Steve Chiou commited on
Commit
b10190c
·
1 Parent(s): b6b54f9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-base-finetuned-engine-subset-20230310
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-base-finetuned-engine-subset-20230310
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4958
20
+ - Accuracy: 0.85
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 6
41
+ - eval_batch_size: 6
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 600
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 2.5947 | 0.05 | 31 | 2.5383 | 0.15 |
53
+ | 2.4195 | 1.05 | 62 | 2.5108 | 0.15 |
54
+ | 2.2476 | 2.05 | 93 | 2.0533 | 0.225 |
55
+ | 1.9449 | 3.05 | 124 | 2.0719 | 0.2375 |
56
+ | 1.5724 | 4.05 | 155 | 1.4756 | 0.475 |
57
+ | 1.395 | 5.05 | 186 | 1.2884 | 0.5 |
58
+ | 1.0822 | 6.05 | 217 | 1.0679 | 0.575 |
59
+ | 1.0635 | 7.05 | 248 | 0.8040 | 0.7 |
60
+ | 0.8707 | 8.05 | 279 | 0.9334 | 0.525 |
61
+ | 0.7042 | 9.05 | 310 | 0.6477 | 0.75 |
62
+ | 0.6543 | 10.05 | 341 | 0.6963 | 0.7375 |
63
+ | 0.6807 | 11.05 | 372 | 0.4958 | 0.85 |
64
+ | 0.4924 | 12.05 | 403 | 0.6374 | 0.775 |
65
+ | 0.4822 | 13.05 | 434 | 0.6145 | 0.75 |
66
+ | 0.4878 | 14.05 | 465 | 0.6274 | 0.7625 |
67
+ | 0.4442 | 15.05 | 496 | 0.4231 | 0.85 |
68
+ | 0.2739 | 16.05 | 527 | 0.4999 | 0.85 |
69
+ | 0.3514 | 17.05 | 558 | 0.4639 | 0.8375 |
70
+ | 0.4158 | 18.05 | 589 | 0.4291 | 0.85 |
71
+ | 0.2689 | 19.02 | 600 | 0.4294 | 0.85 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.26.1
77
+ - Pytorch 1.12.1+cu113
78
+ - Datasets 2.10.1
79
+ - Tokenizers 0.13.2