sthenno commited on
Commit
976e3a7
·
verified ·
1 Parent(s): 08f8546

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/ubuntu/tmp/models/tempesthenno-nuslerp-001",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 13824,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 48,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 48,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151665
29
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151643,
5
+ "transformers_version": "4.46.1"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step400
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcc08b2fc727b1196be1e317996ce1fe276cf108d3250058a41a558ed98e7793
3
+ size 4899283440
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:205481265ead77a0130d89f9b27014bc1e8aff5ff07e78e821c49342493be8de
3
+ size 4954847384
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c5e574e69ca270084d6a281d849732ff5f00b7e0acd89c7495fc36971572e6c
3
+ size 4954847376
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3360e7803596dcdce9900aae4b779a3416f652ba99a1ce2810787925e66c2659
3
+ size 4954847376
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dfd29c16488d8a3edca37ccffd1115cc709ebd1a40131db1d923946a36f5fa2
3
+ size 4954847376
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd52f323b90b7064b4d11cbbfa0acfa4e6cdf859679f3b79f076a9db860eca68
3
+ size 4813289432
model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29531895808
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00001-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00006.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00006.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00006.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00006.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00006.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00006.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00006.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00006.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00006.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00006.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00006.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00006.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00006.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00004-of-00006.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00004-of-00006.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00004-of-00006.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00006.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00004-of-00006.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00005-of-00006.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00005-of-00006.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00005-of-00006.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00005-of-00006.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00006-of-00006.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00006-of-00006.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00006-of-00006.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00006-of-00006.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00006-of-00006.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
584
+ "model.norm.weight": "model-00006-of-00006.safetensors"
585
+ }
586
+ }
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29cea827e2ef52791356c5b22c98701f253e4d2ddceeda317c7f482e7f56e54
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>\n' }}{% endif %}{% endfor %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 2048,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
trainer_state.json ADDED
@@ -0,0 +1,3013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4036326942482341,
5
+ "eval_steps": 20,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0010090817356205853,
13
+ "grad_norm": 48.721710205078125,
14
+ "learning_rate": 8e-08,
15
+ "loss": 0.8681,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0020181634712411706,
20
+ "grad_norm": 44.42015075683594,
21
+ "learning_rate": 1.6e-07,
22
+ "loss": 0.6615,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0030272452068617556,
27
+ "grad_norm": 42.49191665649414,
28
+ "learning_rate": 2.4e-07,
29
+ "loss": 0.6742,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.004036326942482341,
34
+ "grad_norm": 40.36923599243164,
35
+ "learning_rate": 3.2e-07,
36
+ "loss": 0.7824,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.005045408678102927,
41
+ "grad_norm": 57.19468688964844,
42
+ "learning_rate": 4e-07,
43
+ "loss": 1.0009,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.006054490413723511,
48
+ "grad_norm": 48.78745651245117,
49
+ "learning_rate": 4.8e-07,
50
+ "loss": 0.7613,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.007063572149344097,
55
+ "grad_norm": 37.92594528198242,
56
+ "learning_rate": 5.6e-07,
57
+ "loss": 0.6615,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.008072653884964682,
62
+ "grad_norm": 37.87478256225586,
63
+ "learning_rate": 6.4e-07,
64
+ "loss": 0.6779,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.009081735620585268,
69
+ "grad_norm": 43.225589752197266,
70
+ "learning_rate": 7.2e-07,
71
+ "loss": 0.796,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.010090817356205853,
76
+ "grad_norm": 43.1926383972168,
77
+ "learning_rate": 8e-07,
78
+ "loss": 0.8526,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.011099899091826439,
83
+ "grad_norm": 42.08029556274414,
84
+ "learning_rate": 8.799999999999999e-07,
85
+ "loss": 0.6605,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.012108980827447022,
90
+ "grad_norm": 49.14653396606445,
91
+ "learning_rate": 9.6e-07,
92
+ "loss": 0.6774,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.013118062563067608,
97
+ "grad_norm": 47.238338470458984,
98
+ "learning_rate": 1.04e-06,
99
+ "loss": 0.7313,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.014127144298688193,
104
+ "grad_norm": 37.998931884765625,
105
+ "learning_rate": 1.12e-06,
106
+ "loss": 0.6244,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.015136226034308779,
111
+ "grad_norm": 37.945064544677734,
112
+ "learning_rate": 1.2e-06,
113
+ "loss": 0.5214,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.016145307769929364,
118
+ "grad_norm": 33.03001403808594,
119
+ "learning_rate": 1.28e-06,
120
+ "loss": 0.5042,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.017154389505549948,
125
+ "grad_norm": 32.11518096923828,
126
+ "learning_rate": 1.3600000000000001e-06,
127
+ "loss": 0.3594,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.018163471241170535,
132
+ "grad_norm": 30.64830207824707,
133
+ "learning_rate": 1.44e-06,
134
+ "loss": 0.3533,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.01917255297679112,
139
+ "grad_norm": 41.34456253051758,
140
+ "learning_rate": 1.5199999999999998e-06,
141
+ "loss": 0.6093,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.020181634712411706,
146
+ "grad_norm": 35.51686477661133,
147
+ "learning_rate": 1.6e-06,
148
+ "loss": 0.3241,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.020181634712411706,
153
+ "eval_accuracy": 0.7758229284903518,
154
+ "eval_loss": 0.3856516480445862,
155
+ "eval_runtime": 63.0132,
156
+ "eval_samples_per_second": 27.962,
157
+ "eval_steps_per_second": 3.507,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.02119071644803229,
162
+ "grad_norm": 36.574764251708984,
163
+ "learning_rate": 1.6799999999999998e-06,
164
+ "loss": 0.3611,
165
+ "step": 21
166
+ },
167
+ {
168
+ "epoch": 0.022199798183652877,
169
+ "grad_norm": 42.98014831542969,
170
+ "learning_rate": 1.7599999999999999e-06,
171
+ "loss": 0.5187,
172
+ "step": 22
173
+ },
174
+ {
175
+ "epoch": 0.02320887991927346,
176
+ "grad_norm": 32.25895690917969,
177
+ "learning_rate": 1.84e-06,
178
+ "loss": 0.3201,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.024217961654894045,
183
+ "grad_norm": 45.763553619384766,
184
+ "learning_rate": 1.92e-06,
185
+ "loss": 0.3977,
186
+ "step": 24
187
+ },
188
+ {
189
+ "epoch": 0.025227043390514632,
190
+ "grad_norm": 41.3906135559082,
191
+ "learning_rate": 2e-06,
192
+ "loss": 0.3863,
193
+ "step": 25
194
+ },
195
+ {
196
+ "epoch": 0.026236125126135216,
197
+ "grad_norm": 55.49371337890625,
198
+ "learning_rate": 2.08e-06,
199
+ "loss": 0.4371,
200
+ "step": 26
201
+ },
202
+ {
203
+ "epoch": 0.027245206861755803,
204
+ "grad_norm": 49.18912124633789,
205
+ "learning_rate": 2.16e-06,
206
+ "loss": 0.4072,
207
+ "step": 27
208
+ },
209
+ {
210
+ "epoch": 0.028254288597376387,
211
+ "grad_norm": 53.16490173339844,
212
+ "learning_rate": 2.24e-06,
213
+ "loss": 0.5366,
214
+ "step": 28
215
+ },
216
+ {
217
+ "epoch": 0.029263370332996974,
218
+ "grad_norm": 58.15668869018555,
219
+ "learning_rate": 2.32e-06,
220
+ "loss": 0.5429,
221
+ "step": 29
222
+ },
223
+ {
224
+ "epoch": 0.030272452068617558,
225
+ "grad_norm": 32.979671478271484,
226
+ "learning_rate": 2.4e-06,
227
+ "loss": 0.2946,
228
+ "step": 30
229
+ },
230
+ {
231
+ "epoch": 0.03128153380423814,
232
+ "grad_norm": 40.131385803222656,
233
+ "learning_rate": 2.48e-06,
234
+ "loss": 0.298,
235
+ "step": 31
236
+ },
237
+ {
238
+ "epoch": 0.03229061553985873,
239
+ "grad_norm": 45.999542236328125,
240
+ "learning_rate": 2.56e-06,
241
+ "loss": 0.27,
242
+ "step": 32
243
+ },
244
+ {
245
+ "epoch": 0.033299697275479316,
246
+ "grad_norm": 32.2443962097168,
247
+ "learning_rate": 2.64e-06,
248
+ "loss": 0.2337,
249
+ "step": 33
250
+ },
251
+ {
252
+ "epoch": 0.034308779011099896,
253
+ "grad_norm": 28.031023025512695,
254
+ "learning_rate": 2.7200000000000002e-06,
255
+ "loss": 0.1835,
256
+ "step": 34
257
+ },
258
+ {
259
+ "epoch": 0.035317860746720484,
260
+ "grad_norm": 22.68515396118164,
261
+ "learning_rate": 2.8e-06,
262
+ "loss": 0.1522,
263
+ "step": 35
264
+ },
265
+ {
266
+ "epoch": 0.03632694248234107,
267
+ "grad_norm": 38.576019287109375,
268
+ "learning_rate": 2.88e-06,
269
+ "loss": 0.3371,
270
+ "step": 36
271
+ },
272
+ {
273
+ "epoch": 0.03733602421796166,
274
+ "grad_norm": 23.268003463745117,
275
+ "learning_rate": 2.96e-06,
276
+ "loss": 0.161,
277
+ "step": 37
278
+ },
279
+ {
280
+ "epoch": 0.03834510595358224,
281
+ "grad_norm": 43.69157409667969,
282
+ "learning_rate": 3.0399999999999997e-06,
283
+ "loss": 0.4692,
284
+ "step": 38
285
+ },
286
+ {
287
+ "epoch": 0.039354187689202826,
288
+ "grad_norm": 33.641780853271484,
289
+ "learning_rate": 3.1199999999999998e-06,
290
+ "loss": 0.3815,
291
+ "step": 39
292
+ },
293
+ {
294
+ "epoch": 0.04036326942482341,
295
+ "grad_norm": 32.81157302856445,
296
+ "learning_rate": 3.2e-06,
297
+ "loss": 0.3342,
298
+ "step": 40
299
+ },
300
+ {
301
+ "epoch": 0.04036326942482341,
302
+ "eval_accuracy": 0.8359818388195233,
303
+ "eval_loss": 0.30243048071861267,
304
+ "eval_runtime": 62.0758,
305
+ "eval_samples_per_second": 28.385,
306
+ "eval_steps_per_second": 3.56,
307
+ "step": 40
308
+ },
309
+ {
310
+ "epoch": 0.04137235116044399,
311
+ "grad_norm": 38.70158004760742,
312
+ "learning_rate": 3.2799999999999995e-06,
313
+ "loss": 0.3523,
314
+ "step": 41
315
+ },
316
+ {
317
+ "epoch": 0.04238143289606458,
318
+ "grad_norm": 36.827938079833984,
319
+ "learning_rate": 3.3599999999999996e-06,
320
+ "loss": 0.3339,
321
+ "step": 42
322
+ },
323
+ {
324
+ "epoch": 0.04339051463168517,
325
+ "grad_norm": 40.072757720947266,
326
+ "learning_rate": 3.4399999999999997e-06,
327
+ "loss": 0.3718,
328
+ "step": 43
329
+ },
330
+ {
331
+ "epoch": 0.044399596367305755,
332
+ "grad_norm": 17.283546447753906,
333
+ "learning_rate": 3.5199999999999998e-06,
334
+ "loss": 0.1344,
335
+ "step": 44
336
+ },
337
+ {
338
+ "epoch": 0.045408678102926335,
339
+ "grad_norm": 38.25215148925781,
340
+ "learning_rate": 3.6e-06,
341
+ "loss": 0.3276,
342
+ "step": 45
343
+ },
344
+ {
345
+ "epoch": 0.04641775983854692,
346
+ "grad_norm": 31.07087516784668,
347
+ "learning_rate": 3.68e-06,
348
+ "loss": 0.3091,
349
+ "step": 46
350
+ },
351
+ {
352
+ "epoch": 0.04742684157416751,
353
+ "grad_norm": 29.617158889770508,
354
+ "learning_rate": 3.7599999999999996e-06,
355
+ "loss": 0.2113,
356
+ "step": 47
357
+ },
358
+ {
359
+ "epoch": 0.04843592330978809,
360
+ "grad_norm": 37.85402297973633,
361
+ "learning_rate": 3.84e-06,
362
+ "loss": 0.3061,
363
+ "step": 48
364
+ },
365
+ {
366
+ "epoch": 0.04944500504540868,
367
+ "grad_norm": 92.3378677368164,
368
+ "learning_rate": 3.92e-06,
369
+ "loss": 0.8413,
370
+ "step": 49
371
+ },
372
+ {
373
+ "epoch": 0.050454086781029264,
374
+ "grad_norm": 25.68213653564453,
375
+ "learning_rate": 4e-06,
376
+ "loss": 0.2466,
377
+ "step": 50
378
+ },
379
+ {
380
+ "epoch": 0.05146316851664985,
381
+ "grad_norm": 22.958641052246094,
382
+ "learning_rate": 4.08e-06,
383
+ "loss": 0.2127,
384
+ "step": 51
385
+ },
386
+ {
387
+ "epoch": 0.05247225025227043,
388
+ "grad_norm": 26.674156188964844,
389
+ "learning_rate": 4.16e-06,
390
+ "loss": 0.5098,
391
+ "step": 52
392
+ },
393
+ {
394
+ "epoch": 0.05348133198789102,
395
+ "grad_norm": 18.660629272460938,
396
+ "learning_rate": 4.24e-06,
397
+ "loss": 0.2416,
398
+ "step": 53
399
+ },
400
+ {
401
+ "epoch": 0.054490413723511606,
402
+ "grad_norm": 20.310880661010742,
403
+ "learning_rate": 4.32e-06,
404
+ "loss": 0.3086,
405
+ "step": 54
406
+ },
407
+ {
408
+ "epoch": 0.055499495459132187,
409
+ "grad_norm": 20.308359146118164,
410
+ "learning_rate": 4.4e-06,
411
+ "loss": 0.3001,
412
+ "step": 55
413
+ },
414
+ {
415
+ "epoch": 0.056508577194752774,
416
+ "grad_norm": 13.419134140014648,
417
+ "learning_rate": 4.48e-06,
418
+ "loss": 0.1779,
419
+ "step": 56
420
+ },
421
+ {
422
+ "epoch": 0.05751765893037336,
423
+ "grad_norm": 14.848164558410645,
424
+ "learning_rate": 4.5599999999999995e-06,
425
+ "loss": 0.1883,
426
+ "step": 57
427
+ },
428
+ {
429
+ "epoch": 0.05852674066599395,
430
+ "grad_norm": 23.216663360595703,
431
+ "learning_rate": 4.64e-06,
432
+ "loss": 0.3184,
433
+ "step": 58
434
+ },
435
+ {
436
+ "epoch": 0.05953582240161453,
437
+ "grad_norm": 65.48796081542969,
438
+ "learning_rate": 4.72e-06,
439
+ "loss": 0.3397,
440
+ "step": 59
441
+ },
442
+ {
443
+ "epoch": 0.060544904137235116,
444
+ "grad_norm": 97.63284301757812,
445
+ "learning_rate": 4.8e-06,
446
+ "loss": 0.3936,
447
+ "step": 60
448
+ },
449
+ {
450
+ "epoch": 0.060544904137235116,
451
+ "eval_accuracy": 0.7474460839954598,
452
+ "eval_loss": 0.4690244793891907,
453
+ "eval_runtime": 62.2233,
454
+ "eval_samples_per_second": 28.317,
455
+ "eval_steps_per_second": 3.552,
456
+ "step": 60
457
+ },
458
+ {
459
+ "epoch": 0.0615539858728557,
460
+ "grad_norm": 210.90390014648438,
461
+ "learning_rate": 4.88e-06,
462
+ "loss": 0.6895,
463
+ "step": 61
464
+ },
465
+ {
466
+ "epoch": 0.06256306760847628,
467
+ "grad_norm": 46.58690643310547,
468
+ "learning_rate": 4.96e-06,
469
+ "loss": 0.29,
470
+ "step": 62
471
+ },
472
+ {
473
+ "epoch": 0.06357214934409687,
474
+ "grad_norm": 31.453752517700195,
475
+ "learning_rate": 5.04e-06,
476
+ "loss": 0.3071,
477
+ "step": 63
478
+ },
479
+ {
480
+ "epoch": 0.06458123107971746,
481
+ "grad_norm": 20.283885955810547,
482
+ "learning_rate": 5.12e-06,
483
+ "loss": 0.3571,
484
+ "step": 64
485
+ },
486
+ {
487
+ "epoch": 0.06559031281533804,
488
+ "grad_norm": 42.37957763671875,
489
+ "learning_rate": 5.2e-06,
490
+ "loss": 0.5532,
491
+ "step": 65
492
+ },
493
+ {
494
+ "epoch": 0.06659939455095863,
495
+ "grad_norm": 21.637910842895508,
496
+ "learning_rate": 5.28e-06,
497
+ "loss": 0.262,
498
+ "step": 66
499
+ },
500
+ {
501
+ "epoch": 0.06760847628657922,
502
+ "grad_norm": 18.54781723022461,
503
+ "learning_rate": 5.36e-06,
504
+ "loss": 0.2257,
505
+ "step": 67
506
+ },
507
+ {
508
+ "epoch": 0.06861755802219979,
509
+ "grad_norm": 20.521879196166992,
510
+ "learning_rate": 5.4400000000000004e-06,
511
+ "loss": 0.3857,
512
+ "step": 68
513
+ },
514
+ {
515
+ "epoch": 0.06962663975782038,
516
+ "grad_norm": 29.46757698059082,
517
+ "learning_rate": 5.52e-06,
518
+ "loss": 0.1029,
519
+ "step": 69
520
+ },
521
+ {
522
+ "epoch": 0.07063572149344097,
523
+ "grad_norm": 29.944223403930664,
524
+ "learning_rate": 5.6e-06,
525
+ "loss": 0.2712,
526
+ "step": 70
527
+ },
528
+ {
529
+ "epoch": 0.07164480322906155,
530
+ "grad_norm": 24.391925811767578,
531
+ "learning_rate": 5.68e-06,
532
+ "loss": 0.3976,
533
+ "step": 71
534
+ },
535
+ {
536
+ "epoch": 0.07265388496468214,
537
+ "grad_norm": 18.12702751159668,
538
+ "learning_rate": 5.76e-06,
539
+ "loss": 0.3472,
540
+ "step": 72
541
+ },
542
+ {
543
+ "epoch": 0.07366296670030273,
544
+ "grad_norm": 10.216832160949707,
545
+ "learning_rate": 5.84e-06,
546
+ "loss": 0.2769,
547
+ "step": 73
548
+ },
549
+ {
550
+ "epoch": 0.07467204843592332,
551
+ "grad_norm": 11.782180786132812,
552
+ "learning_rate": 5.92e-06,
553
+ "loss": 0.3737,
554
+ "step": 74
555
+ },
556
+ {
557
+ "epoch": 0.07568113017154389,
558
+ "grad_norm": 33.01165771484375,
559
+ "learning_rate": 6e-06,
560
+ "loss": 0.2062,
561
+ "step": 75
562
+ },
563
+ {
564
+ "epoch": 0.07669021190716448,
565
+ "grad_norm": 16.44459342956543,
566
+ "learning_rate": 6.079999999999999e-06,
567
+ "loss": 0.4451,
568
+ "step": 76
569
+ },
570
+ {
571
+ "epoch": 0.07769929364278506,
572
+ "grad_norm": 8.65665340423584,
573
+ "learning_rate": 6.1599999999999995e-06,
574
+ "loss": 0.2799,
575
+ "step": 77
576
+ },
577
+ {
578
+ "epoch": 0.07870837537840565,
579
+ "grad_norm": 9.738832473754883,
580
+ "learning_rate": 6.2399999999999995e-06,
581
+ "loss": 0.2986,
582
+ "step": 78
583
+ },
584
+ {
585
+ "epoch": 0.07971745711402624,
586
+ "grad_norm": 5.850776195526123,
587
+ "learning_rate": 6.32e-06,
588
+ "loss": 0.2548,
589
+ "step": 79
590
+ },
591
+ {
592
+ "epoch": 0.08072653884964683,
593
+ "grad_norm": 11.245881080627441,
594
+ "learning_rate": 6.4e-06,
595
+ "loss": 0.3249,
596
+ "step": 80
597
+ },
598
+ {
599
+ "epoch": 0.08072653884964683,
600
+ "eval_accuracy": 0.8569807037457434,
601
+ "eval_loss": 0.2707608640193939,
602
+ "eval_runtime": 62.6893,
603
+ "eval_samples_per_second": 28.107,
604
+ "eval_steps_per_second": 3.525,
605
+ "step": 80
606
+ },
607
+ {
608
+ "epoch": 0.08173562058526741,
609
+ "grad_norm": 9.138853073120117,
610
+ "learning_rate": 6.48e-06,
611
+ "loss": 0.2931,
612
+ "step": 81
613
+ },
614
+ {
615
+ "epoch": 0.08274470232088799,
616
+ "grad_norm": 7.408812999725342,
617
+ "learning_rate": 6.559999999999999e-06,
618
+ "loss": 0.276,
619
+ "step": 82
620
+ },
621
+ {
622
+ "epoch": 0.08375378405650857,
623
+ "grad_norm": 5.13024377822876,
624
+ "learning_rate": 6.639999999999999e-06,
625
+ "loss": 0.1842,
626
+ "step": 83
627
+ },
628
+ {
629
+ "epoch": 0.08476286579212916,
630
+ "grad_norm": 5.102560043334961,
631
+ "learning_rate": 6.719999999999999e-06,
632
+ "loss": 0.2041,
633
+ "step": 84
634
+ },
635
+ {
636
+ "epoch": 0.08577194752774975,
637
+ "grad_norm": 8.902843475341797,
638
+ "learning_rate": 6.799999999999999e-06,
639
+ "loss": 0.3015,
640
+ "step": 85
641
+ },
642
+ {
643
+ "epoch": 0.08678102926337034,
644
+ "grad_norm": 8.0729398727417,
645
+ "learning_rate": 6.879999999999999e-06,
646
+ "loss": 0.3637,
647
+ "step": 86
648
+ },
649
+ {
650
+ "epoch": 0.08779011099899092,
651
+ "grad_norm": 7.424192428588867,
652
+ "learning_rate": 6.9599999999999994e-06,
653
+ "loss": 0.1691,
654
+ "step": 87
655
+ },
656
+ {
657
+ "epoch": 0.08879919273461151,
658
+ "grad_norm": 19.509435653686523,
659
+ "learning_rate": 7.0399999999999995e-06,
660
+ "loss": 0.3888,
661
+ "step": 88
662
+ },
663
+ {
664
+ "epoch": 0.08980827447023208,
665
+ "grad_norm": 13.97599983215332,
666
+ "learning_rate": 7.12e-06,
667
+ "loss": 0.2415,
668
+ "step": 89
669
+ },
670
+ {
671
+ "epoch": 0.09081735620585267,
672
+ "grad_norm": 14.023358345031738,
673
+ "learning_rate": 7.2e-06,
674
+ "loss": 0.2889,
675
+ "step": 90
676
+ },
677
+ {
678
+ "epoch": 0.09182643794147326,
679
+ "grad_norm": 15.243273735046387,
680
+ "learning_rate": 7.28e-06,
681
+ "loss": 0.4061,
682
+ "step": 91
683
+ },
684
+ {
685
+ "epoch": 0.09283551967709384,
686
+ "grad_norm": 9.57010555267334,
687
+ "learning_rate": 7.36e-06,
688
+ "loss": 0.2501,
689
+ "step": 92
690
+ },
691
+ {
692
+ "epoch": 0.09384460141271443,
693
+ "grad_norm": 20.639694213867188,
694
+ "learning_rate": 7.44e-06,
695
+ "loss": 0.2877,
696
+ "step": 93
697
+ },
698
+ {
699
+ "epoch": 0.09485368314833502,
700
+ "grad_norm": 75.29905700683594,
701
+ "learning_rate": 7.519999999999999e-06,
702
+ "loss": 0.4536,
703
+ "step": 94
704
+ },
705
+ {
706
+ "epoch": 0.0958627648839556,
707
+ "grad_norm": 340.7889709472656,
708
+ "learning_rate": 7.599999999999999e-06,
709
+ "loss": 0.4443,
710
+ "step": 95
711
+ },
712
+ {
713
+ "epoch": 0.09687184661957618,
714
+ "grad_norm": 16.866931915283203,
715
+ "learning_rate": 7.68e-06,
716
+ "loss": 0.292,
717
+ "step": 96
718
+ },
719
+ {
720
+ "epoch": 0.09788092835519677,
721
+ "grad_norm": 12.300322532653809,
722
+ "learning_rate": 7.76e-06,
723
+ "loss": 0.2191,
724
+ "step": 97
725
+ },
726
+ {
727
+ "epoch": 0.09889001009081735,
728
+ "grad_norm": 18.15094566345215,
729
+ "learning_rate": 7.84e-06,
730
+ "loss": 0.1821,
731
+ "step": 98
732
+ },
733
+ {
734
+ "epoch": 0.09989909182643794,
735
+ "grad_norm": 31.187374114990234,
736
+ "learning_rate": 7.92e-06,
737
+ "loss": 0.1823,
738
+ "step": 99
739
+ },
740
+ {
741
+ "epoch": 0.10090817356205853,
742
+ "grad_norm": 64.1741943359375,
743
+ "learning_rate": 8e-06,
744
+ "loss": 0.5276,
745
+ "step": 100
746
+ },
747
+ {
748
+ "epoch": 0.10090817356205853,
749
+ "eval_accuracy": 0.8467650397275823,
750
+ "eval_loss": 0.28612375259399414,
751
+ "eval_runtime": 62.505,
752
+ "eval_samples_per_second": 28.19,
753
+ "eval_steps_per_second": 3.536,
754
+ "step": 100
755
+ },
756
+ {
757
+ "epoch": 0.10191725529767912,
758
+ "grad_norm": 12.569557189941406,
759
+ "learning_rate": 7.999975135834775e-06,
760
+ "loss": 0.3077,
761
+ "step": 101
762
+ },
763
+ {
764
+ "epoch": 0.1029263370332997,
765
+ "grad_norm": 7.0805277824401855,
766
+ "learning_rate": 7.999900543648217e-06,
767
+ "loss": 0.1759,
768
+ "step": 102
769
+ },
770
+ {
771
+ "epoch": 0.10393541876892028,
772
+ "grad_norm": 9.746481895446777,
773
+ "learning_rate": 7.999776224367659e-06,
774
+ "loss": 0.2064,
775
+ "step": 103
776
+ },
777
+ {
778
+ "epoch": 0.10494450050454086,
779
+ "grad_norm": 6.783945560455322,
780
+ "learning_rate": 7.999602179538651e-06,
781
+ "loss": 0.3028,
782
+ "step": 104
783
+ },
784
+ {
785
+ "epoch": 0.10595358224016145,
786
+ "grad_norm": 4.683195114135742,
787
+ "learning_rate": 7.999378411324933e-06,
788
+ "loss": 0.1767,
789
+ "step": 105
790
+ },
791
+ {
792
+ "epoch": 0.10696266397578204,
793
+ "grad_norm": 6.255279064178467,
794
+ "learning_rate": 7.999104922508408e-06,
795
+ "loss": 0.2984,
796
+ "step": 106
797
+ },
798
+ {
799
+ "epoch": 0.10797174571140263,
800
+ "grad_norm": 5.866703987121582,
801
+ "learning_rate": 7.99878171648911e-06,
802
+ "loss": 0.2472,
803
+ "step": 107
804
+ },
805
+ {
806
+ "epoch": 0.10898082744702321,
807
+ "grad_norm": 5.773608207702637,
808
+ "learning_rate": 7.998408797285167e-06,
809
+ "loss": 0.225,
810
+ "step": 108
811
+ },
812
+ {
813
+ "epoch": 0.1099899091826438,
814
+ "grad_norm": 10.58280086517334,
815
+ "learning_rate": 7.99798616953274e-06,
816
+ "loss": 0.3962,
817
+ "step": 109
818
+ },
819
+ {
820
+ "epoch": 0.11099899091826437,
821
+ "grad_norm": 5.545925140380859,
822
+ "learning_rate": 7.997513838485971e-06,
823
+ "loss": 0.1597,
824
+ "step": 110
825
+ },
826
+ {
827
+ "epoch": 0.11200807265388496,
828
+ "grad_norm": 7.84637975692749,
829
+ "learning_rate": 7.99699181001692e-06,
830
+ "loss": 0.346,
831
+ "step": 111
832
+ },
833
+ {
834
+ "epoch": 0.11301715438950555,
835
+ "grad_norm": 5.827946662902832,
836
+ "learning_rate": 7.996420090615486e-06,
837
+ "loss": 0.2507,
838
+ "step": 112
839
+ },
840
+ {
841
+ "epoch": 0.11402623612512613,
842
+ "grad_norm": 8.125126838684082,
843
+ "learning_rate": 7.995798687389334e-06,
844
+ "loss": 0.2496,
845
+ "step": 113
846
+ },
847
+ {
848
+ "epoch": 0.11503531786074672,
849
+ "grad_norm": 6.233455181121826,
850
+ "learning_rate": 7.9951276080638e-06,
851
+ "loss": 0.2129,
852
+ "step": 114
853
+ },
854
+ {
855
+ "epoch": 0.11604439959636731,
856
+ "grad_norm": 8.677657127380371,
857
+ "learning_rate": 7.994406860981797e-06,
858
+ "loss": 0.3926,
859
+ "step": 115
860
+ },
861
+ {
862
+ "epoch": 0.1170534813319879,
863
+ "grad_norm": 6.164268493652344,
864
+ "learning_rate": 7.99363645510371e-06,
865
+ "loss": 0.2335,
866
+ "step": 116
867
+ },
868
+ {
869
+ "epoch": 0.11806256306760847,
870
+ "grad_norm": 5.605584144592285,
871
+ "learning_rate": 7.992816400007294e-06,
872
+ "loss": 0.2357,
873
+ "step": 117
874
+ },
875
+ {
876
+ "epoch": 0.11907164480322906,
877
+ "grad_norm": 8.481727600097656,
878
+ "learning_rate": 7.991946705887537e-06,
879
+ "loss": 0.4145,
880
+ "step": 118
881
+ },
882
+ {
883
+ "epoch": 0.12008072653884964,
884
+ "grad_norm": 7.141845226287842,
885
+ "learning_rate": 7.99102738355655e-06,
886
+ "loss": 0.3807,
887
+ "step": 119
888
+ },
889
+ {
890
+ "epoch": 0.12108980827447023,
891
+ "grad_norm": 22.80964469909668,
892
+ "learning_rate": 7.990058444443424e-06,
893
+ "loss": 0.259,
894
+ "step": 120
895
+ },
896
+ {
897
+ "epoch": 0.12108980827447023,
898
+ "eval_accuracy": 0.7729852440408627,
899
+ "eval_loss": 0.44569578766822815,
900
+ "eval_runtime": 62.4809,
901
+ "eval_samples_per_second": 28.201,
902
+ "eval_steps_per_second": 3.537,
903
+ "step": 120
904
+ },
905
+ {
906
+ "epoch": 0.12209889001009082,
907
+ "grad_norm": 56.96179962158203,
908
+ "learning_rate": 7.989039900594089e-06,
909
+ "loss": 0.4721,
910
+ "step": 121
911
+ },
912
+ {
913
+ "epoch": 0.1231079717457114,
914
+ "grad_norm": 9.661979675292969,
915
+ "learning_rate": 7.987971764671168e-06,
916
+ "loss": 0.2308,
917
+ "step": 122
918
+ },
919
+ {
920
+ "epoch": 0.124117053481332,
921
+ "grad_norm": 20.324970245361328,
922
+ "learning_rate": 7.986854049953814e-06,
923
+ "loss": 0.4019,
924
+ "step": 123
925
+ },
926
+ {
927
+ "epoch": 0.12512613521695257,
928
+ "grad_norm": 7.678678512573242,
929
+ "learning_rate": 7.98568677033755e-06,
930
+ "loss": 0.1287,
931
+ "step": 124
932
+ },
933
+ {
934
+ "epoch": 0.12613521695257315,
935
+ "grad_norm": 5.97120475769043,
936
+ "learning_rate": 7.984469940334089e-06,
937
+ "loss": 0.3056,
938
+ "step": 125
939
+ },
940
+ {
941
+ "epoch": 0.12714429868819374,
942
+ "grad_norm": 4.4789509773254395,
943
+ "learning_rate": 7.983203575071166e-06,
944
+ "loss": 0.156,
945
+ "step": 126
946
+ },
947
+ {
948
+ "epoch": 0.12815338042381433,
949
+ "grad_norm": 7.833422660827637,
950
+ "learning_rate": 7.981887690292338e-06,
951
+ "loss": 0.3012,
952
+ "step": 127
953
+ },
954
+ {
955
+ "epoch": 0.12916246215943492,
956
+ "grad_norm": 4.627663612365723,
957
+ "learning_rate": 7.980522302356792e-06,
958
+ "loss": 0.1701,
959
+ "step": 128
960
+ },
961
+ {
962
+ "epoch": 0.1301715438950555,
963
+ "grad_norm": 23.75330924987793,
964
+ "learning_rate": 7.979107428239143e-06,
965
+ "loss": 0.5042,
966
+ "step": 129
967
+ },
968
+ {
969
+ "epoch": 0.1311806256306761,
970
+ "grad_norm": 8.093461036682129,
971
+ "learning_rate": 7.977643085529227e-06,
972
+ "loss": 0.3362,
973
+ "step": 130
974
+ },
975
+ {
976
+ "epoch": 0.13218970736629668,
977
+ "grad_norm": 8.479804992675781,
978
+ "learning_rate": 7.97612929243187e-06,
979
+ "loss": 0.2005,
980
+ "step": 131
981
+ },
982
+ {
983
+ "epoch": 0.13319878910191726,
984
+ "grad_norm": 8.889948844909668,
985
+ "learning_rate": 7.974566067766671e-06,
986
+ "loss": 0.4108,
987
+ "step": 132
988
+ },
989
+ {
990
+ "epoch": 0.13420787083753785,
991
+ "grad_norm": 6.473036289215088,
992
+ "learning_rate": 7.972953430967771e-06,
993
+ "loss": 0.3489,
994
+ "step": 133
995
+ },
996
+ {
997
+ "epoch": 0.13521695257315844,
998
+ "grad_norm": 5.9677863121032715,
999
+ "learning_rate": 7.971291402083606e-06,
1000
+ "loss": 0.2707,
1001
+ "step": 134
1002
+ },
1003
+ {
1004
+ "epoch": 0.136226034308779,
1005
+ "grad_norm": 9.331769943237305,
1006
+ "learning_rate": 7.969580001776653e-06,
1007
+ "loss": 0.4528,
1008
+ "step": 135
1009
+ },
1010
+ {
1011
+ "epoch": 0.13723511604439959,
1012
+ "grad_norm": 6.988079071044922,
1013
+ "learning_rate": 7.96781925132318e-06,
1014
+ "loss": 0.3895,
1015
+ "step": 136
1016
+ },
1017
+ {
1018
+ "epoch": 0.13824419778002017,
1019
+ "grad_norm": 5.6570281982421875,
1020
+ "learning_rate": 7.966009172612988e-06,
1021
+ "loss": 0.2324,
1022
+ "step": 137
1023
+ },
1024
+ {
1025
+ "epoch": 0.13925327951564076,
1026
+ "grad_norm": 7.507450103759766,
1027
+ "learning_rate": 7.964149788149122e-06,
1028
+ "loss": 0.3709,
1029
+ "step": 138
1030
+ },
1031
+ {
1032
+ "epoch": 0.14026236125126135,
1033
+ "grad_norm": 6.912793159484863,
1034
+ "learning_rate": 7.962241121047602e-06,
1035
+ "loss": 0.2004,
1036
+ "step": 139
1037
+ },
1038
+ {
1039
+ "epoch": 0.14127144298688193,
1040
+ "grad_norm": 7.456505298614502,
1041
+ "learning_rate": 7.960283195037138e-06,
1042
+ "loss": 0.1852,
1043
+ "step": 140
1044
+ },
1045
+ {
1046
+ "epoch": 0.14127144298688193,
1047
+ "eval_accuracy": 0.8382519863791147,
1048
+ "eval_loss": 0.30151110887527466,
1049
+ "eval_runtime": 59.0753,
1050
+ "eval_samples_per_second": 29.826,
1051
+ "eval_steps_per_second": 3.741,
1052
+ "step": 140
1053
+ },
1054
+ {
1055
+ "epoch": 0.14228052472250252,
1056
+ "grad_norm": 5.073808670043945,
1057
+ "learning_rate": 7.958276034458826e-06,
1058
+ "loss": 0.2379,
1059
+ "step": 141
1060
+ },
1061
+ {
1062
+ "epoch": 0.1432896064581231,
1063
+ "grad_norm": 10.782764434814453,
1064
+ "learning_rate": 7.956219664265852e-06,
1065
+ "loss": 0.1299,
1066
+ "step": 142
1067
+ },
1068
+ {
1069
+ "epoch": 0.1442986881937437,
1070
+ "grad_norm": 5.916919708251953,
1071
+ "learning_rate": 7.95411411002318e-06,
1072
+ "loss": 0.2939,
1073
+ "step": 143
1074
+ },
1075
+ {
1076
+ "epoch": 0.14530776992936428,
1077
+ "grad_norm": 4.290775775909424,
1078
+ "learning_rate": 7.951959397907236e-06,
1079
+ "loss": 0.2175,
1080
+ "step": 144
1081
+ },
1082
+ {
1083
+ "epoch": 0.14631685166498487,
1084
+ "grad_norm": 6.01127290725708,
1085
+ "learning_rate": 7.949755554705577e-06,
1086
+ "loss": 0.2962,
1087
+ "step": 145
1088
+ },
1089
+ {
1090
+ "epoch": 0.14732593340060546,
1091
+ "grad_norm": 5.430018901824951,
1092
+ "learning_rate": 7.947502607816566e-06,
1093
+ "loss": 0.3358,
1094
+ "step": 146
1095
+ },
1096
+ {
1097
+ "epoch": 0.14833501513622604,
1098
+ "grad_norm": 2.893122911453247,
1099
+ "learning_rate": 7.945200585249022e-06,
1100
+ "loss": 0.0949,
1101
+ "step": 147
1102
+ },
1103
+ {
1104
+ "epoch": 0.14934409687184663,
1105
+ "grad_norm": 5.385425567626953,
1106
+ "learning_rate": 7.942849515621881e-06,
1107
+ "loss": 0.314,
1108
+ "step": 148
1109
+ },
1110
+ {
1111
+ "epoch": 0.1503531786074672,
1112
+ "grad_norm": 4.384002208709717,
1113
+ "learning_rate": 7.940449428163837e-06,
1114
+ "loss": 0.2312,
1115
+ "step": 149
1116
+ },
1117
+ {
1118
+ "epoch": 0.15136226034308778,
1119
+ "grad_norm": 5.955286979675293,
1120
+ "learning_rate": 7.938000352712972e-06,
1121
+ "loss": 0.1949,
1122
+ "step": 150
1123
+ },
1124
+ {
1125
+ "epoch": 0.15237134207870837,
1126
+ "grad_norm": 6.1054487228393555,
1127
+ "learning_rate": 7.935502319716397e-06,
1128
+ "loss": 0.3697,
1129
+ "step": 151
1130
+ },
1131
+ {
1132
+ "epoch": 0.15338042381432895,
1133
+ "grad_norm": 3.2285423278808594,
1134
+ "learning_rate": 7.932955360229862e-06,
1135
+ "loss": 0.1118,
1136
+ "step": 152
1137
+ },
1138
+ {
1139
+ "epoch": 0.15438950554994954,
1140
+ "grad_norm": 7.409282684326172,
1141
+ "learning_rate": 7.930359505917381e-06,
1142
+ "loss": 0.4898,
1143
+ "step": 153
1144
+ },
1145
+ {
1146
+ "epoch": 0.15539858728557013,
1147
+ "grad_norm": 4.591885566711426,
1148
+ "learning_rate": 7.927714789050827e-06,
1149
+ "loss": 0.2288,
1150
+ "step": 154
1151
+ },
1152
+ {
1153
+ "epoch": 0.15640766902119072,
1154
+ "grad_norm": 5.779257297515869,
1155
+ "learning_rate": 7.925021242509538e-06,
1156
+ "loss": 0.2563,
1157
+ "step": 155
1158
+ },
1159
+ {
1160
+ "epoch": 0.1574167507568113,
1161
+ "grad_norm": 4.496645927429199,
1162
+ "learning_rate": 7.92227889977991e-06,
1163
+ "loss": 0.2096,
1164
+ "step": 156
1165
+ },
1166
+ {
1167
+ "epoch": 0.1584258324924319,
1168
+ "grad_norm": 6.980607509613037,
1169
+ "learning_rate": 7.919487794954972e-06,
1170
+ "loss": 0.3658,
1171
+ "step": 157
1172
+ },
1173
+ {
1174
+ "epoch": 0.15943491422805248,
1175
+ "grad_norm": 5.738483905792236,
1176
+ "learning_rate": 7.91664796273397e-06,
1177
+ "loss": 0.3123,
1178
+ "step": 158
1179
+ },
1180
+ {
1181
+ "epoch": 0.16044399596367306,
1182
+ "grad_norm": 6.03507137298584,
1183
+ "learning_rate": 7.913759438421932e-06,
1184
+ "loss": 0.3345,
1185
+ "step": 159
1186
+ },
1187
+ {
1188
+ "epoch": 0.16145307769929365,
1189
+ "grad_norm": 31.2845458984375,
1190
+ "learning_rate": 7.910822257929234e-06,
1191
+ "loss": 0.1122,
1192
+ "step": 160
1193
+ },
1194
+ {
1195
+ "epoch": 0.16145307769929365,
1196
+ "eval_accuracy": 0.8518728717366629,
1197
+ "eval_loss": 0.38947635889053345,
1198
+ "eval_runtime": 62.3612,
1199
+ "eval_samples_per_second": 28.255,
1200
+ "eval_steps_per_second": 3.544,
1201
+ "step": 160
1202
+ },
1203
+ {
1204
+ "epoch": 0.16246215943491424,
1205
+ "grad_norm": 6.148342609405518,
1206
+ "learning_rate": 7.907836457771143e-06,
1207
+ "loss": 0.2418,
1208
+ "step": 161
1209
+ },
1210
+ {
1211
+ "epoch": 0.16347124117053483,
1212
+ "grad_norm": 38.332550048828125,
1213
+ "learning_rate": 7.904802075067377e-06,
1214
+ "loss": 0.6998,
1215
+ "step": 162
1216
+ },
1217
+ {
1218
+ "epoch": 0.16448032290615539,
1219
+ "grad_norm": 8.149801254272461,
1220
+ "learning_rate": 7.901719147541628e-06,
1221
+ "loss": 0.1255,
1222
+ "step": 163
1223
+ },
1224
+ {
1225
+ "epoch": 0.16548940464177597,
1226
+ "grad_norm": 19.77474021911621,
1227
+ "learning_rate": 7.898587713521109e-06,
1228
+ "loss": 0.6065,
1229
+ "step": 164
1230
+ },
1231
+ {
1232
+ "epoch": 0.16649848637739656,
1233
+ "grad_norm": 5.291502952575684,
1234
+ "learning_rate": 7.895407811936064e-06,
1235
+ "loss": 0.1659,
1236
+ "step": 165
1237
+ },
1238
+ {
1239
+ "epoch": 0.16750756811301715,
1240
+ "grad_norm": 5.293869495391846,
1241
+ "learning_rate": 7.892179482319294e-06,
1242
+ "loss": 0.2073,
1243
+ "step": 166
1244
+ },
1245
+ {
1246
+ "epoch": 0.16851664984863773,
1247
+ "grad_norm": 6.291193962097168,
1248
+ "learning_rate": 7.88890276480566e-06,
1249
+ "loss": 0.3597,
1250
+ "step": 167
1251
+ },
1252
+ {
1253
+ "epoch": 0.16952573158425832,
1254
+ "grad_norm": 5.216683864593506,
1255
+ "learning_rate": 7.885577700131584e-06,
1256
+ "loss": 0.2888,
1257
+ "step": 168
1258
+ },
1259
+ {
1260
+ "epoch": 0.1705348133198789,
1261
+ "grad_norm": 3.573047637939453,
1262
+ "learning_rate": 7.882204329634543e-06,
1263
+ "loss": 0.1343,
1264
+ "step": 169
1265
+ },
1266
+ {
1267
+ "epoch": 0.1715438950554995,
1268
+ "grad_norm": 5.618640899658203,
1269
+ "learning_rate": 7.878782695252562e-06,
1270
+ "loss": 0.2477,
1271
+ "step": 170
1272
+ },
1273
+ {
1274
+ "epoch": 0.17255297679112008,
1275
+ "grad_norm": 6.469369411468506,
1276
+ "learning_rate": 7.875312839523677e-06,
1277
+ "loss": 0.3563,
1278
+ "step": 171
1279
+ },
1280
+ {
1281
+ "epoch": 0.17356205852674067,
1282
+ "grad_norm": 7.982197284698486,
1283
+ "learning_rate": 7.871794805585425e-06,
1284
+ "loss": 0.2748,
1285
+ "step": 172
1286
+ },
1287
+ {
1288
+ "epoch": 0.17457114026236126,
1289
+ "grad_norm": 8.727740287780762,
1290
+ "learning_rate": 7.868228637174292e-06,
1291
+ "loss": 0.2539,
1292
+ "step": 173
1293
+ },
1294
+ {
1295
+ "epoch": 0.17558022199798184,
1296
+ "grad_norm": 9.52997875213623,
1297
+ "learning_rate": 7.86461437862518e-06,
1298
+ "loss": 0.2352,
1299
+ "step": 174
1300
+ },
1301
+ {
1302
+ "epoch": 0.17658930373360243,
1303
+ "grad_norm": 8.447443008422852,
1304
+ "learning_rate": 7.86095207487085e-06,
1305
+ "loss": 0.3129,
1306
+ "step": 175
1307
+ },
1308
+ {
1309
+ "epoch": 0.17759838546922302,
1310
+ "grad_norm": 7.929843425750732,
1311
+ "learning_rate": 7.857241771441364e-06,
1312
+ "loss": 0.3138,
1313
+ "step": 176
1314
+ },
1315
+ {
1316
+ "epoch": 0.17860746720484358,
1317
+ "grad_norm": 7.068841934204102,
1318
+ "learning_rate": 7.853483514463521e-06,
1319
+ "loss": 0.1881,
1320
+ "step": 177
1321
+ },
1322
+ {
1323
+ "epoch": 0.17961654894046417,
1324
+ "grad_norm": 179.09567260742188,
1325
+ "learning_rate": 7.849677350660282e-06,
1326
+ "loss": 1.6187,
1327
+ "step": 178
1328
+ },
1329
+ {
1330
+ "epoch": 0.18062563067608475,
1331
+ "grad_norm": 14.378893852233887,
1332
+ "learning_rate": 7.84582332735019e-06,
1333
+ "loss": 0.44,
1334
+ "step": 179
1335
+ },
1336
+ {
1337
+ "epoch": 0.18163471241170534,
1338
+ "grad_norm": 10.581100463867188,
1339
+ "learning_rate": 7.841921492446781e-06,
1340
+ "loss": 0.1962,
1341
+ "step": 180
1342
+ },
1343
+ {
1344
+ "epoch": 0.18163471241170534,
1345
+ "eval_accuracy": 0.8229284903518729,
1346
+ "eval_loss": 0.2842705547809601,
1347
+ "eval_runtime": 63.0695,
1348
+ "eval_samples_per_second": 27.937,
1349
+ "eval_steps_per_second": 3.504,
1350
+ "step": 180
1351
+ },
1352
+ {
1353
+ "epoch": 0.18264379414732593,
1354
+ "grad_norm": 13.833659172058105,
1355
+ "learning_rate": 7.837971894457989e-06,
1356
+ "loss": 0.4059,
1357
+ "step": 181
1358
+ },
1359
+ {
1360
+ "epoch": 0.18365287588294651,
1361
+ "grad_norm": 6.910711288452148,
1362
+ "learning_rate": 7.833974582485544e-06,
1363
+ "loss": 0.3115,
1364
+ "step": 182
1365
+ },
1366
+ {
1367
+ "epoch": 0.1846619576185671,
1368
+ "grad_norm": 4.3872599601745605,
1369
+ "learning_rate": 7.829929606224356e-06,
1370
+ "loss": 0.1654,
1371
+ "step": 183
1372
+ },
1373
+ {
1374
+ "epoch": 0.1856710393541877,
1375
+ "grad_norm": 8.301304817199707,
1376
+ "learning_rate": 7.825837015961904e-06,
1377
+ "loss": 0.3223,
1378
+ "step": 184
1379
+ },
1380
+ {
1381
+ "epoch": 0.18668012108980828,
1382
+ "grad_norm": 6.772916316986084,
1383
+ "learning_rate": 7.82169686257761e-06,
1384
+ "loss": 0.207,
1385
+ "step": 185
1386
+ },
1387
+ {
1388
+ "epoch": 0.18768920282542886,
1389
+ "grad_norm": 10.749194145202637,
1390
+ "learning_rate": 7.817509197542204e-06,
1391
+ "loss": 0.3322,
1392
+ "step": 186
1393
+ },
1394
+ {
1395
+ "epoch": 0.18869828456104945,
1396
+ "grad_norm": 18.030078887939453,
1397
+ "learning_rate": 7.813274072917081e-06,
1398
+ "loss": 0.3675,
1399
+ "step": 187
1400
+ },
1401
+ {
1402
+ "epoch": 0.18970736629667004,
1403
+ "grad_norm": 15.416492462158203,
1404
+ "learning_rate": 7.80899154135366e-06,
1405
+ "loss": 0.2049,
1406
+ "step": 188
1407
+ },
1408
+ {
1409
+ "epoch": 0.19071644803229063,
1410
+ "grad_norm": 24.75461769104004,
1411
+ "learning_rate": 7.80466165609273e-06,
1412
+ "loss": 0.36,
1413
+ "step": 189
1414
+ },
1415
+ {
1416
+ "epoch": 0.1917255297679112,
1417
+ "grad_norm": 11.484724044799805,
1418
+ "learning_rate": 7.800284470963781e-06,
1419
+ "loss": 0.2014,
1420
+ "step": 190
1421
+ },
1422
+ {
1423
+ "epoch": 0.1927346115035318,
1424
+ "grad_norm": 19.571962356567383,
1425
+ "learning_rate": 7.795860040384339e-06,
1426
+ "loss": 0.5687,
1427
+ "step": 191
1428
+ },
1429
+ {
1430
+ "epoch": 0.19374369323915236,
1431
+ "grad_norm": 6.390493392944336,
1432
+ "learning_rate": 7.791388419359292e-06,
1433
+ "loss": 0.2563,
1434
+ "step": 192
1435
+ },
1436
+ {
1437
+ "epoch": 0.19475277497477295,
1438
+ "grad_norm": 9.572249412536621,
1439
+ "learning_rate": 7.786869663480201e-06,
1440
+ "loss": 0.3565,
1441
+ "step": 193
1442
+ },
1443
+ {
1444
+ "epoch": 0.19576185671039353,
1445
+ "grad_norm": 8.426647186279297,
1446
+ "learning_rate": 7.782303828924613e-06,
1447
+ "loss": 0.5456,
1448
+ "step": 194
1449
+ },
1450
+ {
1451
+ "epoch": 0.19677093844601412,
1452
+ "grad_norm": 14.882564544677734,
1453
+ "learning_rate": 7.77769097245536e-06,
1454
+ "loss": 0.2976,
1455
+ "step": 195
1456
+ },
1457
+ {
1458
+ "epoch": 0.1977800201816347,
1459
+ "grad_norm": 10.191393852233887,
1460
+ "learning_rate": 7.773031151419853e-06,
1461
+ "loss": 0.4641,
1462
+ "step": 196
1463
+ },
1464
+ {
1465
+ "epoch": 0.1987891019172553,
1466
+ "grad_norm": 7.604254245758057,
1467
+ "learning_rate": 7.768324423749376e-06,
1468
+ "loss": 0.2364,
1469
+ "step": 197
1470
+ },
1471
+ {
1472
+ "epoch": 0.19979818365287588,
1473
+ "grad_norm": 9.080754280090332,
1474
+ "learning_rate": 7.763570847958354e-06,
1475
+ "loss": 0.1754,
1476
+ "step": 198
1477
+ },
1478
+ {
1479
+ "epoch": 0.20080726538849647,
1480
+ "grad_norm": 10.90381908416748,
1481
+ "learning_rate": 7.758770483143633e-06,
1482
+ "loss": 0.1799,
1483
+ "step": 199
1484
+ },
1485
+ {
1486
+ "epoch": 0.20181634712411706,
1487
+ "grad_norm": 12.508880615234375,
1488
+ "learning_rate": 7.753923388983747e-06,
1489
+ "loss": 0.2855,
1490
+ "step": 200
1491
+ },
1492
+ {
1493
+ "epoch": 0.20181634712411706,
1494
+ "eval_accuracy": 0.840522133938706,
1495
+ "eval_loss": 0.29473429918289185,
1496
+ "eval_runtime": 62.4643,
1497
+ "eval_samples_per_second": 28.208,
1498
+ "eval_steps_per_second": 3.538,
1499
+ "step": 200
1500
+ },
1501
+ {
1502
+ "epoch": 0.20282542885973764,
1503
+ "grad_norm": 20.691980361938477,
1504
+ "learning_rate": 7.749029625738169e-06,
1505
+ "loss": 0.1942,
1506
+ "step": 201
1507
+ },
1508
+ {
1509
+ "epoch": 0.20383451059535823,
1510
+ "grad_norm": 10.143714904785156,
1511
+ "learning_rate": 7.744089254246569e-06,
1512
+ "loss": 0.2001,
1513
+ "step": 202
1514
+ },
1515
+ {
1516
+ "epoch": 0.20484359233097882,
1517
+ "grad_norm": 17.92678451538086,
1518
+ "learning_rate": 7.739102335928053e-06,
1519
+ "loss": 0.3823,
1520
+ "step": 203
1521
+ },
1522
+ {
1523
+ "epoch": 0.2058526740665994,
1524
+ "grad_norm": 12.694001197814941,
1525
+ "learning_rate": 7.734068932780405e-06,
1526
+ "loss": 0.274,
1527
+ "step": 204
1528
+ },
1529
+ {
1530
+ "epoch": 0.20686175580222,
1531
+ "grad_norm": 12.30357837677002,
1532
+ "learning_rate": 7.728989107379303e-06,
1533
+ "loss": 0.3017,
1534
+ "step": 205
1535
+ },
1536
+ {
1537
+ "epoch": 0.20787083753784055,
1538
+ "grad_norm": 7.952809810638428,
1539
+ "learning_rate": 7.72386292287756e-06,
1540
+ "loss": 0.14,
1541
+ "step": 206
1542
+ },
1543
+ {
1544
+ "epoch": 0.20887991927346114,
1545
+ "grad_norm": 69.02944946289062,
1546
+ "learning_rate": 7.718690443004324e-06,
1547
+ "loss": 0.4633,
1548
+ "step": 207
1549
+ },
1550
+ {
1551
+ "epoch": 0.20988900100908173,
1552
+ "grad_norm": 92.96024322509766,
1553
+ "learning_rate": 7.71347173206429e-06,
1554
+ "loss": 1.1202,
1555
+ "step": 208
1556
+ },
1557
+ {
1558
+ "epoch": 0.21089808274470231,
1559
+ "grad_norm": 83.07585906982422,
1560
+ "learning_rate": 7.708206854936908e-06,
1561
+ "loss": 0.3752,
1562
+ "step": 209
1563
+ },
1564
+ {
1565
+ "epoch": 0.2119071644803229,
1566
+ "grad_norm": 10.343903541564941,
1567
+ "learning_rate": 7.702895877075563e-06,
1568
+ "loss": 0.3543,
1569
+ "step": 210
1570
+ },
1571
+ {
1572
+ "epoch": 0.2129162462159435,
1573
+ "grad_norm": 34.449188232421875,
1574
+ "learning_rate": 7.697538864506767e-06,
1575
+ "loss": 0.5488,
1576
+ "step": 211
1577
+ },
1578
+ {
1579
+ "epoch": 0.21392532795156408,
1580
+ "grad_norm": 5.609644412994385,
1581
+ "learning_rate": 7.692135883829349e-06,
1582
+ "loss": 0.342,
1583
+ "step": 212
1584
+ },
1585
+ {
1586
+ "epoch": 0.21493440968718466,
1587
+ "grad_norm": 6.129890441894531,
1588
+ "learning_rate": 7.686687002213609e-06,
1589
+ "loss": 0.1932,
1590
+ "step": 213
1591
+ },
1592
+ {
1593
+ "epoch": 0.21594349142280525,
1594
+ "grad_norm": 17.425050735473633,
1595
+ "learning_rate": 7.681192287400491e-06,
1596
+ "loss": 0.4084,
1597
+ "step": 214
1598
+ },
1599
+ {
1600
+ "epoch": 0.21695257315842584,
1601
+ "grad_norm": 24.733633041381836,
1602
+ "learning_rate": 7.675651807700748e-06,
1603
+ "loss": 0.2141,
1604
+ "step": 215
1605
+ },
1606
+ {
1607
+ "epoch": 0.21796165489404642,
1608
+ "grad_norm": 33.499794006347656,
1609
+ "learning_rate": 7.670065631994078e-06,
1610
+ "loss": 0.5658,
1611
+ "step": 216
1612
+ },
1613
+ {
1614
+ "epoch": 0.218970736629667,
1615
+ "grad_norm": 9.948688507080078,
1616
+ "learning_rate": 7.664433829728277e-06,
1617
+ "loss": 0.2564,
1618
+ "step": 217
1619
+ },
1620
+ {
1621
+ "epoch": 0.2199798183652876,
1622
+ "grad_norm": 9.255337715148926,
1623
+ "learning_rate": 7.658756470918382e-06,
1624
+ "loss": 0.2294,
1625
+ "step": 218
1626
+ },
1627
+ {
1628
+ "epoch": 0.2209889001009082,
1629
+ "grad_norm": 30.673681259155273,
1630
+ "learning_rate": 7.65303362614578e-06,
1631
+ "loss": 0.4334,
1632
+ "step": 219
1633
+ },
1634
+ {
1635
+ "epoch": 0.22199798183652875,
1636
+ "grad_norm": 5.19248628616333,
1637
+ "learning_rate": 7.647265366557355e-06,
1638
+ "loss": 0.1593,
1639
+ "step": 220
1640
+ },
1641
+ {
1642
+ "epoch": 0.22199798183652875,
1643
+ "eval_accuracy": 0.8382519863791147,
1644
+ "eval_loss": 0.29325050115585327,
1645
+ "eval_runtime": 62.9477,
1646
+ "eval_samples_per_second": 27.991,
1647
+ "eval_steps_per_second": 3.511,
1648
+ "step": 220
1649
+ },
1650
+ {
1651
+ "epoch": 0.22300706357214933,
1652
+ "grad_norm": 5.615384101867676,
1653
+ "learning_rate": 7.641451763864587e-06,
1654
+ "loss": 0.225,
1655
+ "step": 221
1656
+ },
1657
+ {
1658
+ "epoch": 0.22401614530776992,
1659
+ "grad_norm": 6.7938032150268555,
1660
+ "learning_rate": 7.63559289034266e-06,
1661
+ "loss": 0.2151,
1662
+ "step": 222
1663
+ },
1664
+ {
1665
+ "epoch": 0.2250252270433905,
1666
+ "grad_norm": 2.8786470890045166,
1667
+ "learning_rate": 7.629688818829577e-06,
1668
+ "loss": 0.1089,
1669
+ "step": 223
1670
+ },
1671
+ {
1672
+ "epoch": 0.2260343087790111,
1673
+ "grad_norm": 7.671812057495117,
1674
+ "learning_rate": 7.623739622725244e-06,
1675
+ "loss": 0.289,
1676
+ "step": 224
1677
+ },
1678
+ {
1679
+ "epoch": 0.22704339051463168,
1680
+ "grad_norm": 5.496854782104492,
1681
+ "learning_rate": 7.617745375990556e-06,
1682
+ "loss": 0.24,
1683
+ "step": 225
1684
+ },
1685
+ {
1686
+ "epoch": 0.22805247225025227,
1687
+ "grad_norm": 6.458908557891846,
1688
+ "learning_rate": 7.611706153146485e-06,
1689
+ "loss": 0.3702,
1690
+ "step": 226
1691
+ },
1692
+ {
1693
+ "epoch": 0.22906155398587286,
1694
+ "grad_norm": 10.48363971710205,
1695
+ "learning_rate": 7.605622029273148e-06,
1696
+ "loss": 0.1634,
1697
+ "step": 227
1698
+ },
1699
+ {
1700
+ "epoch": 0.23007063572149344,
1701
+ "grad_norm": 32.09809875488281,
1702
+ "learning_rate": 7.599493080008873e-06,
1703
+ "loss": 0.7119,
1704
+ "step": 228
1705
+ },
1706
+ {
1707
+ "epoch": 0.23107971745711403,
1708
+ "grad_norm": 43.372257232666016,
1709
+ "learning_rate": 7.5933193815492675e-06,
1710
+ "loss": 0.4775,
1711
+ "step": 229
1712
+ },
1713
+ {
1714
+ "epoch": 0.23208879919273462,
1715
+ "grad_norm": 21.043750762939453,
1716
+ "learning_rate": 7.587101010646259e-06,
1717
+ "loss": 0.3401,
1718
+ "step": 230
1719
+ },
1720
+ {
1721
+ "epoch": 0.2330978809283552,
1722
+ "grad_norm": 13.805304527282715,
1723
+ "learning_rate": 7.58083804460715e-06,
1724
+ "loss": 0.1592,
1725
+ "step": 231
1726
+ },
1727
+ {
1728
+ "epoch": 0.2341069626639758,
1729
+ "grad_norm": 6.074002265930176,
1730
+ "learning_rate": 7.574530561293649e-06,
1731
+ "loss": 0.3836,
1732
+ "step": 232
1733
+ },
1734
+ {
1735
+ "epoch": 0.23511604439959638,
1736
+ "grad_norm": 4.921712875366211,
1737
+ "learning_rate": 7.5681786391209105e-06,
1738
+ "loss": 0.2796,
1739
+ "step": 233
1740
+ },
1741
+ {
1742
+ "epoch": 0.23612512613521694,
1743
+ "grad_norm": 5.469928741455078,
1744
+ "learning_rate": 7.561782357056557e-06,
1745
+ "loss": 0.2877,
1746
+ "step": 234
1747
+ },
1748
+ {
1749
+ "epoch": 0.23713420787083753,
1750
+ "grad_norm": 5.309055328369141,
1751
+ "learning_rate": 7.555341794619694e-06,
1752
+ "loss": 0.2664,
1753
+ "step": 235
1754
+ },
1755
+ {
1756
+ "epoch": 0.23814328960645811,
1757
+ "grad_norm": 55.794979095458984,
1758
+ "learning_rate": 7.548857031879926e-06,
1759
+ "loss": 0.1148,
1760
+ "step": 236
1761
+ },
1762
+ {
1763
+ "epoch": 0.2391523713420787,
1764
+ "grad_norm": 207.49688720703125,
1765
+ "learning_rate": 7.5423281494563595e-06,
1766
+ "loss": 0.3024,
1767
+ "step": 237
1768
+ },
1769
+ {
1770
+ "epoch": 0.2401614530776993,
1771
+ "grad_norm": 13.331132888793945,
1772
+ "learning_rate": 7.535755228516601e-06,
1773
+ "loss": 0.353,
1774
+ "step": 238
1775
+ },
1776
+ {
1777
+ "epoch": 0.24117053481331988,
1778
+ "grad_norm": 9.264041900634766,
1779
+ "learning_rate": 7.529138350775745e-06,
1780
+ "loss": 0.3563,
1781
+ "step": 239
1782
+ },
1783
+ {
1784
+ "epoch": 0.24217961654894046,
1785
+ "grad_norm": 4.584170818328857,
1786
+ "learning_rate": 7.522477598495363e-06,
1787
+ "loss": 0.2153,
1788
+ "step": 240
1789
+ },
1790
+ {
1791
+ "epoch": 0.24217961654894046,
1792
+ "eval_accuracy": 0.8376844494892168,
1793
+ "eval_loss": 0.2747989892959595,
1794
+ "eval_runtime": 62.479,
1795
+ "eval_samples_per_second": 28.201,
1796
+ "eval_steps_per_second": 3.537,
1797
+ "step": 240
1798
+ },
1799
+ {
1800
+ "epoch": 0.24318869828456105,
1801
+ "grad_norm": 4.465677738189697,
1802
+ "learning_rate": 7.515773054482478e-06,
1803
+ "loss": 0.2503,
1804
+ "step": 241
1805
+ },
1806
+ {
1807
+ "epoch": 0.24419778002018164,
1808
+ "grad_norm": 4.346131324768066,
1809
+ "learning_rate": 7.509024802088534e-06,
1810
+ "loss": 0.2141,
1811
+ "step": 242
1812
+ },
1813
+ {
1814
+ "epoch": 0.24520686175580222,
1815
+ "grad_norm": 7.381392002105713,
1816
+ "learning_rate": 7.502232925208363e-06,
1817
+ "loss": 0.2984,
1818
+ "step": 243
1819
+ },
1820
+ {
1821
+ "epoch": 0.2462159434914228,
1822
+ "grad_norm": 4.441753387451172,
1823
+ "learning_rate": 7.49539750827914e-06,
1824
+ "loss": 0.2058,
1825
+ "step": 244
1826
+ },
1827
+ {
1828
+ "epoch": 0.2472250252270434,
1829
+ "grad_norm": 7.497750282287598,
1830
+ "learning_rate": 7.488518636279331e-06,
1831
+ "loss": 0.4537,
1832
+ "step": 245
1833
+ },
1834
+ {
1835
+ "epoch": 0.248234106962664,
1836
+ "grad_norm": 9.178194046020508,
1837
+ "learning_rate": 7.4815963947276436e-06,
1838
+ "loss": 0.2963,
1839
+ "step": 246
1840
+ },
1841
+ {
1842
+ "epoch": 0.24924318869828457,
1843
+ "grad_norm": 7.65831184387207,
1844
+ "learning_rate": 7.474630869681954e-06,
1845
+ "loss": 0.3374,
1846
+ "step": 247
1847
+ },
1848
+ {
1849
+ "epoch": 0.25025227043390513,
1850
+ "grad_norm": 4.4074482917785645,
1851
+ "learning_rate": 7.467622147738246e-06,
1852
+ "loss": 0.176,
1853
+ "step": 248
1854
+ },
1855
+ {
1856
+ "epoch": 0.2512613521695257,
1857
+ "grad_norm": 3.8703436851501465,
1858
+ "learning_rate": 7.4605703160295315e-06,
1859
+ "loss": 0.1294,
1860
+ "step": 249
1861
+ },
1862
+ {
1863
+ "epoch": 0.2522704339051463,
1864
+ "grad_norm": 14.600114822387695,
1865
+ "learning_rate": 7.453475462224763e-06,
1866
+ "loss": 0.2959,
1867
+ "step": 250
1868
+ },
1869
+ {
1870
+ "epoch": 0.2532795156407669,
1871
+ "grad_norm": 7.458588600158691,
1872
+ "learning_rate": 7.44633767452775e-06,
1873
+ "loss": 0.3291,
1874
+ "step": 251
1875
+ },
1876
+ {
1877
+ "epoch": 0.2542885973763875,
1878
+ "grad_norm": 13.63289737701416,
1879
+ "learning_rate": 7.439157041676058e-06,
1880
+ "loss": 0.4166,
1881
+ "step": 252
1882
+ },
1883
+ {
1884
+ "epoch": 0.25529767911200807,
1885
+ "grad_norm": 8.358410835266113,
1886
+ "learning_rate": 7.431933652939908e-06,
1887
+ "loss": 0.257,
1888
+ "step": 253
1889
+ },
1890
+ {
1891
+ "epoch": 0.25630676084762866,
1892
+ "grad_norm": 5.803023338317871,
1893
+ "learning_rate": 7.424667598121065e-06,
1894
+ "loss": 0.2334,
1895
+ "step": 254
1896
+ },
1897
+ {
1898
+ "epoch": 0.25731584258324924,
1899
+ "grad_norm": 5.000588893890381,
1900
+ "learning_rate": 7.4173589675517245e-06,
1901
+ "loss": 0.2193,
1902
+ "step": 255
1903
+ },
1904
+ {
1905
+ "epoch": 0.25832492431886983,
1906
+ "grad_norm": 5.990160942077637,
1907
+ "learning_rate": 7.410007852093384e-06,
1908
+ "loss": 0.31,
1909
+ "step": 256
1910
+ },
1911
+ {
1912
+ "epoch": 0.2593340060544904,
1913
+ "grad_norm": 6.175328731536865,
1914
+ "learning_rate": 7.40261434313572e-06,
1915
+ "loss": 0.307,
1916
+ "step": 257
1917
+ },
1918
+ {
1919
+ "epoch": 0.260343087790111,
1920
+ "grad_norm": 6.047603130340576,
1921
+ "learning_rate": 7.395178532595444e-06,
1922
+ "loss": 0.223,
1923
+ "step": 258
1924
+ },
1925
+ {
1926
+ "epoch": 0.2613521695257316,
1927
+ "grad_norm": 5.447187423706055,
1928
+ "learning_rate": 7.387700512915168e-06,
1929
+ "loss": 0.0597,
1930
+ "step": 259
1931
+ },
1932
+ {
1933
+ "epoch": 0.2623612512613522,
1934
+ "grad_norm": 6.375972747802734,
1935
+ "learning_rate": 7.380180377062251e-06,
1936
+ "loss": 0.398,
1937
+ "step": 260
1938
+ },
1939
+ {
1940
+ "epoch": 0.2623612512613522,
1941
+ "eval_accuracy": 0.8320090805902384,
1942
+ "eval_loss": 0.2793748378753662,
1943
+ "eval_runtime": 62.5384,
1944
+ "eval_samples_per_second": 28.175,
1945
+ "eval_steps_per_second": 3.534,
1946
+ "step": 260
1947
+ },
1948
+ {
1949
+ "epoch": 0.26337033299697277,
1950
+ "grad_norm": 5.560431003570557,
1951
+ "learning_rate": 7.372618218527644e-06,
1952
+ "loss": 0.2861,
1953
+ "step": 261
1954
+ },
1955
+ {
1956
+ "epoch": 0.26437941473259335,
1957
+ "grad_norm": 5.246089935302734,
1958
+ "learning_rate": 7.365014131324725e-06,
1959
+ "loss": 0.1859,
1960
+ "step": 262
1961
+ },
1962
+ {
1963
+ "epoch": 0.26538849646821394,
1964
+ "grad_norm": 7.6310625076293945,
1965
+ "learning_rate": 7.3573682099881345e-06,
1966
+ "loss": 0.3164,
1967
+ "step": 263
1968
+ },
1969
+ {
1970
+ "epoch": 0.26639757820383453,
1971
+ "grad_norm": 6.964735507965088,
1972
+ "learning_rate": 7.349680549572598e-06,
1973
+ "loss": 0.3655,
1974
+ "step": 264
1975
+ },
1976
+ {
1977
+ "epoch": 0.2674066599394551,
1978
+ "grad_norm": 4.680076599121094,
1979
+ "learning_rate": 7.3419512456517455e-06,
1980
+ "loss": 0.1872,
1981
+ "step": 265
1982
+ },
1983
+ {
1984
+ "epoch": 0.2684157416750757,
1985
+ "grad_norm": 3.2980797290802,
1986
+ "learning_rate": 7.3341803943169214e-06,
1987
+ "loss": 0.0983,
1988
+ "step": 266
1989
+ },
1990
+ {
1991
+ "epoch": 0.2694248234106963,
1992
+ "grad_norm": 9.682284355163574,
1993
+ "learning_rate": 7.326368092175993e-06,
1994
+ "loss": 0.1637,
1995
+ "step": 267
1996
+ },
1997
+ {
1998
+ "epoch": 0.2704339051463169,
1999
+ "grad_norm": 58.10804748535156,
2000
+ "learning_rate": 7.3185144363521435e-06,
2001
+ "loss": 1.2893,
2002
+ "step": 268
2003
+ },
2004
+ {
2005
+ "epoch": 0.2714429868819374,
2006
+ "grad_norm": 3.9088146686553955,
2007
+ "learning_rate": 7.310619524482673e-06,
2008
+ "loss": 0.1103,
2009
+ "step": 269
2010
+ },
2011
+ {
2012
+ "epoch": 0.272452068617558,
2013
+ "grad_norm": 8.596792221069336,
2014
+ "learning_rate": 7.302683454717778e-06,
2015
+ "loss": 0.4524,
2016
+ "step": 270
2017
+ },
2018
+ {
2019
+ "epoch": 0.2734611503531786,
2020
+ "grad_norm": 18.94976234436035,
2021
+ "learning_rate": 7.294706325719331e-06,
2022
+ "loss": 0.3868,
2023
+ "step": 271
2024
+ },
2025
+ {
2026
+ "epoch": 0.27447023208879917,
2027
+ "grad_norm": 28.618101119995117,
2028
+ "learning_rate": 7.28668823665966e-06,
2029
+ "loss": 1.2269,
2030
+ "step": 272
2031
+ },
2032
+ {
2033
+ "epoch": 0.27547931382441976,
2034
+ "grad_norm": 7.027772903442383,
2035
+ "learning_rate": 7.2786292872203125e-06,
2036
+ "loss": 0.2546,
2037
+ "step": 273
2038
+ },
2039
+ {
2040
+ "epoch": 0.27648839556004035,
2041
+ "grad_norm": 4.971069812774658,
2042
+ "learning_rate": 7.270529577590812e-06,
2043
+ "loss": 0.2229,
2044
+ "step": 274
2045
+ },
2046
+ {
2047
+ "epoch": 0.27749747729566093,
2048
+ "grad_norm": 7.468736171722412,
2049
+ "learning_rate": 7.262389208467417e-06,
2050
+ "loss": 0.3655,
2051
+ "step": 275
2052
+ },
2053
+ {
2054
+ "epoch": 0.2785065590312815,
2055
+ "grad_norm": 7.4164509773254395,
2056
+ "learning_rate": 7.2542082810518696e-06,
2057
+ "loss": 0.3047,
2058
+ "step": 276
2059
+ },
2060
+ {
2061
+ "epoch": 0.2795156407669021,
2062
+ "grad_norm": 6.213995933532715,
2063
+ "learning_rate": 7.245986897050137e-06,
2064
+ "loss": 0.2879,
2065
+ "step": 277
2066
+ },
2067
+ {
2068
+ "epoch": 0.2805247225025227,
2069
+ "grad_norm": 6.1668548583984375,
2070
+ "learning_rate": 7.237725158671141e-06,
2071
+ "loss": 0.3405,
2072
+ "step": 278
2073
+ },
2074
+ {
2075
+ "epoch": 0.2815338042381433,
2076
+ "grad_norm": 11.742606163024902,
2077
+ "learning_rate": 7.229423168625498e-06,
2078
+ "loss": 0.3894,
2079
+ "step": 279
2080
+ },
2081
+ {
2082
+ "epoch": 0.28254288597376387,
2083
+ "grad_norm": 5.1043477058410645,
2084
+ "learning_rate": 7.2210810301242345e-06,
2085
+ "loss": 0.199,
2086
+ "step": 280
2087
+ },
2088
+ {
2089
+ "epoch": 0.28254288597376387,
2090
+ "eval_accuracy": 0.8382519863791147,
2091
+ "eval_loss": 0.28534775972366333,
2092
+ "eval_runtime": 62.6946,
2093
+ "eval_samples_per_second": 28.104,
2094
+ "eval_steps_per_second": 3.525,
2095
+ "step": 280
2096
+ },
2097
+ {
2098
+ "epoch": 0.28355196770938446,
2099
+ "grad_norm": 5.588554859161377,
2100
+ "learning_rate": 7.212698846877503e-06,
2101
+ "loss": 0.347,
2102
+ "step": 281
2103
+ },
2104
+ {
2105
+ "epoch": 0.28456104944500504,
2106
+ "grad_norm": 4.220617294311523,
2107
+ "learning_rate": 7.204276723093301e-06,
2108
+ "loss": 0.2267,
2109
+ "step": 282
2110
+ },
2111
+ {
2112
+ "epoch": 0.28557013118062563,
2113
+ "grad_norm": 36.09522247314453,
2114
+ "learning_rate": 7.195814763476164e-06,
2115
+ "loss": 0.6504,
2116
+ "step": 283
2117
+ },
2118
+ {
2119
+ "epoch": 0.2865792129162462,
2120
+ "grad_norm": 5.161518096923828,
2121
+ "learning_rate": 7.187313073225876e-06,
2122
+ "loss": 0.2736,
2123
+ "step": 284
2124
+ },
2125
+ {
2126
+ "epoch": 0.2875882946518668,
2127
+ "grad_norm": 5.858831882476807,
2128
+ "learning_rate": 7.178771758036152e-06,
2129
+ "loss": 0.3758,
2130
+ "step": 285
2131
+ },
2132
+ {
2133
+ "epoch": 0.2885973763874874,
2134
+ "grad_norm": 14.579549789428711,
2135
+ "learning_rate": 7.170190924093326e-06,
2136
+ "loss": 0.3338,
2137
+ "step": 286
2138
+ },
2139
+ {
2140
+ "epoch": 0.289606458123108,
2141
+ "grad_norm": 6.289809703826904,
2142
+ "learning_rate": 7.161570678075037e-06,
2143
+ "loss": 0.4051,
2144
+ "step": 287
2145
+ },
2146
+ {
2147
+ "epoch": 0.29061553985872857,
2148
+ "grad_norm": 4.26041841506958,
2149
+ "learning_rate": 7.152911127148893e-06,
2150
+ "loss": 0.2365,
2151
+ "step": 288
2152
+ },
2153
+ {
2154
+ "epoch": 0.29162462159434915,
2155
+ "grad_norm": 3.567761182785034,
2156
+ "learning_rate": 7.1442123789711495e-06,
2157
+ "loss": 0.1612,
2158
+ "step": 289
2159
+ },
2160
+ {
2161
+ "epoch": 0.29263370332996974,
2162
+ "grad_norm": 4.908886432647705,
2163
+ "learning_rate": 7.135474541685359e-06,
2164
+ "loss": 0.2345,
2165
+ "step": 290
2166
+ },
2167
+ {
2168
+ "epoch": 0.29364278506559033,
2169
+ "grad_norm": 5.828519821166992,
2170
+ "learning_rate": 7.126697723921041e-06,
2171
+ "loss": 0.3646,
2172
+ "step": 291
2173
+ },
2174
+ {
2175
+ "epoch": 0.2946518668012109,
2176
+ "grad_norm": 5.6283674240112305,
2177
+ "learning_rate": 7.117882034792315e-06,
2178
+ "loss": 0.3539,
2179
+ "step": 292
2180
+ },
2181
+ {
2182
+ "epoch": 0.2956609485368315,
2183
+ "grad_norm": 2.5755410194396973,
2184
+ "learning_rate": 7.109027583896559e-06,
2185
+ "loss": 0.072,
2186
+ "step": 293
2187
+ },
2188
+ {
2189
+ "epoch": 0.2966700302724521,
2190
+ "grad_norm": 5.203614234924316,
2191
+ "learning_rate": 7.1001344813130355e-06,
2192
+ "loss": 0.2994,
2193
+ "step": 294
2194
+ },
2195
+ {
2196
+ "epoch": 0.2976791120080727,
2197
+ "grad_norm": 4.4349822998046875,
2198
+ "learning_rate": 7.0912028376015315e-06,
2199
+ "loss": 0.1816,
2200
+ "step": 295
2201
+ },
2202
+ {
2203
+ "epoch": 0.29868819374369326,
2204
+ "grad_norm": 3.131836175918579,
2205
+ "learning_rate": 7.082232763800982e-06,
2206
+ "loss": 0.1107,
2207
+ "step": 296
2208
+ },
2209
+ {
2210
+ "epoch": 0.29969727547931385,
2211
+ "grad_norm": 7.76261568069458,
2212
+ "learning_rate": 7.073224371428083e-06,
2213
+ "loss": 0.3865,
2214
+ "step": 297
2215
+ },
2216
+ {
2217
+ "epoch": 0.3007063572149344,
2218
+ "grad_norm": 8.260970115661621,
2219
+ "learning_rate": 7.064177772475912e-06,
2220
+ "loss": 0.3415,
2221
+ "step": 298
2222
+ },
2223
+ {
2224
+ "epoch": 0.30171543895055497,
2225
+ "grad_norm": 7.274144172668457,
2226
+ "learning_rate": 7.055093079412536e-06,
2227
+ "loss": 0.406,
2228
+ "step": 299
2229
+ },
2230
+ {
2231
+ "epoch": 0.30272452068617556,
2232
+ "grad_norm": 6.949483394622803,
2233
+ "learning_rate": 7.04597040517961e-06,
2234
+ "loss": 0.2363,
2235
+ "step": 300
2236
+ },
2237
+ {
2238
+ "epoch": 0.30272452068617556,
2239
+ "eval_accuracy": 0.8422247446083996,
2240
+ "eval_loss": 0.29199618101119995,
2241
+ "eval_runtime": 62.2656,
2242
+ "eval_samples_per_second": 28.298,
2243
+ "eval_steps_per_second": 3.549,
2244
+ "step": 300
2245
+ },
2246
+ {
2247
+ "epoch": 0.30373360242179614,
2248
+ "grad_norm": 11.153295516967773,
2249
+ "learning_rate": 7.036809863190972e-06,
2250
+ "loss": 0.367,
2251
+ "step": 301
2252
+ },
2253
+ {
2254
+ "epoch": 0.30474268415741673,
2255
+ "grad_norm": 7.238802909851074,
2256
+ "learning_rate": 7.027611567331239e-06,
2257
+ "loss": 0.3071,
2258
+ "step": 302
2259
+ },
2260
+ {
2261
+ "epoch": 0.3057517658930373,
2262
+ "grad_norm": 5.204061031341553,
2263
+ "learning_rate": 7.018375631954384e-06,
2264
+ "loss": 0.1991,
2265
+ "step": 303
2266
+ },
2267
+ {
2268
+ "epoch": 0.3067608476286579,
2269
+ "grad_norm": 4.6721930503845215,
2270
+ "learning_rate": 7.0091021718823185e-06,
2271
+ "loss": 0.1833,
2272
+ "step": 304
2273
+ },
2274
+ {
2275
+ "epoch": 0.3077699293642785,
2276
+ "grad_norm": 4.843674182891846,
2277
+ "learning_rate": 6.999791302403463e-06,
2278
+ "loss": 0.2464,
2279
+ "step": 305
2280
+ },
2281
+ {
2282
+ "epoch": 0.3087790110998991,
2283
+ "grad_norm": 5.238533973693848,
2284
+ "learning_rate": 6.990443139271317e-06,
2285
+ "loss": 0.2551,
2286
+ "step": 306
2287
+ },
2288
+ {
2289
+ "epoch": 0.30978809283551967,
2290
+ "grad_norm": 20.923328399658203,
2291
+ "learning_rate": 6.981057798703019e-06,
2292
+ "loss": 0.7206,
2293
+ "step": 307
2294
+ },
2295
+ {
2296
+ "epoch": 0.31079717457114026,
2297
+ "grad_norm": 4.751791954040527,
2298
+ "learning_rate": 6.971635397377895e-06,
2299
+ "loss": 0.2031,
2300
+ "step": 308
2301
+ },
2302
+ {
2303
+ "epoch": 0.31180625630676084,
2304
+ "grad_norm": 9.50137996673584,
2305
+ "learning_rate": 6.962176052436019e-06,
2306
+ "loss": 0.4901,
2307
+ "step": 309
2308
+ },
2309
+ {
2310
+ "epoch": 0.31281533804238143,
2311
+ "grad_norm": 10.486673355102539,
2312
+ "learning_rate": 6.952679881476746e-06,
2313
+ "loss": 0.5644,
2314
+ "step": 310
2315
+ },
2316
+ {
2317
+ "epoch": 0.313824419778002,
2318
+ "grad_norm": 8.85893726348877,
2319
+ "learning_rate": 6.94314700255726e-06,
2320
+ "loss": 0.5932,
2321
+ "step": 311
2322
+ },
2323
+ {
2324
+ "epoch": 0.3148335015136226,
2325
+ "grad_norm": 33.33445358276367,
2326
+ "learning_rate": 6.933577534191101e-06,
2327
+ "loss": 1.3013,
2328
+ "step": 312
2329
+ },
2330
+ {
2331
+ "epoch": 0.3158425832492432,
2332
+ "grad_norm": 29.183631896972656,
2333
+ "learning_rate": 6.923971595346686e-06,
2334
+ "loss": 0.4947,
2335
+ "step": 313
2336
+ },
2337
+ {
2338
+ "epoch": 0.3168516649848638,
2339
+ "grad_norm": 7.223900318145752,
2340
+ "learning_rate": 6.914329305445844e-06,
2341
+ "loss": 0.3102,
2342
+ "step": 314
2343
+ },
2344
+ {
2345
+ "epoch": 0.31786074672048437,
2346
+ "grad_norm": 4.909074306488037,
2347
+ "learning_rate": 6.904650784362317e-06,
2348
+ "loss": 0.223,
2349
+ "step": 315
2350
+ },
2351
+ {
2352
+ "epoch": 0.31886982845610495,
2353
+ "grad_norm": 5.134761333465576,
2354
+ "learning_rate": 6.89493615242028e-06,
2355
+ "loss": 0.2572,
2356
+ "step": 316
2357
+ },
2358
+ {
2359
+ "epoch": 0.31987891019172554,
2360
+ "grad_norm": 4.783396244049072,
2361
+ "learning_rate": 6.885185530392841e-06,
2362
+ "loss": 0.2743,
2363
+ "step": 317
2364
+ },
2365
+ {
2366
+ "epoch": 0.32088799192734613,
2367
+ "grad_norm": 6.382033824920654,
2368
+ "learning_rate": 6.875399039500535e-06,
2369
+ "loss": 0.3093,
2370
+ "step": 318
2371
+ },
2372
+ {
2373
+ "epoch": 0.3218970736629667,
2374
+ "grad_norm": 7.4557318687438965,
2375
+ "learning_rate": 6.865576801409828e-06,
2376
+ "loss": 0.4611,
2377
+ "step": 319
2378
+ },
2379
+ {
2380
+ "epoch": 0.3229061553985873,
2381
+ "grad_norm": 9.1113862991333,
2382
+ "learning_rate": 6.855718938231597e-06,
2383
+ "loss": 0.5509,
2384
+ "step": 320
2385
+ },
2386
+ {
2387
+ "epoch": 0.3229061553985873,
2388
+ "eval_accuracy": 0.8422247446083996,
2389
+ "eval_loss": 0.2692955434322357,
2390
+ "eval_runtime": 62.6677,
2391
+ "eval_samples_per_second": 28.117,
2392
+ "eval_steps_per_second": 3.527,
2393
+ "step": 320
2394
+ },
2395
+ {
2396
+ "epoch": 0.3239152371342079,
2397
+ "grad_norm": 4.367307186126709,
2398
+ "learning_rate": 6.845825572519606e-06,
2399
+ "loss": 0.2284,
2400
+ "step": 321
2401
+ },
2402
+ {
2403
+ "epoch": 0.3249243188698285,
2404
+ "grad_norm": 4.980352878570557,
2405
+ "learning_rate": 6.8358968272689995e-06,
2406
+ "loss": 0.2197,
2407
+ "step": 322
2408
+ },
2409
+ {
2410
+ "epoch": 0.32593340060544906,
2411
+ "grad_norm": 3.6899354457855225,
2412
+ "learning_rate": 6.825932825914758e-06,
2413
+ "loss": 0.1665,
2414
+ "step": 323
2415
+ },
2416
+ {
2417
+ "epoch": 0.32694248234106965,
2418
+ "grad_norm": 5.287685394287109,
2419
+ "learning_rate": 6.815933692330168e-06,
2420
+ "loss": 0.2254,
2421
+ "step": 324
2422
+ },
2423
+ {
2424
+ "epoch": 0.32795156407669024,
2425
+ "grad_norm": 4.298030376434326,
2426
+ "learning_rate": 6.805899550825285e-06,
2427
+ "loss": 0.1869,
2428
+ "step": 325
2429
+ },
2430
+ {
2431
+ "epoch": 0.32896064581231077,
2432
+ "grad_norm": 6.648251533508301,
2433
+ "learning_rate": 6.795830526145385e-06,
2434
+ "loss": 0.438,
2435
+ "step": 326
2436
+ },
2437
+ {
2438
+ "epoch": 0.32996972754793136,
2439
+ "grad_norm": 8.279413223266602,
2440
+ "learning_rate": 6.785726743469415e-06,
2441
+ "loss": 0.3674,
2442
+ "step": 327
2443
+ },
2444
+ {
2445
+ "epoch": 0.33097880928355194,
2446
+ "grad_norm": 8.667623519897461,
2447
+ "learning_rate": 6.775588328408435e-06,
2448
+ "loss": 0.2876,
2449
+ "step": 328
2450
+ },
2451
+ {
2452
+ "epoch": 0.33198789101917253,
2453
+ "grad_norm": 4.858876705169678,
2454
+ "learning_rate": 6.765415407004061e-06,
2455
+ "loss": 0.2051,
2456
+ "step": 329
2457
+ },
2458
+ {
2459
+ "epoch": 0.3329969727547931,
2460
+ "grad_norm": 5.615779876708984,
2461
+ "learning_rate": 6.75520810572689e-06,
2462
+ "loss": 0.2162,
2463
+ "step": 330
2464
+ },
2465
+ {
2466
+ "epoch": 0.3340060544904137,
2467
+ "grad_norm": 5.255247116088867,
2468
+ "learning_rate": 6.744966551474935e-06,
2469
+ "loss": 0.2493,
2470
+ "step": 331
2471
+ },
2472
+ {
2473
+ "epoch": 0.3350151362260343,
2474
+ "grad_norm": 4.313990116119385,
2475
+ "learning_rate": 6.734690871572044e-06,
2476
+ "loss": 0.1736,
2477
+ "step": 332
2478
+ },
2479
+ {
2480
+ "epoch": 0.3360242179616549,
2481
+ "grad_norm": 6.205388069152832,
2482
+ "learning_rate": 6.72438119376632e-06,
2483
+ "loss": 0.1372,
2484
+ "step": 333
2485
+ },
2486
+ {
2487
+ "epoch": 0.33703329969727547,
2488
+ "grad_norm": 4.961912631988525,
2489
+ "learning_rate": 6.714037646228529e-06,
2490
+ "loss": 0.1083,
2491
+ "step": 334
2492
+ },
2493
+ {
2494
+ "epoch": 0.33804238143289606,
2495
+ "grad_norm": 11.366336822509766,
2496
+ "learning_rate": 6.703660357550507e-06,
2497
+ "loss": 0.1794,
2498
+ "step": 335
2499
+ },
2500
+ {
2501
+ "epoch": 0.33905146316851664,
2502
+ "grad_norm": 36.39216613769531,
2503
+ "learning_rate": 6.693249456743565e-06,
2504
+ "loss": 0.8015,
2505
+ "step": 336
2506
+ },
2507
+ {
2508
+ "epoch": 0.34006054490413723,
2509
+ "grad_norm": 26.968290328979492,
2510
+ "learning_rate": 6.682805073236883e-06,
2511
+ "loss": 0.5109,
2512
+ "step": 337
2513
+ },
2514
+ {
2515
+ "epoch": 0.3410696266397578,
2516
+ "grad_norm": 12.663142204284668,
2517
+ "learning_rate": 6.672327336875899e-06,
2518
+ "loss": 0.5224,
2519
+ "step": 338
2520
+ },
2521
+ {
2522
+ "epoch": 0.3420787083753784,
2523
+ "grad_norm": 7.804121017456055,
2524
+ "learning_rate": 6.661816377920695e-06,
2525
+ "loss": 0.2021,
2526
+ "step": 339
2527
+ },
2528
+ {
2529
+ "epoch": 0.343087790110999,
2530
+ "grad_norm": 8.033084869384766,
2531
+ "learning_rate": 6.651272327044385e-06,
2532
+ "loss": 0.2942,
2533
+ "step": 340
2534
+ },
2535
+ {
2536
+ "epoch": 0.343087790110999,
2537
+ "eval_accuracy": 0.840522133938706,
2538
+ "eval_loss": 0.2765989303588867,
2539
+ "eval_runtime": 62.3633,
2540
+ "eval_samples_per_second": 28.254,
2541
+ "eval_steps_per_second": 3.544,
2542
+ "step": 340
2543
+ },
2544
+ {
2545
+ "epoch": 0.3440968718466196,
2546
+ "grad_norm": 6.994205951690674,
2547
+ "learning_rate": 6.640695315331476e-06,
2548
+ "loss": 0.422,
2549
+ "step": 341
2550
+ },
2551
+ {
2552
+ "epoch": 0.34510595358224017,
2553
+ "grad_norm": 6.707622051239014,
2554
+ "learning_rate": 6.630085474276255e-06,
2555
+ "loss": 0.4127,
2556
+ "step": 342
2557
+ },
2558
+ {
2559
+ "epoch": 0.34611503531786075,
2560
+ "grad_norm": 2.8467178344726562,
2561
+ "learning_rate": 6.619442935781141e-06,
2562
+ "loss": 0.0992,
2563
+ "step": 343
2564
+ },
2565
+ {
2566
+ "epoch": 0.34712411705348134,
2567
+ "grad_norm": 3.68339467048645,
2568
+ "learning_rate": 6.608767832155051e-06,
2569
+ "loss": 0.1661,
2570
+ "step": 344
2571
+ },
2572
+ {
2573
+ "epoch": 0.3481331987891019,
2574
+ "grad_norm": 4.811255931854248,
2575
+ "learning_rate": 6.598060296111755e-06,
2576
+ "loss": 0.1805,
2577
+ "step": 345
2578
+ },
2579
+ {
2580
+ "epoch": 0.3491422805247225,
2581
+ "grad_norm": 7.682583332061768,
2582
+ "learning_rate": 6.58732046076823e-06,
2583
+ "loss": 0.4899,
2584
+ "step": 346
2585
+ },
2586
+ {
2587
+ "epoch": 0.3501513622603431,
2588
+ "grad_norm": 4.097416400909424,
2589
+ "learning_rate": 6.5765484596429905e-06,
2590
+ "loss": 0.1297,
2591
+ "step": 347
2592
+ },
2593
+ {
2594
+ "epoch": 0.3511604439959637,
2595
+ "grad_norm": 6.541982650756836,
2596
+ "learning_rate": 6.565744426654449e-06,
2597
+ "loss": 0.2545,
2598
+ "step": 348
2599
+ },
2600
+ {
2601
+ "epoch": 0.3521695257315843,
2602
+ "grad_norm": 6.773824214935303,
2603
+ "learning_rate": 6.554908496119232e-06,
2604
+ "loss": 0.2685,
2605
+ "step": 349
2606
+ },
2607
+ {
2608
+ "epoch": 0.35317860746720486,
2609
+ "grad_norm": 5.670194625854492,
2610
+ "learning_rate": 6.544040802750526e-06,
2611
+ "loss": 0.3245,
2612
+ "step": 350
2613
+ },
2614
+ {
2615
+ "epoch": 0.35418768920282545,
2616
+ "grad_norm": 5.502919673919678,
2617
+ "learning_rate": 6.5331414816563914e-06,
2618
+ "loss": 0.282,
2619
+ "step": 351
2620
+ },
2621
+ {
2622
+ "epoch": 0.35519677093844604,
2623
+ "grad_norm": 6.195550918579102,
2624
+ "learning_rate": 6.52221066833809e-06,
2625
+ "loss": 0.3791,
2626
+ "step": 352
2627
+ },
2628
+ {
2629
+ "epoch": 0.3562058526740666,
2630
+ "grad_norm": 6.497583866119385,
2631
+ "learning_rate": 6.511248498688395e-06,
2632
+ "loss": 0.3853,
2633
+ "step": 353
2634
+ },
2635
+ {
2636
+ "epoch": 0.35721493440968716,
2637
+ "grad_norm": 4.045083045959473,
2638
+ "learning_rate": 6.500255108989904e-06,
2639
+ "loss": 0.1618,
2640
+ "step": 354
2641
+ },
2642
+ {
2643
+ "epoch": 0.35822401614530774,
2644
+ "grad_norm": 4.328484058380127,
2645
+ "learning_rate": 6.489230635913346e-06,
2646
+ "loss": 0.2393,
2647
+ "step": 355
2648
+ },
2649
+ {
2650
+ "epoch": 0.35923309788092833,
2651
+ "grad_norm": 7.9082183837890625,
2652
+ "learning_rate": 6.478175216515884e-06,
2653
+ "loss": 0.2272,
2654
+ "step": 356
2655
+ },
2656
+ {
2657
+ "epoch": 0.3602421796165489,
2658
+ "grad_norm": 3.21086049079895,
2659
+ "learning_rate": 6.467088988239402e-06,
2660
+ "loss": 0.0689,
2661
+ "step": 357
2662
+ },
2663
+ {
2664
+ "epoch": 0.3612512613521695,
2665
+ "grad_norm": 5.211169242858887,
2666
+ "learning_rate": 6.455972088908807e-06,
2667
+ "loss": 0.1841,
2668
+ "step": 358
2669
+ },
2670
+ {
2671
+ "epoch": 0.3622603430877901,
2672
+ "grad_norm": 5.808556079864502,
2673
+ "learning_rate": 6.444824656730311e-06,
2674
+ "loss": 0.1076,
2675
+ "step": 359
2676
+ },
2677
+ {
2678
+ "epoch": 0.3632694248234107,
2679
+ "grad_norm": 16.821155548095703,
2680
+ "learning_rate": 6.43364683028971e-06,
2681
+ "loss": 0.4606,
2682
+ "step": 360
2683
+ },
2684
+ {
2685
+ "epoch": 0.3632694248234107,
2686
+ "eval_accuracy": 0.8484676503972758,
2687
+ "eval_loss": 0.3792904019355774,
2688
+ "eval_runtime": 62.8768,
2689
+ "eval_samples_per_second": 28.023,
2690
+ "eval_steps_per_second": 3.515,
2691
+ "step": 360
2692
+ },
2693
+ {
2694
+ "epoch": 0.36427850655903127,
2695
+ "grad_norm": 12.411088943481445,
2696
+ "learning_rate": 6.422438748550666e-06,
2697
+ "loss": 0.2406,
2698
+ "step": 361
2699
+ },
2700
+ {
2701
+ "epoch": 0.36528758829465185,
2702
+ "grad_norm": 13.036988258361816,
2703
+ "learning_rate": 6.411200550852978e-06,
2704
+ "loss": 0.3551,
2705
+ "step": 362
2706
+ },
2707
+ {
2708
+ "epoch": 0.36629667003027244,
2709
+ "grad_norm": 13.768930435180664,
2710
+ "learning_rate": 6.3999323769108485e-06,
2711
+ "loss": 0.3561,
2712
+ "step": 363
2713
+ },
2714
+ {
2715
+ "epoch": 0.36730575176589303,
2716
+ "grad_norm": 4.591919422149658,
2717
+ "learning_rate": 6.388634366811145e-06,
2718
+ "loss": 0.1434,
2719
+ "step": 364
2720
+ },
2721
+ {
2722
+ "epoch": 0.3683148335015136,
2723
+ "grad_norm": 9.278558731079102,
2724
+ "learning_rate": 6.377306661011664e-06,
2725
+ "loss": 0.445,
2726
+ "step": 365
2727
+ },
2728
+ {
2729
+ "epoch": 0.3693239152371342,
2730
+ "grad_norm": 12.307679176330566,
2731
+ "learning_rate": 6.365949400339378e-06,
2732
+ "loss": 0.3966,
2733
+ "step": 366
2734
+ },
2735
+ {
2736
+ "epoch": 0.3703329969727548,
2737
+ "grad_norm": 5.971735000610352,
2738
+ "learning_rate": 6.354562725988691e-06,
2739
+ "loss": 0.2508,
2740
+ "step": 367
2741
+ },
2742
+ {
2743
+ "epoch": 0.3713420787083754,
2744
+ "grad_norm": 5.919165134429932,
2745
+ "learning_rate": 6.343146779519681e-06,
2746
+ "loss": 0.287,
2747
+ "step": 368
2748
+ },
2749
+ {
2750
+ "epoch": 0.37235116044399597,
2751
+ "grad_norm": 4.112932205200195,
2752
+ "learning_rate": 6.331701702856335e-06,
2753
+ "loss": 0.1366,
2754
+ "step": 369
2755
+ },
2756
+ {
2757
+ "epoch": 0.37336024217961655,
2758
+ "grad_norm": 9.273783683776855,
2759
+ "learning_rate": 6.3202276382847925e-06,
2760
+ "loss": 0.4608,
2761
+ "step": 370
2762
+ },
2763
+ {
2764
+ "epoch": 0.37436932391523714,
2765
+ "grad_norm": 6.013513088226318,
2766
+ "learning_rate": 6.308724728451572e-06,
2767
+ "loss": 0.1759,
2768
+ "step": 371
2769
+ },
2770
+ {
2771
+ "epoch": 0.3753784056508577,
2772
+ "grad_norm": 4.636185169219971,
2773
+ "learning_rate": 6.2971931163618e-06,
2774
+ "loss": 0.1464,
2775
+ "step": 372
2776
+ },
2777
+ {
2778
+ "epoch": 0.3763874873864783,
2779
+ "grad_norm": 9.652426719665527,
2780
+ "learning_rate": 6.285632945377429e-06,
2781
+ "loss": 0.3786,
2782
+ "step": 373
2783
+ },
2784
+ {
2785
+ "epoch": 0.3773965691220989,
2786
+ "grad_norm": 4.286848545074463,
2787
+ "learning_rate": 6.274044359215461e-06,
2788
+ "loss": 0.1569,
2789
+ "step": 374
2790
+ },
2791
+ {
2792
+ "epoch": 0.3784056508577195,
2793
+ "grad_norm": 6.9270853996276855,
2794
+ "learning_rate": 6.2624275019461545e-06,
2795
+ "loss": 0.3606,
2796
+ "step": 375
2797
+ },
2798
+ {
2799
+ "epoch": 0.3794147325933401,
2800
+ "grad_norm": 4.69766092300415,
2801
+ "learning_rate": 6.250782517991241e-06,
2802
+ "loss": 0.1682,
2803
+ "step": 376
2804
+ },
2805
+ {
2806
+ "epoch": 0.38042381432896066,
2807
+ "grad_norm": 4.445621967315674,
2808
+ "learning_rate": 6.239109552122122e-06,
2809
+ "loss": 0.1959,
2810
+ "step": 377
2811
+ },
2812
+ {
2813
+ "epoch": 0.38143289606458125,
2814
+ "grad_norm": 8.952390670776367,
2815
+ "learning_rate": 6.227408749458073e-06,
2816
+ "loss": 0.3696,
2817
+ "step": 378
2818
+ },
2819
+ {
2820
+ "epoch": 0.38244197780020184,
2821
+ "grad_norm": 8.195367813110352,
2822
+ "learning_rate": 6.215680255464441e-06,
2823
+ "loss": 0.3198,
2824
+ "step": 379
2825
+ },
2826
+ {
2827
+ "epoch": 0.3834510595358224,
2828
+ "grad_norm": 14.417852401733398,
2829
+ "learning_rate": 6.203924215950831e-06,
2830
+ "loss": 0.6757,
2831
+ "step": 380
2832
+ },
2833
+ {
2834
+ "epoch": 0.3834510595358224,
2835
+ "eval_accuracy": 0.8513053348467651,
2836
+ "eval_loss": 0.29195961356163025,
2837
+ "eval_runtime": 62.6263,
2838
+ "eval_samples_per_second": 28.135,
2839
+ "eval_steps_per_second": 3.529,
2840
+ "step": 380
2841
+ },
2842
+ {
2843
+ "epoch": 0.384460141271443,
2844
+ "grad_norm": 10.577422142028809,
2845
+ "learning_rate": 6.192140777069298e-06,
2846
+ "loss": 0.3435,
2847
+ "step": 381
2848
+ },
2849
+ {
2850
+ "epoch": 0.3854692230070636,
2851
+ "grad_norm": 5.178398132324219,
2852
+ "learning_rate": 6.180330085312526e-06,
2853
+ "loss": 0.2577,
2854
+ "step": 382
2855
+ },
2856
+ {
2857
+ "epoch": 0.38647830474268413,
2858
+ "grad_norm": 5.634678363800049,
2859
+ "learning_rate": 6.168492287512014e-06,
2860
+ "loss": 0.2692,
2861
+ "step": 383
2862
+ },
2863
+ {
2864
+ "epoch": 0.3874873864783047,
2865
+ "grad_norm": 7.128296852111816,
2866
+ "learning_rate": 6.156627530836239e-06,
2867
+ "loss": 0.2777,
2868
+ "step": 384
2869
+ },
2870
+ {
2871
+ "epoch": 0.3884964682139253,
2872
+ "grad_norm": 6.315018653869629,
2873
+ "learning_rate": 6.144735962788837e-06,
2874
+ "loss": 0.3489,
2875
+ "step": 385
2876
+ },
2877
+ {
2878
+ "epoch": 0.3895055499495459,
2879
+ "grad_norm": 3.5851023197174072,
2880
+ "learning_rate": 6.132817731206765e-06,
2881
+ "loss": 0.1926,
2882
+ "step": 386
2883
+ },
2884
+ {
2885
+ "epoch": 0.3905146316851665,
2886
+ "grad_norm": 10.211600303649902,
2887
+ "learning_rate": 6.120872984258462e-06,
2888
+ "loss": 0.4683,
2889
+ "step": 387
2890
+ },
2891
+ {
2892
+ "epoch": 0.39152371342078707,
2893
+ "grad_norm": 12.310287475585938,
2894
+ "learning_rate": 6.108901870442009e-06,
2895
+ "loss": 0.3685,
2896
+ "step": 388
2897
+ },
2898
+ {
2899
+ "epoch": 0.39253279515640765,
2900
+ "grad_norm": 6.385642051696777,
2901
+ "learning_rate": 6.096904538583283e-06,
2902
+ "loss": 0.2559,
2903
+ "step": 389
2904
+ },
2905
+ {
2906
+ "epoch": 0.39354187689202824,
2907
+ "grad_norm": 7.468835830688477,
2908
+ "learning_rate": 6.084881137834103e-06,
2909
+ "loss": 0.4374,
2910
+ "step": 390
2911
+ },
2912
+ {
2913
+ "epoch": 0.39455095862764883,
2914
+ "grad_norm": 2.5986368656158447,
2915
+ "learning_rate": 6.072831817670382e-06,
2916
+ "loss": 0.0992,
2917
+ "step": 391
2918
+ },
2919
+ {
2920
+ "epoch": 0.3955600403632694,
2921
+ "grad_norm": 2.776925802230835,
2922
+ "learning_rate": 6.060756727890262e-06,
2923
+ "loss": 0.1379,
2924
+ "step": 392
2925
+ },
2926
+ {
2927
+ "epoch": 0.39656912209889,
2928
+ "grad_norm": 5.025798797607422,
2929
+ "learning_rate": 6.04865601861226e-06,
2930
+ "loss": 0.37,
2931
+ "step": 393
2932
+ },
2933
+ {
2934
+ "epoch": 0.3975782038345106,
2935
+ "grad_norm": 4.2647857666015625,
2936
+ "learning_rate": 6.036529840273388e-06,
2937
+ "loss": 0.2485,
2938
+ "step": 394
2939
+ },
2940
+ {
2941
+ "epoch": 0.3985872855701312,
2942
+ "grad_norm": 3.0298309326171875,
2943
+ "learning_rate": 6.0243783436273e-06,
2944
+ "loss": 0.1594,
2945
+ "step": 395
2946
+ },
2947
+ {
2948
+ "epoch": 0.39959636730575177,
2949
+ "grad_norm": 5.6464338302612305,
2950
+ "learning_rate": 6.012201679742408e-06,
2951
+ "loss": 0.3974,
2952
+ "step": 396
2953
+ },
2954
+ {
2955
+ "epoch": 0.40060544904137235,
2956
+ "grad_norm": 4.060618877410889,
2957
+ "learning_rate": 6e-06,
2958
+ "loss": 0.2286,
2959
+ "step": 397
2960
+ },
2961
+ {
2962
+ "epoch": 0.40161453077699294,
2963
+ "grad_norm": 4.622409820556641,
2964
+ "learning_rate": 5.987773456092368e-06,
2965
+ "loss": 0.315,
2966
+ "step": 398
2967
+ },
2968
+ {
2969
+ "epoch": 0.4026236125126135,
2970
+ "grad_norm": 5.471047401428223,
2971
+ "learning_rate": 5.9755222000209165e-06,
2972
+ "loss": 0.4354,
2973
+ "step": 399
2974
+ },
2975
+ {
2976
+ "epoch": 0.4036326942482341,
2977
+ "grad_norm": 3.929957628250122,
2978
+ "learning_rate": 5.963246384094273e-06,
2979
+ "loss": 0.2409,
2980
+ "step": 400
2981
+ },
2982
+ {
2983
+ "epoch": 0.4036326942482341,
2984
+ "eval_accuracy": 0.8376844494892168,
2985
+ "eval_loss": 0.28469741344451904,
2986
+ "eval_runtime": 62.4393,
2987
+ "eval_samples_per_second": 28.219,
2988
+ "eval_steps_per_second": 3.539,
2989
+ "step": 400
2990
+ }
2991
+ ],
2992
+ "logging_steps": 1,
2993
+ "max_steps": 991,
2994
+ "num_input_tokens_seen": 0,
2995
+ "num_train_epochs": 1,
2996
+ "save_steps": 20,
2997
+ "stateful_callbacks": {
2998
+ "TrainerControl": {
2999
+ "args": {
3000
+ "should_epoch_stop": false,
3001
+ "should_evaluate": false,
3002
+ "should_log": false,
3003
+ "should_save": true,
3004
+ "should_training_stop": false
3005
+ },
3006
+ "attributes": {}
3007
+ }
3008
+ },
3009
+ "total_flos": 0.0,
3010
+ "train_batch_size": 1,
3011
+ "trial_name": null,
3012
+ "trial_params": null
3013
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9ce9b17901cea44c9a33ee1c2531e6752c15621e9455c217e5c6708f0a52225
3
+ size 7096
value_head.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b6b7478af4de4f8e44c5b31fd204e116cb8a68b710bdbf4a4caa214a7ecd9f5
3
+ size 10442
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)