stas commited on
Commit
2d61f25
·
1 Parent(s): 9ea5e73

add the script

Browse files
Files changed (1) hide show
  1. fsmt-make-super-tiny-model.py +87 -0
fsmt-make-super-tiny-model.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ # This script creates a super tiny model that is useful inside tests, when we just want to test that
18
+ # the machinery works, without needing to the check the quality of the outcomes.
19
+ #
20
+ # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
21
+ # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
22
+ # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
23
+ # The latter is done by `fsmt-make-super-tiny-model.py`.
24
+ #
25
+ # It will be used then as "stas/tiny-wmt19-en-ru"
26
+
27
+ from pathlib import Path
28
+ import json
29
+ import tempfile
30
+
31
+ from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
32
+ from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
33
+
34
+ mname_tiny = "tiny-wmt19-en-ru"
35
+
36
+ # Build
37
+
38
+ # borrowed from a test
39
+ vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ]
40
+ vocab_tokens = dict(zip(vocab, range(len(vocab))))
41
+ merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
42
+
43
+ with tempfile.TemporaryDirectory() as tmpdirname:
44
+ build_dir = Path(tmpdirname)
45
+ src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
46
+ tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
47
+ merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"]
48
+ with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
49
+ with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
50
+ with open(merges_file, "w") as fp : fp.write("\n".join(merges))
51
+
52
+ tokenizer = FSMTTokenizer(
53
+ langs=["en", "ru"],
54
+ src_vocab_size = len(vocab),
55
+ tgt_vocab_size = len(vocab),
56
+ src_vocab_file=src_vocab_file,
57
+ tgt_vocab_file=tgt_vocab_file,
58
+ merges_file=merges_file,
59
+ )
60
+
61
+ config = FSMTConfig(
62
+ langs=['ru', 'en'],
63
+ src_vocab_size=1000, tgt_vocab_size=1000,
64
+ d_model=4,
65
+ encoder_layers=1, decoder_layers=1,
66
+ encoder_ffn_dim=4, decoder_ffn_dim=4,
67
+ encoder_attention_heads=1, decoder_attention_heads=1,
68
+ )
69
+
70
+ tiny_model = FSMTForConditionalGeneration(config)
71
+ print(f"num of params {tiny_model.num_parameters()}")
72
+
73
+ # Test
74
+ batch = tokenizer(["Making tiny model"], return_tensors="pt")
75
+ outputs = tiny_model(**batch)
76
+
77
+ print("test output:", len(outputs.logits[0]))
78
+
79
+ # Save
80
+ tiny_model.half() # makes it smaller
81
+ tiny_model.save_pretrained(mname_tiny)
82
+ tokenizer.save_pretrained(mname_tiny)
83
+
84
+ print(f"Generated {mname_tiny}")
85
+
86
+ # Upload
87
+ # transformers-cli upload tiny-wmt19-en-ru