stebuc's picture
first trained model
727266b
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe0ff807ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe0ff807f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe0ff80c040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe0ff80c0d0>", "_build": "<function ActorCriticPolicy._build at 0x7fe0ff80c160>", "forward": "<function ActorCriticPolicy.forward at 0x7fe0ff80c1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe0ff80c280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe0ff80c310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe0ff80c3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe0ff80c430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe0ff80c4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe0ff80c550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe0ff806510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676127105604252456, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABbxTxcG3K6+HUlPLbrDDZSf2u6AuADNQAAgD8AAIA/Zp17veEQqrraSrS64Y6vtk4oDzpeDc85AACAPwAAgD+A/Hs9cSzGPZf7Ib1R4km+ykAZPfG8Mj0AAAAAAAAAABrk0j2KOMg+uLnevIlWSr5anIE9ZM2VvQAAAAAAAAAAk8x4Pt/5uTxOHkM6ndbSOBuOSj7WGX25AACAPwAAgD9N4Qo+7I+dOtNmf7t/QuS4M80gPBMPx7kAAIA/AACAP01KFL7plRW8oqylu7zLJrqFgXg9n2YEOwAAgD8AAIA/+taBvs9tIj1Flz269EuvOKHus74iUZo2AACAPwAAgD/GAzQ+yKSAvKyoEbgmdng2Mi/jvSamPDcAAIA/AACAPwjTwr5qnDQ+cyfBvc0j2b38Wpa98W8SvQAAAAAAAAAA5rifPXu2m7oytn07vbtTONBhibrQEB66AACAPwAAgD/mpQ4+H1T4PD1m6jx9wzG+yx6ePU7PN70AAAAAAAAAALMb270S4eI+KpKqPKD6aL4RvVk6UzXIPAAAAAAAAAAAAJravIUrm7lHqrW7IfnQOIYxnTt42eA5AACAPwAAgD99hU6+hbPlu90N2TscjGQ5UupJPebmP7oAAIA/AACAPzOMRz5crzE73W6BO3VaDDmaT/w8cPTnuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlkOLbGcFakCUhpRSlIwBbJRNcgGMAXSUR0CZuVCq6vq1dX2UKGgGaAloD0MIRiOfVzznVkCUhpRSlGgVTegDaBZHQJncH+ERJ3B1fZQoaAZoCWgPQwiBzTl4JlprQJSGlFKUaBVN2AFoFkdAmenXPE87p3V9lChoBmgJaA9DCP0VMlcGYlxAlIaUUpRoFU3oA2gWR0CZ7iHQyAQQdX2UKGgGaAloD0MIa524HC+bYUCUhpRSlGgVTegDaBZHQJnyaeQMhHN1fZQoaAZoCWgPQwg0nDI3X/ZgQJSGlFKUaBVN6ANoFkdAmfcz/dZaFHV9lChoBmgJaA9DCLVwWYXNjl1AlIaUUpRoFU3oA2gWR0CaANleF+NMdX2UKGgGaAloD0MIvmn67IA8YUCUhpRSlGgVTegDaBZHQJoBnIo3Jgd1fZQoaAZoCWgPQwjzjlN0JCxcQJSGlFKUaBVN6ANoFkdAmgKzc6/7BXV9lChoBmgJaA9DCG8u/rYnAlxAlIaUUpRoFU3oA2gWR0CaBsMs6JZXdX2UKGgGaAloD0MIdJXurrPEakCUhpRSlGgVTYcBaBZHQJoO9GiHqNZ1fZQoaAZoCWgPQwg1zxH5rpBgQJSGlFKUaBVN6ANoFkdAmhCmn889wHV9lChoBmgJaA9DCAA3ixcLvV9AlIaUUpRoFU3oA2gWR0CaFQW+49X+dX2UKGgGaAloD0MIG0rtRbSHWUCUhpRSlGgVTegDaBZHQJoYm/20zCV1fZQoaAZoCWgPQwidLouJzbdoQJSGlFKUaBVNcgFoFkdAmiRfwRXfZXV9lChoBmgJaA9DCGVQbXAiJ1xAlIaUUpRoFU3oA2gWR0CaKIupS75EdX2UKGgGaAloD0MIYk7QJofuVkCUhpRSlGgVTegDaBZHQJoor6O5rgx1fZQoaAZoCWgPQwgpIO1/gKE5wJSGlFKUaBVNDAFoFkdAmiqxaLXL/3V9lChoBmgJaA9DCOtU+Z6RV1dAlIaUUpRoFU3oA2gWR0CaLLy08eS0dX2UKGgGaAloD0MI0xVsI55aXUCUhpRSlGgVTegDaBZHQJovGunuRcN1fZQoaAZoCWgPQwgxsmSO5ZU6wJSGlFKUaBVNOwFoFkdAmksanWJ79nV9lChoBmgJaA9DCFaBWgweyVlAlIaUUpRoFU3oA2gWR0CaTtSgoPTYdX2UKGgGaAloD0MIG9R+ayfePUCUhpRSlGgVTRcBaBZHQJpYzSsr/bV1fZQoaAZoCWgPQwjp8Xub/vldQJSGlFKUaBVN6ANoFkdAmlkFnmJWNnV9lChoBmgJaA9DCJRt4A7Ufl9AlIaUUpRoFU3oA2gWR0CaYfkxh2GJdX2UKGgGaAloD0MIP8iyYOLzXkCUhpRSlGgVTegDaBZHQJpnp60IC2d1fZQoaAZoCWgPQwgc7bjhd2c+wJSGlFKUaBVNUgFoFkdAmm/lQyhzvXV9lChoBmgJaA9DCCXLSSh9oFhAlIaUUpRoFU3oA2gWR0CacLgG8mKJdX2UKGgGaAloD0MIRdrGn6jWWECUhpRSlGgVTegDaBZHQJpxV3os7Mh1fZQoaAZoCWgPQwjvHqD7cgYDQJSGlFKUaBVNIgFoFkdAmnO7lzU7S3V9lChoBmgJaA9DCNC3BUv1smBAlIaUUpRoFU3oA2gWR0Cadfb1AZ88dX2UKGgGaAloD0MIu9IyUu8xIsCUhpRSlGgVTegDaBZHQJp+vHggow51fZQoaAZoCWgPQwi9GMqJdi9iQJSGlFKUaBVNCQNoFkdAmoCBgmZ3LXV9lChoBmgJaA9DCDEG1nF8TmFAlIaUUpRoFU3oA2gWR0CagrJZntfHdX2UKGgGaAloD0MINSiaB7D4LECUhpRSlGgVTRsBaBZHQJqE3HYHxBp1fZQoaAZoCWgPQwhmoDL+/fdlQJSGlFKUaBVNmwFoFkdAmoXb52yLRHV9lChoBmgJaA9DCF+aIsDpaTLAlIaUUpRoFU0QAWgWR0CahvL3sXzldX2UKGgGaAloD0MIA3gLJCghZ0CUhpRSlGgVTVgCaBZHQJqJlFb3XZp1fZQoaAZoCWgPQwi4rwPnjH9qQJSGlFKUaBVNYAFoFkdAmon+tSydF3V9lChoBmgJaA9DCGQ9tfpq/GtAlIaUUpRoFU2GAWgWR0Caizj2Bas7dX2UKGgGaAloD0MIzeUGQx1pWkCUhpRSlGgVTegDaBZHQJqL5SWJJoV1fZQoaAZoCWgPQwiB0eXN4UJgQJSGlFKUaBVN6ANoFkdAmo2SfHxSYXV9lChoBmgJaA9DCL+bbtkhIlpAlIaUUpRoFU3oA2gWR0CajaO3DvVmdX2UKGgGaAloD0MIC7d8JCV1OkCUhpRSlGgVS9poFkdAmo5CdJ8OTnV9lChoBmgJaA9DCEHvjSEAEV1AlIaUUpRoFU3oA2gWR0CakmCAMDwIdX2UKGgGaAloD0MIoKnXLQLnYUCUhpRSlGgVTegDaBZHQJqyUHpr1ul1fZQoaAZoCWgPQwi2Z5YEqKnRv5SGlFKUaBVNNAFoFkdAmrJ8pG4I8nV9lChoBmgJaA9DCAiT4uMT+WhAlIaUUpRoFU1nAWgWR0Cav5fzBhx6dX2UKGgGaAloD0MICqGDLuGsWkCUhpRSlGgVTegDaBZHQJrDpszl90B1fZQoaAZoCWgPQwifPCzUmixhQJSGlFKUaBVN6ANoFkdAmtvUNnXd03V9lChoBmgJaA9DCAGkNnFyamFAlIaUUpRoFU3oA2gWR0Ca59+GoJiRdX2UKGgGaAloD0MI7zuGx37ZW0CUhpRSlGgVTegDaBZHQJrsqR1X/5t1fZQoaAZoCWgPQwg0aVN1j5pfQJSGlFKUaBVN6ANoFkdAmu83CwbEP3V9lChoBmgJaA9DCMhESrN5wWFAlIaUUpRoFU3oA2gWR0Ca8cTnaFmGdX2UKGgGaAloD0MIw4Nm172jYUCUhpRSlGgVTegDaBZHQJr02KyfL9x1fZQoaAZoCWgPQwjuBPuvc4hcQJSGlFKUaBVN6ANoFkdAmvVUYfnwHHV9lChoBmgJaA9DCHCwNzEkJ15AlIaUUpRoFU3oA2gWR0Ca9s1A7gbZdX2UKGgGaAloD0MImdU73A4nYECUhpRSlGgVTegDaBZHQJr3gyrPt2N1fZQoaAZoCWgPQwjy7V2DvqNaQJSGlFKUaBVN6ANoFkdAmvmWK/EfknV9lChoBmgJaA9DCJ1M3CqIemNAlIaUUpRoFU3oA2gWR0Ca/ILUTcqOdX2UKGgGaAloD0MI7FBNSdZzXUCUhpRSlGgVTegDaBZHQJsBHyH2ys11fZQoaAZoCWgPQwjMY83IoAJhQJSGlFKUaBVN6ANoFkdAmyM6Eal1sHV9lChoBmgJaA9DCCAL0SHwrGBAlIaUUpRoFU3oA2gWR0CbI3M6BAfMdX2UKGgGaAloD0MI/tXjvtWOW0CUhpRSlGgVTegDaBZHQJsyK4+bExZ1fZQoaAZoCWgPQwh4QxoVuHNhQJSGlFKUaBVN6ANoFkdAmzXlbNbC8HV9lChoBmgJaA9DCCsWvymsbCDAlIaUUpRoFU1iAWgWR0CbN77/4qPPdX2UKGgGaAloD0MIoDaq0wGPakCUhpRSlGgVTSsCaBZHQJs4jfO2RaJ1fZQoaAZoCWgPQwj3V4/7Vv1aQJSGlFKUaBVN6ANoFkdAm0zNyLhrFnV9lChoBmgJaA9DCPmh0oiZzTXAlIaUUpRoFU0hAWgWR0CbTOTL4etCdX2UKGgGaAloD0MItd5vtOMiO0CUhpRSlGgVTSMBaBZHQJtWx46fapR1fZQoaAZoCWgPQwhLqyFxjzdaQJSGlFKUaBVN6ANoFkdAm1qBCtzS1HV9lChoBmgJaA9DCHAlOzaCs2BAlIaUUpRoFU3oA2gWR0CbXodFOO81dX2UKGgGaAloD0MIZFxxcdQmYkCUhpRSlGgVTegDaBZHQJtgvpgTh5x1fZQoaAZoCWgPQwhAic+dYCNXQJSGlFKUaBVN6ANoFkdAm2W7B9Cu2nV9lChoBmgJaA9DCKfNOA1ROFpAlIaUUpRoFU3oA2gWR0CbZi9CeEqUdX2UKGgGaAloD0MIiXjr/NsVGUCUhpRSlGgVTS0BaBZHQJtnIQK8cuJ1fZQoaAZoCWgPQwgNi1HX2rNUQJSGlFKUaBVN6ANoFkdAm2eA6hg3LnV9lChoBmgJaA9DCFkxXB0A11pAlIaUUpRoFU3oA2gWR0CbaDVUdaMadX2UKGgGaAloD0MIKA8LtaYjQsCUhpRSlGgVTT4BaBZHQJtoRjTa0yB1fZQoaAZoCWgPQwjROxVwz8NeQJSGlFKUaBVN6ANoFkdAm2oqoIfKZHV9lChoBmgJaA9DCLK7QEmBGVpAlIaUUpRoFU3oA2gWR0CbavVJcxCZdX2UKGgGaAloD0MIX9TuVwGuHUCUhpRSlGgVTSABaBZHQJtrRLbpNbl1fZQoaAZoCWgPQwhHrMWnADxkQJSGlFKUaBVN6ANoFkdAm4saKtPpIXV9lChoBmgJaA9DCC1gArfuyFtAlIaUUpRoFU3oA2gWR0Cbi2YqG1x9dX2UKGgGaAloD0MIP+WYLO7/DECUhpRSlGgVS/VoFkdAm40CW/rSmnV9lChoBmgJaA9DCE8EcR5O4PG/lIaUUpRoFU1FAWgWR0CbknCzC1qndX2UKGgGaAloD0MIeCY0Saw0akCUhpRSlGgVTZMBaBZHQJuZWrOqvNh1fZQoaAZoCWgPQwg0oUliSWBdQJSGlFKUaBVN6ANoFkdAm57JHVf/m3V9lChoBmgJaA9DCL73N2ivrV5AlIaUUpRoFU3oA2gWR0CboLRQJokBdX2UKGgGaAloD0MIChNGszLCZECUhpRSlGgVTeQBaBZHQJukX27FsHl1fZQoaAZoCWgPQwjhfVUuVH4vQJSGlFKUaBVNMwFoFkdAm6RzHwPRRnV9lChoBmgJaA9DCI6s/DIYFmlAlIaUUpRoFU2mAWgWR0CbrSQhOgxrdX2UKGgGaAloD0MIs5quJzqgYECUhpRSlGgVTegDaBZHQJu7SpPykKx1fZQoaAZoCWgPQwhskh/xK4BXQJSGlFKUaBVN6ANoFkdAm8GymhufmXV9lChoBmgJaA9DCOQtVz+2Z2BAlIaUUpRoFU3oA2gWR0CbxU6Ww/xEdX2UKGgGaAloD0MIdlJflnYhWUCUhpRSlGgVTegDaBZHQJvSgjopx3p1fZQoaAZoCWgPQwhSCrq9pLpgQJSGlFKUaBVN6ANoFkdAm9PMIzFdcHV9lChoBmgJaA9DCE5FKowtmGJAlIaUUpRoFU3oA2gWR0Cb093PiT+vdX2UKGgGaAloD0MIE5m5wOUmX0CUhpRSlGgVTegDaBZHQJvXS2Xsw+N1fZQoaAZoCWgPQwgW+IpuvVJfQJSGlFKUaBVN6ANoFkdAm9e+9Ba9snVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}