272,
|
2654 |
+
"step": 356
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 0.3602421796165489,
|
2658 |
+
"grad_norm": 3.21086049079895,
|
2659 |
+
"learning_rate": 6.467088988239402e-06,
|
2660 |
+
"loss": 0.0689,
|
2661 |
+
"step": 357
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 0.3612512613521695,
|
2665 |
+
"grad_norm": 5.211169242858887,
|
2666 |
+
"learning_rate": 6.455972088908807e-06,
|
2667 |
+
"loss": 0.1841,
|
2668 |
+
"step": 358
|
2669 |
+
},
|
2670 |
+
{
|
2671 |
+
"epoch": 0.3622603430877901,
|
2672 |
+
"grad_norm": 5.808556079864502,
|
2673 |
+
"learning_rate": 6.444824656730311e-06,
|
2674 |
+
"loss": 0.1076,
|
2675 |
+
"step": 359
|
2676 |
+
},
|
2677 |
+
{
|
2678 |
+
"epoch": 0.3632694248234107,
|
2679 |
+
"grad_norm": 16.821155548095703,
|
2680 |
+
"learning_rate": 6.43364683028971e-06,
|
2681 |
+
"loss": 0.4606,
|
2682 |
+
"step": 360
|
2683 |
+
},
|
2684 |
+
{
|
2685 |
+
"epoch": 0.3632694248234107,
|
2686 |
+
"eval_accuracy": 0.8484676503972758,
|
2687 |
+
"eval_loss": 0.3792904019355774,
|
2688 |
+
"eval_runtime": 62.8768,
|
2689 |
+
"eval_samples_per_second": 28.023,
|
2690 |
+
"eval_steps_per_second": 3.515,
|
2691 |
+
"step": 360
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.36427850655903127,
|
2695 |
+
"grad_norm": 12.411088943481445,
|
2696 |
+
"learning_rate": 6.422438748550666e-06,
|
2697 |
+
"loss": 0.2406,
|
2698 |
+
"step": 361
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 0.36528758829465185,
|
2702 |
+
"grad_norm": 13.036988258361816,
|
2703 |
+
"learning_rate": 6.411200550852978e-06,
|
2704 |
+
"loss": 0.3551,
|
2705 |
+
"step": 362
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 0.36629667003027244,
|
2709 |
+
"grad_norm": 13.768930435180664,
|
2710 |
+
"learning_rate": 6.3999323769108485e-06,
|
2711 |
+
"loss": 0.3561,
|
2712 |
+
"step": 363
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 0.36730575176589303,
|
2716 |
+
"grad_norm": 4.591919422149658,
|
2717 |
+
"learning_rate": 6.388634366811145e-06,
|
2718 |
+
"loss": 0.1434,
|
2719 |
+
"step": 364
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 0.3683148335015136,
|
2723 |
+
"grad_norm": 9.278558731079102,
|
2724 |
+
"learning_rate": 6.377306661011664e-06,
|
2725 |
+
"loss": 0.445,
|
2726 |
+
"step": 365
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.3693239152371342,
|
2730 |
+
"grad_norm": 12.307679176330566,
|
2731 |
+
"learning_rate": 6.365949400339378e-06,
|
2732 |
+
"loss": 0.3966,
|
2733 |
+
"step": 366
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.3703329969727548,
|
2737 |
+
"grad_norm": 5.971735000610352,
|
2738 |
+
"learning_rate": 6.354562725988691e-06,
|
2739 |
+
"loss": 0.2508,
|
2740 |
+
"step": 367
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 0.3713420787083754,
|
2744 |
+
"grad_norm": 5.919165134429932,
|
2745 |
+
"learning_rate": 6.343146779519681e-06,
|
2746 |
+
"loss": 0.287,
|
2747 |
+
"step": 368
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 0.37235116044399597,
|
2751 |
+
"grad_norm": 4.112932205200195,
|
2752 |
+
"learning_rate": 6.331701702856335e-06,
|
2753 |
+
"loss": 0.1366,
|
2754 |
+
"step": 369
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 0.37336024217961655,
|
2758 |
+
"grad_norm": 9.273783683776855,
|
2759 |
+
"learning_rate": 6.3202276382847925e-06,
|
2760 |
+
"loss": 0.4608,
|
2761 |
+
"step": 370
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 0.37436932391523714,
|
2765 |
+
"grad_norm": 6.013513088226318,
|
2766 |
+
"learning_rate": 6.308724728451572e-06,
|
2767 |
+
"loss": 0.1759,
|
2768 |
+
"step": 371
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.3753784056508577,
|
2772 |
+
"grad_norm": 4.636185169219971,
|
2773 |
+
"learning_rate": 6.2971931163618e-06,
|
2774 |
+
"loss": 0.1464,
|
2775 |
+
"step": 372
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.3763874873864783,
|
2779 |
+
"grad_norm": 9.652426719665527,
|
2780 |
+
"learning_rate": 6.285632945377429e-06,
|
2781 |
+
"loss": 0.3786,
|
2782 |
+
"step": 373
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 0.3773965691220989,
|
2786 |
+
"grad_norm": 4.286848545074463,
|
2787 |
+
"learning_rate": 6.274044359215461e-06,
|
2788 |
+
"loss": 0.1569,
|
2789 |
+
"step": 374
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 0.3784056508577195,
|
2793 |
+
"grad_norm": 6.9270853996276855,
|
2794 |
+
"learning_rate": 6.2624275019461545e-06,
|
2795 |
+
"loss": 0.3606,
|
2796 |
+
"step": 375
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 0.3794147325933401,
|
2800 |
+
"grad_norm": 4.69766092300415,
|
2801 |
+
"learning_rate": 6.250782517991241e-06,
|
2802 |
+
"loss": 0.1682,
|
2803 |
+
"step": 376
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 0.38042381432896066,
|
2807 |
+
"grad_norm": 4.445621967315674,
|
2808 |
+
"learning_rate": 6.239109552122122e-06,
|
2809 |
+
"loss": 0.1959,
|
2810 |
+
"step": 377
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.38143289606458125,
|
2814 |
+
"grad_norm": 8.952390670776367,
|
2815 |
+
"learning_rate": 6.227408749458073e-06,
|
2816 |
+
"loss": 0.3696,
|
2817 |
+
"step": 378
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.38244197780020184,
|
2821 |
+
"grad_norm": 8.195367813110352,
|
2822 |
+
"learning_rate": 6.215680255464441e-06,
|
2823 |
+
"loss": 0.3198,
|
2824 |
+
"step": 379
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 0.3834510595358224,
|
2828 |
+
"grad_norm": 14.417852401733398,
|
2829 |
+
"learning_rate": 6.203924215950831e-06,
|
2830 |
+
"loss": 0.6757,
|
2831 |
+
"step": 380
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 0.3834510595358224,
|
2835 |
+
"eval_accuracy": 0.8513053348467651,
|
2836 |
+
"eval_loss": 0.29195961356163025,
|
2837 |
+
"eval_runtime": 62.6263,
|
2838 |
+
"eval_samples_per_second": 28.135,
|
2839 |
+
"eval_steps_per_second": 3.529,
|
2840 |
+
"step": 380
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 0.384460141271443,
|
2844 |
+
"grad_norm": 10.577422142028809,
|
2845 |
+
"learning_rate": 6.192140777069298e-06,
|
2846 |
+
"loss": 0.3435,
|
2847 |
+
"step": 381
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 0.3854692230070636,
|
2851 |
+
"grad_norm": 5.178398132324219,
|
2852 |
+
"learning_rate": 6.180330085312526e-06,
|
2853 |
+
"loss": 0.2577,
|
2854 |
+
"step": 382
|
2855 |
+
},
|
2856 |
+
{
|
2857 |
+
"epoch": 0.38647830474268413,
|
2858 |
+
"grad_norm": 5.634678363800049,
|
2859 |
+
"learning_rate": 6.168492287512014e-06,
|
2860 |
+
"loss": 0.2692,
|
2861 |
+
"step": 383
|
2862 |
+
},
|
2863 |
+
{
|
2864 |
+
"epoch": 0.3874873864783047,
|
2865 |
+
"grad_norm": 7.128296852111816,
|
2866 |
+
"learning_rate": 6.156627530836239e-06,
|
2867 |
+
"loss": 0.2777,
|
2868 |
+
"step": 384
|
2869 |
+
},
|
2870 |
+
{
|
2871 |
+
"epoch": 0.3884964682139253,
|
2872 |
+
"grad_norm": 6.315018653869629,
|
2873 |
+
"learning_rate": 6.144735962788837e-06,
|
2874 |
+
"loss": 0.3489,
|
2875 |
+
"step": 385
|
2876 |
+
},
|
2877 |
+
{
|
2878 |
+
"epoch": 0.3895055499495459,
|
2879 |
+
"grad_norm": 3.5851023197174072,
|
2880 |
+
"learning_rate": 6.132817731206765e-06,
|
2881 |
+
"loss": 0.1926,
|
2882 |
+
"step": 386
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 0.3905146316851665,
|
2886 |
+
"grad_norm": 10.211600303649902,
|
2887 |
+
"learning_rate": 6.120872984258462e-06,
|
2888 |
+
"loss": 0.4683,
|
2889 |
+
"step": 387
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 0.39152371342078707,
|
2893 |
+
"grad_norm": 12.310287475585938,
|
2894 |
+
"learning_rate": 6.108901870442009e-06,
|
2895 |
+
"loss": 0.3685,
|
2896 |
+
"step": 388
|
2897 |
+
},
|
2898 |
+
{
|
2899 |
+
"epoch": 0.39253279515640765,
|
2900 |
+
"grad_norm": 6.385642051696777,
|
2901 |
+
"learning_rate": 6.096904538583283e-06,
|
2902 |
+
"loss": 0.2559,
|
2903 |
+
"step": 389
|
2904 |
+
},
|
2905 |
+
{
|
2906 |
+
"epoch": 0.39354187689202824,
|
2907 |
+
"grad_norm": 7.468835830688477,
|
2908 |
+
"learning_rate": 6.084881137834103e-06,
|
2909 |
+
"loss": 0.4374,
|
2910 |
+
"step": 390
|
2911 |
+
},
|
2912 |
+
{
|
2913 |
+
"epoch": 0.39455095862764883,
|
2914 |
+
"grad_norm": 2.5986368656158447,
|
2915 |
+
"learning_rate": 6.072831817670382e-06,
|
2916 |
+
"loss": 0.0992,
|
2917 |
+
"step": 391
|
2918 |
+
},
|
2919 |
+
{
|
2920 |
+
"epoch": 0.3955600403632694,
|
2921 |
+
"grad_norm": 2.776925802230835,
|
2922 |
+
"learning_rate": 6.060756727890262e-06,
|
2923 |
+
"loss": 0.1379,
|
2924 |
+
"step": 392
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 0.39656912209889,
|
2928 |
+
"grad_norm": 5.025798797607422,
|
2929 |
+
"learning_rate": 6.04865601861226e-06,
|
2930 |
+
"loss": 0.37,
|
2931 |
+
"step": 393
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 0.3975782038345106,
|
2935 |
+
"grad_norm": 4.2647857666015625,
|
2936 |
+
"learning_rate": 6.036529840273388e-06,
|
2937 |
+
"loss": 0.2485,
|
2938 |
+
"step": 394
|
2939 |
+
},
|
2940 |
+
{
|
2941 |
+
"epoch": 0.3985872855701312,
|
2942 |
+
"grad_norm": 3.0298309326171875,
|
2943 |
+
"learning_rate": 6.0243783436273e-06,
|
2944 |
+
"loss": 0.1594,
|
2945 |
+
"step": 395
|
2946 |
+
},
|
2947 |
+
{
|
2948 |
+
"epoch": 0.39959636730575177,
|
2949 |
+
"grad_norm": 5.6464338302612305,
|
2950 |
+
"learning_rate": 6.012201679742408e-06,
|
2951 |
+
"loss": 0.3974,
|
2952 |
+
"step": 396
|
2953 |
+
},
|
2954 |
+
{
|
2955 |
+
"epoch": 0.40060544904137235,
|
2956 |
+
"grad_norm": 4.060618877410889,
|
2957 |
+
"learning_rate": 6e-06,
|
2958 |
+
"loss": 0.2286,
|
2959 |
+
"step": 397
|
2960 |
+
},
|
2961 |
+
{
|
2962 |
+
"epoch": 0.40161453077699294,
|
2963 |
+
"grad_norm": 4.622409820556641,
|
2964 |
+
"learning_rate": 5.987773456092368e-06,
|
2965 |
+
"loss": 0.315,
|
2966 |
+
"step": 398
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 0.4026236125126135,
|
2970 |
+
"grad_norm": 5.471047401428223,
|
2971 |
+
"learning_rate": 5.9755222000209165e-06,
|
2972 |
+
"loss": 0.4354,
|
2973 |
+
"step": 399
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 0.4036326942482341,
|
2977 |
+
"grad_norm": 3.929957628250122,
|
2978 |
+
"learning_rate": 5.963246384094273e-06,
|
2979 |
+
"loss": 0.2409,
|
2980 |
+
"step": 400
|
2981 |
+
},
|
2982 |
+
{
|
2983 |
+
"epoch": 0.4036326942482341,
|
2984 |
+
"eval_accuracy": 0.8376844494892168,
|
2985 |
+
"eval_loss": 0.28469741344451904,
|
2986 |
+
"eval_runtime": 62.4393,
|
2987 |
+
"eval_samples_per_second": 28.219,
|
2988 |
+
"eval_steps_per_second": 3.539,
|
2989 |
+
"step": 400
|
2990 |
+
}
|
2991 |
+
],
|
2992 |
+
"logging_steps": 1,
|
2993 |
+
"max_steps": 991,
|
2994 |
+
"num_input_tokens_seen": 0,
|
2995 |
+
"num_train_epochs": 1,
|
2996 |
+
"save_steps": 20,
|
2997 |
+
"stateful_callbacks": {
|
2998 |
+
"TrainerControl": {
|
2999 |
+
"args": {
|
3000 |
+
"should_epoch_stop": false,
|
3001 |
+
"should_evaluate": false,
|
3002 |
+
"should_log": false,
|
3003 |
+
"should_save": true,
|
3004 |
+
"should_training_stop": false
|
3005 |
+
},
|
3006 |
+
"attributes": {}
|
3007 |
+
}
|
3008 |
+
},
|
3009 |
+
"total_flos": 0.0,
|
3010 |
+
"train_batch_size": 1,
|
3011 |
+
"trial_name": null,
|
3012 |
+
"trial_params": null
|
3013 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9ce9b17901cea44c9a33ee1c2531e6752c15621e9455c217e5c6708f0a52225
|
3 |
+
size 7096
|
value_head.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b6b7478af4de4f8e44c5b31fd204e116cb8a68b710bdbf4a4caa214a7ecd9f5
|
3 |
+
size 10442
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|