Upload folder using huggingface_hub
Browse files- config.json +48 -0
- configuration_smb_vision.py +112 -0
- model.safetensors +3 -0
- modeling_smb_vision.py +842 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"SMBVisionModel"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_smb_vision.SMBVisionModelConfig",
|
| 7 |
+
"AutoModel": "modeling_smb_vision.SMBVisionModel"
|
| 8 |
+
},
|
| 9 |
+
"dtype": "bfloat16",
|
| 10 |
+
"hidden_size": 1152,
|
| 11 |
+
"masking_ratio": 0.65,
|
| 12 |
+
"model_type": "smb_vision_model",
|
| 13 |
+
"predictor_config": {
|
| 14 |
+
"depth": 12,
|
| 15 |
+
"dtype": "bfloat16",
|
| 16 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 17 |
+
"hidden_size": 512,
|
| 18 |
+
"in_channels": 1,
|
| 19 |
+
"in_hidden_size": 1152,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 1536,
|
| 22 |
+
"model_type": "smb_vision_predictor",
|
| 23 |
+
"num_heads": 16
|
| 24 |
+
},
|
| 25 |
+
"transformers_version": "4.57.3",
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vision_config": {
|
| 28 |
+
"deepstack_visual_indexes": [
|
| 29 |
+
8,
|
| 30 |
+
16,
|
| 31 |
+
24
|
| 32 |
+
],
|
| 33 |
+
"depth": 27,
|
| 34 |
+
"dtype": "bfloat16",
|
| 35 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 36 |
+
"hidden_size": 1152,
|
| 37 |
+
"in_channels": 1,
|
| 38 |
+
"initializer_range": 0.02,
|
| 39 |
+
"intermediate_size": 4304,
|
| 40 |
+
"model_type": "smb_vision_encoder",
|
| 41 |
+
"num_heads": 16,
|
| 42 |
+
"num_position_embeddings": 2304,
|
| 43 |
+
"out_hidden_size": 2048,
|
| 44 |
+
"patch_size": 16,
|
| 45 |
+
"spatial_merge_size": 2,
|
| 46 |
+
"temporal_patch_size": 16
|
| 47 |
+
}
|
| 48 |
+
}
|
configuration_smb_vision.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 The SMB Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class SMBVisionConfig(PretrainedConfig):
|
| 19 |
+
model_type = "smb_vision_encoder"
|
| 20 |
+
base_config_key = "vision_config"
|
| 21 |
+
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
depth=27,
|
| 25 |
+
hidden_size=1152,
|
| 26 |
+
hidden_act="gelu_pytorch_tanh",
|
| 27 |
+
intermediate_size=4304,
|
| 28 |
+
num_heads=16,
|
| 29 |
+
in_channels=3,
|
| 30 |
+
patch_size=16,
|
| 31 |
+
spatial_merge_size=2,
|
| 32 |
+
temporal_patch_size=2,
|
| 33 |
+
out_hidden_size=3584,
|
| 34 |
+
num_position_embeddings=2304,
|
| 35 |
+
deepstack_visual_indexes=[8, 16, 24],
|
| 36 |
+
initializer_range=0.02,
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
|
| 41 |
+
self.depth = depth
|
| 42 |
+
self.hidden_size = hidden_size
|
| 43 |
+
self.hidden_act = hidden_act
|
| 44 |
+
self.intermediate_size = intermediate_size
|
| 45 |
+
self.num_heads = num_heads
|
| 46 |
+
self.in_channels = in_channels
|
| 47 |
+
self.patch_size = patch_size
|
| 48 |
+
self.spatial_merge_size = spatial_merge_size
|
| 49 |
+
self.temporal_patch_size = temporal_patch_size
|
| 50 |
+
self.out_hidden_size = out_hidden_size
|
| 51 |
+
self.num_position_embeddings = num_position_embeddings
|
| 52 |
+
self.initializer_range = initializer_range
|
| 53 |
+
self.deepstack_visual_indexes = deepstack_visual_indexes
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class SMBVisionPredictorConfig(PretrainedConfig):
|
| 57 |
+
model_type = "smb_vision_predictor"
|
| 58 |
+
base_config_key = "predictor_config"
|
| 59 |
+
|
| 60 |
+
def __init__(
|
| 61 |
+
self,
|
| 62 |
+
depth=27,
|
| 63 |
+
in_hidden_size=1152,
|
| 64 |
+
hidden_size=512,
|
| 65 |
+
hidden_act="gelu_pytorch_tanh",
|
| 66 |
+
intermediate_size=1536,
|
| 67 |
+
num_heads=16,
|
| 68 |
+
in_channels=1,
|
| 69 |
+
initializer_range=0.02,
|
| 70 |
+
**kwargs,
|
| 71 |
+
):
|
| 72 |
+
super().__init__(**kwargs)
|
| 73 |
+
|
| 74 |
+
self.depth = depth
|
| 75 |
+
self.in_hidden_size = in_hidden_size
|
| 76 |
+
self.hidden_size = hidden_size
|
| 77 |
+
self.hidden_act = hidden_act
|
| 78 |
+
self.intermediate_size = intermediate_size
|
| 79 |
+
self.num_heads = num_heads
|
| 80 |
+
self.in_channels = in_channels
|
| 81 |
+
self.initializer_range = initializer_range
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class SMBVisionModelConfig(PretrainedConfig):
|
| 85 |
+
model_type = "smb_vision_model"
|
| 86 |
+
sub_configs = {"vision_config": SMBVisionConfig, "predictor_config": SMBVisionPredictorConfig}
|
| 87 |
+
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
vision_config=None,
|
| 91 |
+
predictor_config=None,
|
| 92 |
+
hidden_size=1152,
|
| 93 |
+
masking_ratio=0.1,
|
| 94 |
+
**kwargs,
|
| 95 |
+
):
|
| 96 |
+
if isinstance(vision_config, dict):
|
| 97 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
| 98 |
+
elif vision_config is None:
|
| 99 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
| 100 |
+
|
| 101 |
+
if isinstance(predictor_config, dict):
|
| 102 |
+
self.predictor_config = self.sub_configs["predictor_config"](**predictor_config)
|
| 103 |
+
elif predictor_config is None:
|
| 104 |
+
self.predictor_config = self.sub_configs["predictor_config"]()
|
| 105 |
+
|
| 106 |
+
self.hidden_size = hidden_size
|
| 107 |
+
self.masking_ratio = masking_ratio
|
| 108 |
+
|
| 109 |
+
super().__init__(**kwargs)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
__all__ = ["SMBVisionConfig", "SMBVisionPredictorConfig", "SMBVisionModelConfig"]
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07c086b52183afd27fca41a807a7c3b9359913143a243f8299b1c279ef2d6922
|
| 3 |
+
size 1224159656
|
modeling_smb_vision.py
ADDED
|
@@ -0,0 +1,842 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 The SMB Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from typing import Callable, Optional
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
|
| 23 |
+
from transformers.activations import ACT2FN
|
| 24 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
| 25 |
+
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
|
| 26 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 27 |
+
from transformers.processing_utils import Unpack
|
| 28 |
+
from transformers.utils import TransformersKwargs
|
| 29 |
+
from .configuration_smb_vision import (
|
| 30 |
+
SMBVisionConfig,
|
| 31 |
+
SMBVisionPredictorConfig,
|
| 32 |
+
SMBVisionModelConfig,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def rotate_half(x):
|
| 37 |
+
"""Rotates half the hidden dims of the input."""
|
| 38 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 39 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 40 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 44 |
+
"""
|
| 45 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 46 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 47 |
+
"""
|
| 48 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 49 |
+
if n_rep == 1:
|
| 50 |
+
return hidden_states
|
| 51 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 52 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 53 |
+
)
|
| 54 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def eager_attention_forward(
|
| 58 |
+
module: nn.Module,
|
| 59 |
+
query: torch.Tensor,
|
| 60 |
+
key: torch.Tensor,
|
| 61 |
+
value: torch.Tensor,
|
| 62 |
+
attention_mask: Optional[torch.Tensor],
|
| 63 |
+
scaling: float,
|
| 64 |
+
dropout: float = 0.0,
|
| 65 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 66 |
+
):
|
| 67 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 68 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 69 |
+
|
| 70 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 71 |
+
if attention_mask is not None:
|
| 72 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 73 |
+
attn_weights = attn_weights + causal_mask
|
| 74 |
+
|
| 75 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
| 76 |
+
query.dtype
|
| 77 |
+
)
|
| 78 |
+
attn_weights = nn.functional.dropout(
|
| 79 |
+
attn_weights, p=dropout, training=module.training
|
| 80 |
+
)
|
| 81 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 82 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 83 |
+
|
| 84 |
+
return attn_output, attn_weights
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 88 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
q (`torch.Tensor`): The query tensor.
|
| 92 |
+
k (`torch.Tensor`): The key tensor.
|
| 93 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 94 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 95 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 96 |
+
Deprecated and unused.
|
| 97 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 98 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 99 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 100 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 101 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 102 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 103 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 104 |
+
Returns:
|
| 105 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 106 |
+
"""
|
| 107 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 108 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 109 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 110 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 111 |
+
return q_embed, k_embed
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class SMBVisionMLP(nn.Module):
|
| 115 |
+
def __init__(self, config):
|
| 116 |
+
super().__init__()
|
| 117 |
+
self.hidden_size = config.hidden_size
|
| 118 |
+
self.intermediate_size = config.intermediate_size
|
| 119 |
+
self.linear_fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
|
| 120 |
+
self.linear_fc2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
|
| 121 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 122 |
+
|
| 123 |
+
def forward(self, hidden_state):
|
| 124 |
+
return self.linear_fc2(self.act_fn(self.linear_fc1(hidden_state)))
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class SMBVisionPatchEmbed(nn.Module):
|
| 128 |
+
def __init__(self, config) -> None:
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.patch_size = config.patch_size
|
| 131 |
+
self.temporal_patch_size = config.temporal_patch_size
|
| 132 |
+
self.in_channels = config.in_channels
|
| 133 |
+
self.embed_dim = config.hidden_size
|
| 134 |
+
|
| 135 |
+
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
|
| 136 |
+
for in_channels in [1, 3, 4]:
|
| 137 |
+
setattr(
|
| 138 |
+
self,
|
| 139 |
+
f"proj_c{in_channels}",
|
| 140 |
+
nn.Conv3d(
|
| 141 |
+
in_channels,
|
| 142 |
+
self.embed_dim,
|
| 143 |
+
kernel_size=kernel_size,
|
| 144 |
+
stride=kernel_size,
|
| 145 |
+
bias=True,
|
| 146 |
+
),
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 150 |
+
target_dtype = self.proj_c1.weight.dtype
|
| 151 |
+
if self.in_channels == 1: # grayscale
|
| 152 |
+
hidden_states = hidden_states.view(
|
| 153 |
+
-1, 1, self.temporal_patch_size, self.patch_size, self.patch_size
|
| 154 |
+
)
|
| 155 |
+
hidden_states = self.proj_c1(hidden_states.to(dtype=target_dtype)).view(
|
| 156 |
+
-1, self.embed_dim
|
| 157 |
+
)
|
| 158 |
+
elif self.in_channels == 3: # rgb
|
| 159 |
+
hidden_states = hidden_states.view(
|
| 160 |
+
-1, 3, self.temporal_patch_size, self.patch_size, self.patch_size
|
| 161 |
+
)
|
| 162 |
+
hidden_states = self.proj_c3(hidden_states.to(dtype=target_dtype)).view(
|
| 163 |
+
-1, self.embed_dim
|
| 164 |
+
)
|
| 165 |
+
elif self.in_channels == 4: # multi sequence
|
| 166 |
+
hidden_states = hidden_states.view(
|
| 167 |
+
-1, 4, self.temporal_patch_size, self.patch_size, self.patch_size
|
| 168 |
+
)
|
| 169 |
+
hidden_states = self.proj_c4(hidden_states.to(dtype=target_dtype)).view(
|
| 170 |
+
-1, self.embed_dim
|
| 171 |
+
)
|
| 172 |
+
else:
|
| 173 |
+
raise ValueError(f"Unsupported number of channels: {self.in_channels}")
|
| 174 |
+
return hidden_states
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class SMBVisionRotaryEmbedding(nn.Module):
|
| 178 |
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 179 |
+
|
| 180 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
| 181 |
+
super().__init__()
|
| 182 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
| 183 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 184 |
+
|
| 185 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
| 186 |
+
seq = torch.arange(
|
| 187 |
+
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
|
| 188 |
+
)
|
| 189 |
+
freqs = torch.outer(seq, self.inv_freq)
|
| 190 |
+
return freqs
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
class SMBVisionPatchMerger(nn.Module):
|
| 194 |
+
def __init__(self, config, use_postshuffle_norm=False) -> None:
|
| 195 |
+
super().__init__()
|
| 196 |
+
self.hidden_size = config.hidden_size * (config.spatial_merge_size**2)
|
| 197 |
+
self.use_postshuffle_norm = use_postshuffle_norm
|
| 198 |
+
self.norm = nn.LayerNorm(
|
| 199 |
+
self.hidden_size if use_postshuffle_norm else config.hidden_size, eps=1e-6
|
| 200 |
+
)
|
| 201 |
+
self.linear_fc1 = nn.Linear(self.hidden_size, self.hidden_size)
|
| 202 |
+
self.act_fn = nn.GELU()
|
| 203 |
+
self.linear_fc2 = nn.Linear(self.hidden_size, config.out_hidden_size)
|
| 204 |
+
|
| 205 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 206 |
+
x = self.norm(
|
| 207 |
+
x.contiguous().view(-1, self.hidden_size)
|
| 208 |
+
if self.use_postshuffle_norm
|
| 209 |
+
else x
|
| 210 |
+
).view(-1, self.hidden_size)
|
| 211 |
+
x = self.linear_fc2(self.act_fn(self.linear_fc1(x)))
|
| 212 |
+
return x
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def apply_rotary_pos_emb_vision(
|
| 216 |
+
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
| 217 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 218 |
+
orig_q_dtype = q.dtype
|
| 219 |
+
orig_k_dtype = k.dtype
|
| 220 |
+
q, k = q.float(), k.float()
|
| 221 |
+
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
|
| 222 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 223 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 224 |
+
q_embed = q_embed.to(orig_q_dtype)
|
| 225 |
+
k_embed = k_embed.to(orig_k_dtype)
|
| 226 |
+
return q_embed, k_embed
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class SMBVisionAttention(nn.Module):
|
| 230 |
+
def __init__(self, config) -> None:
|
| 231 |
+
super().__init__()
|
| 232 |
+
self.dim = config.hidden_size
|
| 233 |
+
self.num_heads = config.num_heads
|
| 234 |
+
self.head_dim = self.dim // self.num_heads
|
| 235 |
+
self.num_key_value_groups = 1 # needed for eager attention
|
| 236 |
+
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
|
| 237 |
+
self.proj = nn.Linear(self.dim, self.dim)
|
| 238 |
+
self.scaling = self.head_dim**-0.5
|
| 239 |
+
self.config = config
|
| 240 |
+
self.attention_dropout = 0.0
|
| 241 |
+
self.is_causal = False
|
| 242 |
+
|
| 243 |
+
def forward(
|
| 244 |
+
self,
|
| 245 |
+
hidden_states: torch.Tensor,
|
| 246 |
+
cu_seqlens: torch.Tensor,
|
| 247 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 248 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 249 |
+
**kwargs,
|
| 250 |
+
) -> torch.Tensor:
|
| 251 |
+
seq_length = hidden_states.shape[0]
|
| 252 |
+
query_states, key_states, value_states = (
|
| 253 |
+
self.qkv(hidden_states)
|
| 254 |
+
.reshape(seq_length, 3, self.num_heads, -1)
|
| 255 |
+
.permute(1, 0, 2, 3)
|
| 256 |
+
.unbind(0)
|
| 257 |
+
)
|
| 258 |
+
cos, sin = position_embeddings
|
| 259 |
+
query_states, key_states = apply_rotary_pos_emb_vision(
|
| 260 |
+
query_states, key_states, cos, sin
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
query_states = query_states.transpose(0, 1).unsqueeze(0)
|
| 264 |
+
key_states = key_states.transpose(0, 1).unsqueeze(0)
|
| 265 |
+
value_states = value_states.transpose(0, 1).unsqueeze(0)
|
| 266 |
+
|
| 267 |
+
attention_interface: Callable = eager_attention_forward
|
| 268 |
+
if self.config._attn_implementation != "eager":
|
| 269 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[
|
| 270 |
+
self.config._attn_implementation
|
| 271 |
+
]
|
| 272 |
+
|
| 273 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 274 |
+
# Flash Attention 2: Use cu_seqlens for variable length attention
|
| 275 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
|
| 276 |
+
attn_output, _ = attention_interface(
|
| 277 |
+
self,
|
| 278 |
+
query_states,
|
| 279 |
+
key_states,
|
| 280 |
+
value_states,
|
| 281 |
+
attention_mask=None,
|
| 282 |
+
scaling=self.scaling,
|
| 283 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 284 |
+
cu_seq_lens_q=cu_seqlens,
|
| 285 |
+
cu_seq_lens_k=cu_seqlens,
|
| 286 |
+
max_length_q=max_seqlen,
|
| 287 |
+
max_length_k=max_seqlen,
|
| 288 |
+
is_causal=False,
|
| 289 |
+
**kwargs,
|
| 290 |
+
)
|
| 291 |
+
else:
|
| 292 |
+
# Other implementations: Process each chunk separately
|
| 293 |
+
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
|
| 294 |
+
splits = [
|
| 295 |
+
torch.split(tensor, lengths.tolist(), dim=2)
|
| 296 |
+
for tensor in (query_states, key_states, value_states)
|
| 297 |
+
]
|
| 298 |
+
|
| 299 |
+
attn_outputs = [
|
| 300 |
+
attention_interface(
|
| 301 |
+
self,
|
| 302 |
+
q,
|
| 303 |
+
k,
|
| 304 |
+
v,
|
| 305 |
+
attention_mask=None,
|
| 306 |
+
scaling=self.scaling,
|
| 307 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 308 |
+
is_causal=False,
|
| 309 |
+
**kwargs,
|
| 310 |
+
)[0]
|
| 311 |
+
for q, k, v in zip(*splits)
|
| 312 |
+
]
|
| 313 |
+
attn_output = torch.cat(attn_outputs, dim=1)
|
| 314 |
+
|
| 315 |
+
attn_output = attn_output.reshape(seq_length, -1).contiguous()
|
| 316 |
+
attn_output = self.proj(attn_output)
|
| 317 |
+
return attn_output
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
class SMBVisionBlock(GradientCheckpointingLayer):
|
| 321 |
+
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
| 322 |
+
super().__init__()
|
| 323 |
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=1e-6)
|
| 324 |
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=1e-6)
|
| 325 |
+
self.attn = SMBVisionAttention(config=config)
|
| 326 |
+
self.mlp = SMBVisionMLP(config=config)
|
| 327 |
+
|
| 328 |
+
def forward(
|
| 329 |
+
self,
|
| 330 |
+
hidden_states: torch.Tensor,
|
| 331 |
+
cu_seqlens: torch.Tensor,
|
| 332 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 333 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 334 |
+
**kwargs,
|
| 335 |
+
) -> torch.Tensor:
|
| 336 |
+
hidden_states = hidden_states + self.attn(
|
| 337 |
+
self.norm1(hidden_states),
|
| 338 |
+
cu_seqlens=cu_seqlens,
|
| 339 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 340 |
+
position_embeddings=position_embeddings,
|
| 341 |
+
**kwargs,
|
| 342 |
+
)
|
| 343 |
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
| 344 |
+
return hidden_states
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
class SMBVisionEncoder(PreTrainedModel):
|
| 348 |
+
config: SMBVisionConfig
|
| 349 |
+
_no_split_modules = ["SMBVisionBlock"]
|
| 350 |
+
_supports_flash_attn = True
|
| 351 |
+
_supports_sdpa = True
|
| 352 |
+
_supports_flex_attn = True
|
| 353 |
+
_can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
|
| 354 |
+
_supports_attention_backend = True
|
| 355 |
+
|
| 356 |
+
def __init__(self, config, *inputs, **kwargs) -> None:
|
| 357 |
+
super().__init__(config, *inputs, **kwargs)
|
| 358 |
+
self.spatial_merge_size = config.spatial_merge_size
|
| 359 |
+
self.patch_size = config.patch_size
|
| 360 |
+
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
|
| 361 |
+
|
| 362 |
+
self.patch_embed = SMBVisionPatchEmbed(
|
| 363 |
+
config=config,
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
self.pos_embed = nn.Embedding(
|
| 367 |
+
config.num_position_embeddings, config.hidden_size
|
| 368 |
+
)
|
| 369 |
+
self.num_grid_per_side = int(config.num_position_embeddings**0.5)
|
| 370 |
+
|
| 371 |
+
head_dim = config.hidden_size // config.num_heads
|
| 372 |
+
self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2)
|
| 373 |
+
|
| 374 |
+
self.blocks = nn.ModuleList(
|
| 375 |
+
[SMBVisionBlock(config) for _ in range(config.depth)]
|
| 376 |
+
)
|
| 377 |
+
self.merger = SMBVisionPatchMerger(
|
| 378 |
+
config=config,
|
| 379 |
+
use_postshuffle_norm=False,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
self.deepstack_visual_indexes = config.deepstack_visual_indexes
|
| 383 |
+
self.deepstack_merger_list = nn.ModuleList(
|
| 384 |
+
[
|
| 385 |
+
SMBVisionPatchMerger(
|
| 386 |
+
config=config,
|
| 387 |
+
use_postshuffle_norm=True,
|
| 388 |
+
)
|
| 389 |
+
for _ in range(len(config.deepstack_visual_indexes))
|
| 390 |
+
]
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
self.gradient_checkpointing = False
|
| 394 |
+
|
| 395 |
+
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
|
| 396 |
+
merge_size = self.spatial_merge_size
|
| 397 |
+
|
| 398 |
+
max_hw = int(grid_thw[:, 1:].max().item())
|
| 399 |
+
freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2)
|
| 400 |
+
device = freq_table.device
|
| 401 |
+
|
| 402 |
+
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item())
|
| 403 |
+
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device)
|
| 404 |
+
|
| 405 |
+
offset = 0
|
| 406 |
+
for num_frames, height, width in grid_thw:
|
| 407 |
+
merged_h, merged_w = height // merge_size, width // merge_size
|
| 408 |
+
|
| 409 |
+
block_rows = torch.arange(merged_h, device=device) # block row indices
|
| 410 |
+
block_cols = torch.arange(merged_w, device=device) # block col indices
|
| 411 |
+
intra_row = torch.arange(
|
| 412 |
+
merge_size, device=device
|
| 413 |
+
) # intra-block row offsets
|
| 414 |
+
intra_col = torch.arange(
|
| 415 |
+
merge_size, device=device
|
| 416 |
+
) # intra-block col offsets
|
| 417 |
+
|
| 418 |
+
# Compute full-resolution positions
|
| 419 |
+
row_idx = (
|
| 420 |
+
block_rows[:, None, None, None] * merge_size
|
| 421 |
+
+ intra_row[None, None, :, None]
|
| 422 |
+
)
|
| 423 |
+
col_idx = (
|
| 424 |
+
block_cols[None, :, None, None] * merge_size
|
| 425 |
+
+ intra_col[None, None, None, :]
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
row_idx = row_idx.expand(
|
| 429 |
+
merged_h, merged_w, merge_size, merge_size
|
| 430 |
+
).reshape(-1)
|
| 431 |
+
col_idx = col_idx.expand(
|
| 432 |
+
merged_h, merged_w, merge_size, merge_size
|
| 433 |
+
).reshape(-1)
|
| 434 |
+
|
| 435 |
+
coords = torch.stack((row_idx, col_idx), dim=-1)
|
| 436 |
+
|
| 437 |
+
if num_frames > 1:
|
| 438 |
+
coords = coords.repeat(num_frames, 1)
|
| 439 |
+
|
| 440 |
+
num_tokens = coords.shape[0]
|
| 441 |
+
pos_ids[offset : offset + num_tokens] = coords
|
| 442 |
+
offset += num_tokens
|
| 443 |
+
|
| 444 |
+
embeddings = freq_table[pos_ids] # lookup rotary embeddings
|
| 445 |
+
embeddings = embeddings.flatten(1)
|
| 446 |
+
return embeddings
|
| 447 |
+
|
| 448 |
+
def fast_pos_embed_interpolate(self, grid_thw):
|
| 449 |
+
grid_ts, grid_hs, grid_ws = grid_thw[:, 0], grid_thw[:, 1], grid_thw[:, 2]
|
| 450 |
+
|
| 451 |
+
idx_list = [[] for _ in range(4)]
|
| 452 |
+
weight_list = [[] for _ in range(4)]
|
| 453 |
+
|
| 454 |
+
for t, h, w in zip(grid_ts, grid_hs, grid_ws):
|
| 455 |
+
h_idxs = torch.linspace(0, self.num_grid_per_side - 1, h)
|
| 456 |
+
w_idxs = torch.linspace(0, self.num_grid_per_side - 1, w)
|
| 457 |
+
|
| 458 |
+
h_idxs_floor = h_idxs.int()
|
| 459 |
+
w_idxs_floor = w_idxs.int()
|
| 460 |
+
h_idxs_ceil = (h_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)
|
| 461 |
+
w_idxs_ceil = (w_idxs.int() + 1).clip(max=self.num_grid_per_side - 1)
|
| 462 |
+
|
| 463 |
+
dh = h_idxs - h_idxs_floor
|
| 464 |
+
dw = w_idxs - w_idxs_floor
|
| 465 |
+
|
| 466 |
+
base_h = h_idxs_floor * self.num_grid_per_side
|
| 467 |
+
base_h_ceil = h_idxs_ceil * self.num_grid_per_side
|
| 468 |
+
|
| 469 |
+
indices = [
|
| 470 |
+
(base_h[None].T + w_idxs_floor[None]).flatten(),
|
| 471 |
+
(base_h[None].T + w_idxs_ceil[None]).flatten(),
|
| 472 |
+
(base_h_ceil[None].T + w_idxs_floor[None]).flatten(),
|
| 473 |
+
(base_h_ceil[None].T + w_idxs_ceil[None]).flatten(),
|
| 474 |
+
]
|
| 475 |
+
|
| 476 |
+
weights = [
|
| 477 |
+
((1 - dh)[None].T * (1 - dw)[None]).flatten(),
|
| 478 |
+
((1 - dh)[None].T * dw[None]).flatten(),
|
| 479 |
+
(dh[None].T * (1 - dw)[None]).flatten(),
|
| 480 |
+
(dh[None].T * dw[None]).flatten(),
|
| 481 |
+
]
|
| 482 |
+
|
| 483 |
+
for i in range(4):
|
| 484 |
+
idx_list[i].extend(indices[i].tolist())
|
| 485 |
+
weight_list[i].extend(weights[i].tolist())
|
| 486 |
+
|
| 487 |
+
idx_tensor = torch.tensor(idx_list, dtype=torch.long, device=self.pos_embed.weight.device)
|
| 488 |
+
weight_tensor = torch.tensor(
|
| 489 |
+
weight_list, dtype=self.pos_embed.weight.dtype, device=self.pos_embed.weight.device
|
| 490 |
+
)
|
| 491 |
+
pos_embeds = self.pos_embed(idx_tensor) * weight_tensor[:, :, None]
|
| 492 |
+
patch_pos_embeds = pos_embeds[0] + pos_embeds[1] + pos_embeds[2] + pos_embeds[3]
|
| 493 |
+
|
| 494 |
+
patch_pos_embeds = patch_pos_embeds.split([h * w for h, w in zip(grid_hs, grid_ws)])
|
| 495 |
+
|
| 496 |
+
patch_pos_embeds_permute = []
|
| 497 |
+
merge_size = self.config.spatial_merge_size
|
| 498 |
+
for pos_embed, t, h, w in zip(patch_pos_embeds, grid_ts, grid_hs, grid_ws):
|
| 499 |
+
pos_embed = pos_embed.repeat(t, 1)
|
| 500 |
+
pos_embed = (
|
| 501 |
+
pos_embed.view(t, h // merge_size, merge_size, w // merge_size, merge_size, -1)
|
| 502 |
+
.permute(0, 1, 3, 2, 4, 5)
|
| 503 |
+
.flatten(0, 4)
|
| 504 |
+
)
|
| 505 |
+
patch_pos_embeds_permute.append(pos_embed)
|
| 506 |
+
patch_pos_embeds = torch.cat(patch_pos_embeds_permute)
|
| 507 |
+
return patch_pos_embeds
|
| 508 |
+
|
| 509 |
+
def forward(
|
| 510 |
+
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs
|
| 511 |
+
) -> torch.Tensor:
|
| 512 |
+
"""
|
| 513 |
+
Args:
|
| 514 |
+
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
|
| 515 |
+
The final hidden states of the model.
|
| 516 |
+
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
|
| 517 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 518 |
+
|
| 519 |
+
Returns:
|
| 520 |
+
`torch.Tensor`: hidden_states.
|
| 521 |
+
"""
|
| 522 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 523 |
+
|
| 524 |
+
pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
|
| 525 |
+
hidden_states = hidden_states + pos_embeds
|
| 526 |
+
|
| 527 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
| 528 |
+
|
| 529 |
+
seq_len, _ = hidden_states.size()
|
| 530 |
+
hidden_states = hidden_states.reshape(seq_len, -1)
|
| 531 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
| 532 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 533 |
+
position_embeddings = (emb.cos(), emb.sin())
|
| 534 |
+
|
| 535 |
+
cu_seqlens = torch.repeat_interleave(
|
| 536 |
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
| 537 |
+
).cumsum(
|
| 538 |
+
dim=0,
|
| 539 |
+
# Select dtype based on the following factors:
|
| 540 |
+
# - FA2 requires that cu_seqlens_q must have dtype int32
|
| 541 |
+
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
| 542 |
+
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
| 543 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 544 |
+
)
|
| 545 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 546 |
+
|
| 547 |
+
deepstack_feature_lists = []
|
| 548 |
+
for layer_num, blk in enumerate(self.blocks):
|
| 549 |
+
hidden_states = blk(
|
| 550 |
+
hidden_states,
|
| 551 |
+
cu_seqlens=cu_seqlens,
|
| 552 |
+
position_embeddings=position_embeddings,
|
| 553 |
+
**kwargs,
|
| 554 |
+
)
|
| 555 |
+
if layer_num in self.deepstack_visual_indexes:
|
| 556 |
+
deepstack_feature = self.deepstack_merger_list[
|
| 557 |
+
self.deepstack_visual_indexes.index(layer_num)
|
| 558 |
+
](hidden_states)
|
| 559 |
+
deepstack_feature_lists.append(deepstack_feature)
|
| 560 |
+
|
| 561 |
+
# hidden_states = self.merger(hidden_states)
|
| 562 |
+
|
| 563 |
+
return hidden_states, deepstack_feature_lists
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
class SMBVisionPredictor(PreTrainedModel):
|
| 567 |
+
config: SMBVisionPredictorConfig
|
| 568 |
+
_no_split_modules = ["SMBVisionBlock"]
|
| 569 |
+
_supports_flash_attn = True
|
| 570 |
+
_supports_sdpa = True
|
| 571 |
+
_supports_flex_attn = True
|
| 572 |
+
_can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
|
| 573 |
+
_supports_attention_backend = True
|
| 574 |
+
|
| 575 |
+
def __init__(self, config, *inputs, **kwargs) -> None:
|
| 576 |
+
super().__init__(config, *inputs, **kwargs)
|
| 577 |
+
|
| 578 |
+
head_dim = config.hidden_size // config.num_heads
|
| 579 |
+
self.rotary_pos_emb = SMBVisionRotaryEmbedding(head_dim // 2)
|
| 580 |
+
|
| 581 |
+
self.blocks = nn.ModuleList(
|
| 582 |
+
[SMBVisionBlock(config) for _ in range(config.depth)]
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
self.in_proj = nn.Linear(config.in_hidden_size, config.hidden_size)
|
| 586 |
+
self.out_proj = nn.Linear(config.hidden_size, config.in_hidden_size)
|
| 587 |
+
self.mask_token = nn.Parameter(torch.zeros(config.hidden_size))
|
| 588 |
+
self.gradient_checkpointing = False
|
| 589 |
+
|
| 590 |
+
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
|
| 591 |
+
merge_size = 1
|
| 592 |
+
|
| 593 |
+
max_hw = int(grid_thw[:, 1:].max().item())
|
| 594 |
+
freq_table = self.rotary_pos_emb(max_hw) # (max_hw, dim // 2)
|
| 595 |
+
device = freq_table.device
|
| 596 |
+
|
| 597 |
+
total_tokens = int(torch.prod(grid_thw, dim=1).sum().item())
|
| 598 |
+
pos_ids = torch.empty((total_tokens, 2), dtype=torch.long, device=device)
|
| 599 |
+
|
| 600 |
+
offset = 0
|
| 601 |
+
for num_frames, height, width in grid_thw:
|
| 602 |
+
merged_h, merged_w = height // merge_size, width // merge_size
|
| 603 |
+
|
| 604 |
+
block_rows = torch.arange(merged_h, device=device) # block row indices
|
| 605 |
+
block_cols = torch.arange(merged_w, device=device) # block col indices
|
| 606 |
+
intra_row = torch.arange(
|
| 607 |
+
merge_size, device=device
|
| 608 |
+
) # intra-block row offsets
|
| 609 |
+
intra_col = torch.arange(
|
| 610 |
+
merge_size, device=device
|
| 611 |
+
) # intra-block col offsets
|
| 612 |
+
|
| 613 |
+
# Compute full-resolution positions
|
| 614 |
+
row_idx = (
|
| 615 |
+
block_rows[:, None, None, None] * merge_size
|
| 616 |
+
+ intra_row[None, None, :, None]
|
| 617 |
+
)
|
| 618 |
+
col_idx = (
|
| 619 |
+
block_cols[None, :, None, None] * merge_size
|
| 620 |
+
+ intra_col[None, None, None, :]
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
row_idx = row_idx.expand(
|
| 624 |
+
merged_h, merged_w, merge_size, merge_size
|
| 625 |
+
).reshape(-1)
|
| 626 |
+
col_idx = col_idx.expand(
|
| 627 |
+
merged_h, merged_w, merge_size, merge_size
|
| 628 |
+
).reshape(-1)
|
| 629 |
+
|
| 630 |
+
coords = torch.stack((row_idx, col_idx), dim=-1)
|
| 631 |
+
|
| 632 |
+
if num_frames > 1:
|
| 633 |
+
coords = coords.repeat(num_frames, 1)
|
| 634 |
+
|
| 635 |
+
num_tokens = coords.shape[0]
|
| 636 |
+
pos_ids[offset : offset + num_tokens] = coords
|
| 637 |
+
offset += num_tokens
|
| 638 |
+
|
| 639 |
+
embeddings = freq_table[pos_ids] # lookup rotary embeddings
|
| 640 |
+
embeddings = embeddings.flatten(1)
|
| 641 |
+
return embeddings
|
| 642 |
+
|
| 643 |
+
def forward(
|
| 644 |
+
self,
|
| 645 |
+
hidden_states: torch.Tensor,
|
| 646 |
+
grid_thw: torch.Tensor,
|
| 647 |
+
target_mask: torch.Tensor,
|
| 648 |
+
**kwargs,
|
| 649 |
+
) -> torch.Tensor:
|
| 650 |
+
# mask out the hidden states
|
| 651 |
+
hidden_states = self.in_proj(hidden_states)
|
| 652 |
+
hidden_states[target_mask] = self.mask_token
|
| 653 |
+
|
| 654 |
+
# apply position embeddings
|
| 655 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
| 656 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 657 |
+
position_embeddings = (emb.cos(), emb.sin())
|
| 658 |
+
|
| 659 |
+
cu_seqlens = torch.repeat_interleave(
|
| 660 |
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
| 661 |
+
).cumsum(
|
| 662 |
+
dim=0,
|
| 663 |
+
# Select dtype based on the following factors:
|
| 664 |
+
# - FA2 requires that cu_seqlens_q must have dtype int32
|
| 665 |
+
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
| 666 |
+
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
| 667 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 668 |
+
)
|
| 669 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 670 |
+
|
| 671 |
+
for layer_num, blk in enumerate(self.blocks):
|
| 672 |
+
hidden_states = blk(
|
| 673 |
+
hidden_states,
|
| 674 |
+
cu_seqlens=cu_seqlens,
|
| 675 |
+
position_embeddings=position_embeddings,
|
| 676 |
+
**kwargs,
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
# hidden_states = self.merger(hidden_states)
|
| 680 |
+
hidden_states = self.out_proj(hidden_states)
|
| 681 |
+
|
| 682 |
+
return hidden_states
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
@dataclass
|
| 686 |
+
class SMBVisionModelOutput(ModelOutput):
|
| 687 |
+
loss: Optional[torch.FloatTensor] = None
|
| 688 |
+
mim_loss: Optional[torch.FloatTensor] = None
|
| 689 |
+
jepa_loss: Optional[torch.FloatTensor] = None
|
| 690 |
+
hidden_states: Optional[torch.FloatTensor] = None
|
| 691 |
+
enc_hidden_states: Optional[torch.FloatTensor] = None
|
| 692 |
+
predicted_hidden_states: Optional[torch.FloatTensor] = None
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
class SMBVisionPretrainedModel(PreTrainedModel):
|
| 696 |
+
config: SMBVisionModelConfig
|
| 697 |
+
base_model_prefix = ""
|
| 698 |
+
supports_gradient_checkpointing = True
|
| 699 |
+
_no_split_modules = ["SMBVisionBlock"]
|
| 700 |
+
_supports_flash_attn = True
|
| 701 |
+
_supports_sdpa = True
|
| 702 |
+
_supports_flex_attn = True
|
| 703 |
+
_can_compile_fullgraph = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
|
| 704 |
+
_supports_attention_backend = True
|
| 705 |
+
|
| 706 |
+
def _init_weights(self, module):
|
| 707 |
+
"""Initialize the weights"""
|
| 708 |
+
|
| 709 |
+
init_std = self.config.vision_config.initializer_range
|
| 710 |
+
|
| 711 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
| 712 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
| 713 |
+
def trunc_normal_f32_(weight, std):
|
| 714 |
+
data_float_32 = weight.data.to(torch.float32)
|
| 715 |
+
data_init = nn.init.trunc_normal_(data_float_32, mean=0.0, std=std)
|
| 716 |
+
weight.data = data_init.to(weight.dtype)
|
| 717 |
+
|
| 718 |
+
if isinstance(module, SMBVisionEncoder):
|
| 719 |
+
trunc_normal_f32_(module.pos_embed.weight, std=init_std)
|
| 720 |
+
for i, layer in enumerate(module.blocks, 1):
|
| 721 |
+
std = init_std / (i**0.5)
|
| 722 |
+
trunc_normal_f32_(layer.attn.proj.weight, std=std)
|
| 723 |
+
trunc_normal_f32_(layer.mlp.fc2.weight, std=std)
|
| 724 |
+
std = init_std / (len(module.blocks) + 1) ** 0.5
|
| 725 |
+
trunc_normal_f32_(module.mlp.fc2.weight, std=std)
|
| 726 |
+
elif isinstance(module, SMBVisionPredictor):
|
| 727 |
+
trunc_normal_f32_(module.mask_token, std=init_std)
|
| 728 |
+
trunc_normal_f32_(module.in_proj.weight, std=init_std)
|
| 729 |
+
trunc_normal_f32_(module.out_proj.weight, std=init_std)
|
| 730 |
+
for i, layer in enumerate(module.blocks, 1):
|
| 731 |
+
std = init_std / (i**0.5)
|
| 732 |
+
trunc_normal_f32_(layer.attn.proj.weight, std=std)
|
| 733 |
+
trunc_normal_f32_(layer.mlp.fc2.weight, std=std)
|
| 734 |
+
std = init_std / (len(module.blocks) + 1) ** 0.5
|
| 735 |
+
trunc_normal_f32_(module.mlp.fc2.weight, std=std)
|
| 736 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
|
| 737 |
+
trunc_normal_f32_(module.weight, std=init_std)
|
| 738 |
+
if module.bias is not None:
|
| 739 |
+
module.bias.data.zero_()
|
| 740 |
+
elif isinstance(module, nn.LayerNorm):
|
| 741 |
+
module.bias.data.zero_()
|
| 742 |
+
module.weight.data.fill_(1.0)
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
class SMBVisionModel(SMBVisionPretrainedModel):
|
| 746 |
+
def __init__(self, config, *inputs, **kwargs) -> None:
|
| 747 |
+
super().__init__(config, *inputs, **kwargs)
|
| 748 |
+
|
| 749 |
+
self.encoder = SMBVisionEncoder._from_config(config.vision_config)
|
| 750 |
+
self.predictor = SMBVisionPredictor._from_config(config.predictor_config)
|
| 751 |
+
self.to_pixels = nn.Linear(
|
| 752 |
+
config.vision_config.hidden_size,
|
| 753 |
+
config.vision_config.patch_size**2
|
| 754 |
+
* config.vision_config.temporal_patch_size,
|
| 755 |
+
)
|
| 756 |
+
self.masking_ratio = config.masking_ratio
|
| 757 |
+
self.mask_token = nn.Parameter(
|
| 758 |
+
torch.zeros(
|
| 759 |
+
config.vision_config.in_channels
|
| 760 |
+
* config.vision_config.temporal_patch_size
|
| 761 |
+
* config.vision_config.patch_size**2
|
| 762 |
+
)
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
self.mim_loss = nn.L1Loss(reduction="mean")
|
| 766 |
+
self.jepa_loss = nn.MSELoss(reduction="mean")
|
| 767 |
+
|
| 768 |
+
# Initialize weights and apply final processing
|
| 769 |
+
self.post_init()
|
| 770 |
+
|
| 771 |
+
def forward_features(
|
| 772 |
+
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs
|
| 773 |
+
) -> torch.Tensor:
|
| 774 |
+
return self.encoder(hidden_states, grid_thw, **kwargs)
|
| 775 |
+
|
| 776 |
+
def forward(
|
| 777 |
+
self,
|
| 778 |
+
hidden_states: torch.Tensor,
|
| 779 |
+
grid_thw: torch.Tensor,
|
| 780 |
+
context_mask: Optional[torch.Tensor],
|
| 781 |
+
target_mask: Optional[torch.Tensor],
|
| 782 |
+
**kwargs,
|
| 783 |
+
) -> torch.Tensor:
|
| 784 |
+
# modeling masked image reconstruction
|
| 785 |
+
# prepare mask tokens
|
| 786 |
+
num_masked = int(self.masking_ratio * hidden_states.shape[0])
|
| 787 |
+
masked_indices = torch.randperm(hidden_states.shape[0])[:num_masked]
|
| 788 |
+
# replace masked indices with mask tokens
|
| 789 |
+
inputs_mim = hidden_states.clone()
|
| 790 |
+
inputs_mim[masked_indices] = self.mask_token.to(hidden_states.dtype)
|
| 791 |
+
masked_hidden_states, deepstack_feature_lists = self.encoder(
|
| 792 |
+
inputs_mim, grid_thw, **kwargs
|
| 793 |
+
)
|
| 794 |
+
masked_hidden_states = self.to_pixels(masked_hidden_states)
|
| 795 |
+
# compute mim loss
|
| 796 |
+
mim_loss = self.mim_loss(
|
| 797 |
+
masked_hidden_states[masked_indices], hidden_states[masked_indices]
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
# modeling next embedding prediction
|
| 801 |
+
if context_mask is not None and target_mask is not None:
|
| 802 |
+
context_mask = context_mask == 1
|
| 803 |
+
target_mask = target_mask == 1
|
| 804 |
+
# extend context and target masks
|
| 805 |
+
lengths = torch.prod(grid_thw, dim=1)
|
| 806 |
+
extended_context_mask = torch.repeat_interleave(context_mask, lengths)
|
| 807 |
+
extended_target_mask = torch.repeat_interleave(target_mask, lengths)
|
| 808 |
+
|
| 809 |
+
enc_hidden_states, deepstack_feature_lists = self.encoder(
|
| 810 |
+
hidden_states[extended_context_mask], grid_thw[context_mask], **kwargs
|
| 811 |
+
)
|
| 812 |
+
pred_hidden_states = self.predictor(
|
| 813 |
+
enc_hidden_states,
|
| 814 |
+
grid_thw[context_mask],
|
| 815 |
+
extended_target_mask,
|
| 816 |
+
**kwargs,
|
| 817 |
+
)
|
| 818 |
+
jepa_loss = self.jepa_loss(
|
| 819 |
+
pred_hidden_states[extended_target_mask],
|
| 820 |
+
enc_hidden_states[extended_target_mask],
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
loss = mim_loss + jepa_loss
|
| 824 |
+
return SMBVisionModelOutput(
|
| 825 |
+
loss=loss,
|
| 826 |
+
mim_loss=mim_loss,
|
| 827 |
+
jepa_loss=jepa_loss,
|
| 828 |
+
hidden_states=hidden_states,
|
| 829 |
+
enc_hidden_states=enc_hidden_states,
|
| 830 |
+
predicted_hidden_states=pred_hidden_states,
|
| 831 |
+
)
|
| 832 |
+
else:
|
| 833 |
+
return SMBVisionModelOutput(
|
| 834 |
+
loss=mim_loss,
|
| 835 |
+
mim_loss=mim_loss,
|
| 836 |
+
jepa_loss=None,
|
| 837 |
+
hidden_states=hidden_states,
|
| 838 |
+
predicted_hidden_states=None,
|
| 839 |
+
)
|
| 840 |
+
|
| 841 |
+
|
| 842 |
+
__all__ = ["SMBVisionEncoder", "SMBVisionPredictor", "SMBVisionModel"]
|
trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb524eb3bce99caa8ae20f84eb8a9b6eb49534ffab4978a086eaa340f4aef1e7
|
| 3 |
+
size 7313
|