sswt commited on
Commit
4a0a1db
·
1 Parent(s): 5324123

First commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 285.73 +/- 12.71
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19c419f680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19c419f710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19c419f7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19c419f830>", "_build": "<function ActorCriticPolicy._build at 0x7f19c419f8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f19c419f950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19c419f9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19c419fa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19c419fb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19c419fb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19c419fc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19c41ee600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652180073.0694616, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObUJD6zwI8/PjwJPzM8Db84HJs+dgXzPgAAAAAAAAAA2vg7vtALiD/q292+eukhvyAWyL6sEpS+AAAAAAAAAAAzCcg86S5/vMSlxD0F8d87CKqdvZ0dh74AAIA/AACAPzOOkDzDNXK6Xb8qNURYPDCjbDY7xX5WtAAAgD8AAIA/mhESPc/cFLxbCLW9J1WiPErdbz1oaoa9AACAPwAAgD/gJoc+/04fP8DO9bwAiEO/36D3PiUVT74AAAAAAAAAADMxaDx7tpu6UlaNtJ7SErDTAp25CpeCMwAAgD8AAIA/ZsIhPnzpSz67ctq+Z/4hv62CDzu245K+AAAAAAAAAAAaNHg+yTWQP7OGtj4tcSK/r6AFP9a5cj4AAAAAAAAAAI1eCz5IaNE9NSrqvrxlz762yLK9AoJrvgAAAAAAAAAAmjFGPPZcbboAZzwzww+qr6luC7nKKcqzAACAPwAAgD+aCYi8w89ovJbA6ztsR7E8gRvRPRZLjr0AAIA/AACAPzNdsrx7XpO6SLbrupUe5LVEilO54WIIOgAAgD8AAIA/hhxMvghD0j4TMdk+zvw+v2Ic/r0FlYg+AAAAAAAAAAAAIDS7pPkIuyryK70BWsU8I34DPO6UqL0AAIA/AACAPyYmzz0ojA4/rentvWEkUL8bGi8+2iYMvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZY9QMyRSc0CUhpRSlIwBbJRLq4wBdJRHQMMh4kWZZ0V1fZQoaAZoCWgPQwgi/mFLD8RxQJSGlFKUaBVLrmgWR0DDIe19roGIdX2UKGgGaAloD0MIJJwWvOgXcUCUhpRSlGgVS6doFkdAwyH71nuiOHV9lChoBmgJaA9DCFjmrbpOi3NAlIaUUpRoFUu8aBZHQMMiBFTm4iJ1fZQoaAZoCWgPQwgbu0T11ilzQJSGlFKUaBVLwGgWR0DDIgPyiEg4dX2UKGgGaAloD0MIH6FmSBVtckCUhpRSlGgVS7NoFkdAwyIGophF3XV9lChoBmgJaA9DCHjuPVwyW3JAlIaUUpRoFUu4aBZHQMMiClQEZBN1fZQoaAZoCWgPQwiZucDlMfxyQJSGlFKUaBVLu2gWR0DDIg1Ey+HrdX2UKGgGaAloD0MItCCU9/Fxc0CUhpRSlGgVS7VoFkdAwyIZwb2lEnV9lChoBmgJaA9DCPjFpSot53NAlIaUUpRoFU2gAWgWR0DDIhur2g3+dX2UKGgGaAloD0MI71aW6Oz/cUCUhpRSlGgVS5doFkdAwyx13VTaTXV9lChoBmgJaA9DCOyGbYuyb3FAlIaUUpRoFUugaBZHQMMskA5zYEp1fZQoaAZoCWgPQwjDYtS19hx0QJSGlFKUaBVLtWgWR0DDLJSlN1yOdX2UKGgGaAloD0MIfT81Xjo1dECUhpRSlGgVS9doFkdAwyyo1SflIXV9lChoBmgJaA9DCKgBg6QPO3NAlIaUUpRoFUu/aBZHQMMsq5mZmZp1fZQoaAZoCWgPQwhcy2Q4HmVyQJSGlFKUaBVLxGgWR0DDLKqisXBQdX2UKGgGaAloD0MIQBU3bjGNckCUhpRSlGgVS5JoFkdAwyzcLsrupnV9lChoBmgJaA9DCBhcc0f/SHJAlIaUUpRoFUu9aBZHQMMs3G5lOGl1fZQoaAZoCWgPQwiBk23gTmtxQJSGlFKUaBVLnWgWR0DDLOBl4C6pdX2UKGgGaAloD0MI9tIUAc65cUCUhpRSlGgVS7xoFkdAwyzl7el9B3V9lChoBmgJaA9DCILK+PfZxnFAlIaUUpRoFUuYaBZHQMMs8cX3xnZ1fZQoaAZoCWgPQwgC9Pv+DWNyQJSGlFKUaBVLq2gWR0DDLPTLOiWWdX2UKGgGaAloD0MIH7+36U8PdECUhpRSlGgVS7RoFkdAwyz2Jyhi9nV9lChoBmgJaA9DCHbj3ZExyHNAlIaUUpRoFUvGaBZHQMMs+0+LWI51fZQoaAZoCWgPQwhX6lkQCoxzQJSGlFKUaBVLwWgWR0DDLP2Ur08OdX2UKGgGaAloD0MICJPi4xPwcUCUhpRSlGgVS4RoFkdAwyz/ovi97HV9lChoBmgJaA9DCCyAKQNHZ3NAlIaUUpRoFUvCaBZHQMMtEkdmxt51fZQoaAZoCWgPQwgGnnsP1x1yQJSGlFKUaBVL1WgWR0DDLSL6DXe4dX2UKGgGaAloD0MIz7wcdh+ZcUCUhpRSlGgVS65oFkdAwy041VHWjHV9lChoBmgJaA9DCChDVUwlv3FAlIaUUpRoFUu0aBZHQMMtPEcsDnx1fZQoaAZoCWgPQwind/F+XFVxQJSGlFKUaBVLxGgWR0DDLUzC+De1dX2UKGgGaAloD0MIwCDp02qfckCUhpRSlGgVS41oFkdAwy1OcCo0h3V9lChoBmgJaA9DCI5XIHpSjEFAlIaUUpRoFUtmaBZHQMMtUY6fapR1fZQoaAZoCWgPQwiXVkPiHt9yQJSGlFKUaBVL52gWR0DDLVOIhyKfdX2UKGgGaAloD0MIXOSerq7VcUCUhpRSlGgVS5JoFkdAwy1pfLLZBnV9lChoBmgJaA9DCFqg3SHFO3NAlIaUUpRoFUuwaBZHQMMtbjmCAc11fZQoaAZoCWgPQwgaGk8EcfdvQJSGlFKUaBVLn2gWR0DDLXSdFvycdX2UKGgGaAloD0MIBd80fbbvcECUhpRSlGgVS69oFkdAwy1zriVB2XV9lChoBmgJaA9DCJeQD3o2M3JAlIaUUpRoFUu1aBZHQMMtgpfhMrV1fZQoaAZoCWgPQwiV1Alo4jV0QJSGlFKUaBVL3GgWR0DDLY6tNi6QdX2UKGgGaAloD0MILSRgdHlwckCUhpRSlGgVS7toFkdAwy2Ru8brC3V9lChoBmgJaA9DCEHWU6vvo3FAlIaUUpRoFUu2aBZHQMMtkFq8Djl1fZQoaAZoCWgPQwgxthDkIDByQJSGlFKUaBVLmGgWR0DDLaEEzO5bdX2UKGgGaAloD0MIrRiuDoBGSkCUhpRSlGgVS3NoFkdAwy2xytmthnV9lChoBmgJaA9DCAg8MIDw5HJAlIaUUpRoFUvGaBZHQMMttZnUUfx1fZQoaAZoCWgPQwj0UNuGUe5wQJSGlFKUaBVLoWgWR0DDLcDnaFmGdX2UKGgGaAloD0MIYcWp1sKUcECUhpRSlGgVS6doFkdAwy3CicG1QnV9lChoBmgJaA9DCOvE5XjFH3JAlIaUUpRoFUuVaBZHQMMtx/gaWHF1fZQoaAZoCWgPQwg2BTI7CxRxQJSGlFKUaBVLrGgWR0DDLd6zZ6D5dX2UKGgGaAloD0MI3q8CfDejc0CUhpRSlGgVS7hoFkdAwy3kHFglW3V9lChoBmgJaA9DCG6/fLLimnNAlIaUUpRoFUu8aBZHQMMuDbMHKOl1fZQoaAZoCWgPQwjb3JieMDVyQJSGlFKUaBVLu2gWR0DDLhHdXT3JdX2UKGgGaAloD0MIiWGHMWnDc0CUhpRSlGgVS8BoFkdAwy4XHe7+UHV9lChoBmgJaA9DCMXjolrEcnJAlIaUUpRoFUuzaBZHQMMuG6X0Gu91fZQoaAZoCWgPQwjaU3JO7BVyQJSGlFKUaBVLp2gWR0DDLh94qwyJdX2UKGgGaAloD0MI1EZ1OhBLckCUhpRSlGgVS5VoFkdAwy4hk078vXV9lChoBmgJaA9DCMy209YIfXJAlIaUUpRoFUuvaBZHQMMuJMZ5zHV1fZQoaAZoCWgPQwgcCwqD8odxQJSGlFKUaBVLh2gWR0DDLiqpzcREdX2UKGgGaAloD0MIokRLHg9nckCUhpRSlGgVS4doFkdAwy42s4ku6HV9lChoBmgJaA9DCJ7RViXRTHRAlIaUUpRoFUvBaBZHQMMuN1hb4ah1fZQoaAZoCWgPQwjhmjv63+pyQJSGlFKUaBVLmmgWR0DDLjcKG+K1dX2UKGgGaAloD0MIUDi7tUw9dECUhpRSlGgVTQUBaBZHQMMuSBF/hEV1fZQoaAZoCWgPQwj1K50PDzhyQJSGlFKUaBVLpmgWR0DDLlcIPbwjdX2UKGgGaAloD0MIyVUsftOpc0CUhpRSlGgVS7VoFkdAwy5di1Aqu3V9lChoBmgJaA9DCECKOnNPW3FAlIaUUpRoFUusaBZHQMMuc5vDP4V1fZQoaAZoCWgPQwh4YADhA7hxQJSGlFKUaBVLsmgWR0DDLn4mZ3LWdX2UKGgGaAloD0MIv0aSINxcc0CUhpRSlGgVS6BoFkdAwy6VyhBZ6nV9lChoBmgJaA9DCNRfr7AgwnBAlIaUUpRoFUuraBZHQMMuqFAE+xJ1fZQoaAZoCWgPQwi/f/PihAByQJSGlFKUaBVLo2gWR0DDLq0RUWEcdX2UKGgGaAloD0MI3q8CfLegc0CUhpRSlGgVS8FoFkdAwy64VO9FnnV9lChoBmgJaA9DCKCM8WG2i3NAlIaUUpRoFUuyaBZHQMMuuVQZXMh1fZQoaAZoCWgPQwgKoYMuIVVyQJSGlFKUaBVLtGgWR0DDLsWPzWf9dX2UKGgGaAloD0MIXAUx0PUtckCUhpRSlGgVS79oFkdAwy7JLuhK2HV9lChoBmgJaA9DCDW4rS28MXRAlIaUUpRoFUuuaBZHQMMuzPz4DcN1fZQoaAZoCWgPQwj8x0J0iOZxQJSGlFKUaBVL3WgWR0DDLtmpAD7qdX2UKGgGaAloD0MIVMN+T2zbckCUhpRSlGgVS61oFkdAwy7ddAPd23V9lChoBmgJaA9DCHGsi9to6HNAlIaUUpRoFUvQaBZHQMMu6XMQmNR1fZQoaAZoCWgPQwhlUkMbACBzQJSGlFKUaBVL2GgWR0DDLu+Ef1YhdX2UKGgGaAloD0MIB5rPuVtIcUCUhpRSlGgVS7BoFkdAwy7vedCmdnV9lChoBmgJaA9DCLvSMlJvWnRAlIaUUpRoFUuuaBZHQMMu9QM6RyR1fZQoaAZoCWgPQwigbqDAezhxQJSGlFKUaBVLqWgWR0DDLwTwc5sCdX2UKGgGaAloD0MIZysv+R+5c0CUhpRSlGgVS8VoFkdAwy8mZ4wAVHV9lChoBmgJaA9DCJOmQdF8BnFAlIaUUpRoFUuraBZHQMMvJ5pi7TV1fZQoaAZoCWgPQwghWcAE7lBzQJSGlFKUaBVLomgWR0DDLzIkZ75VdX2UKGgGaAloD0MIngyOkpfCcECUhpRSlGgVS51oFkdAwy88ONHYpXV9lChoBmgJaA9DCL9FJ0stjXFAlIaUUpRoFUuraBZHQMMvSR95Qgt1fZQoaAZoCWgPQwjDf7qBAgNvQJSGlFKUaBVLpGgWR0DDL0+VJL/TdX2UKGgGaAloD0MIW+z2WeXtckCUhpRSlGgVS8JoFkdAwy9RoysS03V9lChoBmgJaA9DCBxhURHnd3NAlIaUUpRoFUunaBZHQMMvVZuIhyN1fZQoaAZoCWgPQwiWmGclLXlxQJSGlFKUaBVLpWgWR0DDL2aDIzWPdX2UKGgGaAloD0MIcm4T7hUbc0CUhpRSlGgVS6toFkdAwy9nybx3FHV9lChoBmgJaA9DCFFqL6Jt7nNAlIaUUpRoFUvDaBZHQMMvbnZ00WN1fZQoaAZoCWgPQwgRUrezLzdyQJSGlFKUaBVLpGgWR0DDL3FB8hLXdX2UKGgGaAloD0MIz4WRXpRzc0CUhpRSlGgVS6JoFkdAwy91N1QqJHV9lChoBmgJaA9DCOWzPA9uFnNAlIaUUpRoFUusaBZHQMMvfUwaisZ1fZQoaAZoCWgPQwi77q1IzBlwQJSGlFKUaBVLqGgWR0DDL41JcxCZdX2UKGgGaAloD0MIc2cmGE51cUCUhpRSlGgVS8JoFkdAwy+SBJ7LMnV9lChoBmgJaA9DCFyPwvVoKnNAlIaUUpRoFUuaaBZHQMMvossH0K91fZQoaAZoCWgPQwjfwyXHXb5wQJSGlFKUaBVLnWgWR0DDL69YyO7ydX2UKGgGaAloD0MI9WVppyZtcUCUhpRSlGgVS7JoFkdAwy+1HbRF7XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3070, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc642cba45e845f85a7e7139c4c7c708ad1bfcfdf28685073ccd65e9623c3cbe
3
+ size 143988
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19c419f680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19c419f710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19c419f7a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19c419f830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f19c419f8c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f19c419f950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19c419f9e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f19c419fa70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19c419fb00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19c419fb90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19c419fc20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f19c41ee600>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 3014656,
46
+ "_total_timesteps": 3000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652180073.0694616,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObUJD6zwI8/PjwJPzM8Db84HJs+dgXzPgAAAAAAAAAA2vg7vtALiD/q292+eukhvyAWyL6sEpS+AAAAAAAAAAAzCcg86S5/vMSlxD0F8d87CKqdvZ0dh74AAIA/AACAPzOOkDzDNXK6Xb8qNURYPDCjbDY7xX5WtAAAgD8AAIA/mhESPc/cFLxbCLW9J1WiPErdbz1oaoa9AACAPwAAgD/gJoc+/04fP8DO9bwAiEO/36D3PiUVT74AAAAAAAAAADMxaDx7tpu6UlaNtJ7SErDTAp25CpeCMwAAgD8AAIA/ZsIhPnzpSz67ctq+Z/4hv62CDzu245K+AAAAAAAAAAAaNHg+yTWQP7OGtj4tcSK/r6AFP9a5cj4AAAAAAAAAAI1eCz5IaNE9NSrqvrxlz762yLK9AoJrvgAAAAAAAAAAmjFGPPZcbboAZzwzww+qr6luC7nKKcqzAACAPwAAgD+aCYi8w89ovJbA6ztsR7E8gRvRPRZLjr0AAIA/AACAPzNdsrx7XpO6SLbrupUe5LVEilO54WIIOgAAgD8AAIA/hhxMvghD0j4TMdk+zvw+v2Ic/r0FlYg+AAAAAAAAAAAAIDS7pPkIuyryK70BWsU8I34DPO6UqL0AAIA/AACAPyYmzz0ojA4/rentvWEkUL8bGi8+2iYMvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.004885333333333408,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZY9QMyRSc0CUhpRSlIwBbJRLq4wBdJRHQMMh4kWZZ0V1fZQoaAZoCWgPQwgi/mFLD8RxQJSGlFKUaBVLrmgWR0DDIe19roGIdX2UKGgGaAloD0MIJJwWvOgXcUCUhpRSlGgVS6doFkdAwyH71nuiOHV9lChoBmgJaA9DCFjmrbpOi3NAlIaUUpRoFUu8aBZHQMMiBFTm4iJ1fZQoaAZoCWgPQwgbu0T11ilzQJSGlFKUaBVLwGgWR0DDIgPyiEg4dX2UKGgGaAloD0MIH6FmSBVtckCUhpRSlGgVS7NoFkdAwyIGophF3XV9lChoBmgJaA9DCHjuPVwyW3JAlIaUUpRoFUu4aBZHQMMiClQEZBN1fZQoaAZoCWgPQwiZucDlMfxyQJSGlFKUaBVLu2gWR0DDIg1Ey+HrdX2UKGgGaAloD0MItCCU9/Fxc0CUhpRSlGgVS7VoFkdAwyIZwb2lEnV9lChoBmgJaA9DCPjFpSot53NAlIaUUpRoFU2gAWgWR0DDIhur2g3+dX2UKGgGaAloD0MI71aW6Oz/cUCUhpRSlGgVS5doFkdAwyx13VTaTXV9lChoBmgJaA9DCOyGbYuyb3FAlIaUUpRoFUugaBZHQMMskA5zYEp1fZQoaAZoCWgPQwjDYtS19hx0QJSGlFKUaBVLtWgWR0DDLJSlN1yOdX2UKGgGaAloD0MIfT81Xjo1dECUhpRSlGgVS9doFkdAwyyo1SflIXV9lChoBmgJaA9DCKgBg6QPO3NAlIaUUpRoFUu/aBZHQMMsq5mZmZp1fZQoaAZoCWgPQwhcy2Q4HmVyQJSGlFKUaBVLxGgWR0DDLKqisXBQdX2UKGgGaAloD0MIQBU3bjGNckCUhpRSlGgVS5JoFkdAwyzcLsrupnV9lChoBmgJaA9DCBhcc0f/SHJAlIaUUpRoFUu9aBZHQMMs3G5lOGl1fZQoaAZoCWgPQwiBk23gTmtxQJSGlFKUaBVLnWgWR0DDLOBl4C6pdX2UKGgGaAloD0MI9tIUAc65cUCUhpRSlGgVS7xoFkdAwyzl7el9B3V9lChoBmgJaA9DCILK+PfZxnFAlIaUUpRoFUuYaBZHQMMs8cX3xnZ1fZQoaAZoCWgPQwgC9Pv+DWNyQJSGlFKUaBVLq2gWR0DDLPTLOiWWdX2UKGgGaAloD0MIH7+36U8PdECUhpRSlGgVS7RoFkdAwyz2Jyhi9nV9lChoBmgJaA9DCHbj3ZExyHNAlIaUUpRoFUvGaBZHQMMs+0+LWI51fZQoaAZoCWgPQwhX6lkQCoxzQJSGlFKUaBVLwWgWR0DDLP2Ur08OdX2UKGgGaAloD0MICJPi4xPwcUCUhpRSlGgVS4RoFkdAwyz/ovi97HV9lChoBmgJaA9DCCyAKQNHZ3NAlIaUUpRoFUvCaBZHQMMtEkdmxt51fZQoaAZoCWgPQwgGnnsP1x1yQJSGlFKUaBVL1WgWR0DDLSL6DXe4dX2UKGgGaAloD0MIz7wcdh+ZcUCUhpRSlGgVS65oFkdAwy041VHWjHV9lChoBmgJaA9DCChDVUwlv3FAlIaUUpRoFUu0aBZHQMMtPEcsDnx1fZQoaAZoCWgPQwind/F+XFVxQJSGlFKUaBVLxGgWR0DDLUzC+De1dX2UKGgGaAloD0MIwCDp02qfckCUhpRSlGgVS41oFkdAwy1OcCo0h3V9lChoBmgJaA9DCI5XIHpSjEFAlIaUUpRoFUtmaBZHQMMtUY6fapR1fZQoaAZoCWgPQwiXVkPiHt9yQJSGlFKUaBVL52gWR0DDLVOIhyKfdX2UKGgGaAloD0MIXOSerq7VcUCUhpRSlGgVS5JoFkdAwy1pfLLZBnV9lChoBmgJaA9DCFqg3SHFO3NAlIaUUpRoFUuwaBZHQMMtbjmCAc11fZQoaAZoCWgPQwgaGk8EcfdvQJSGlFKUaBVLn2gWR0DDLXSdFvycdX2UKGgGaAloD0MIBd80fbbvcECUhpRSlGgVS69oFkdAwy1zriVB2XV9lChoBmgJaA9DCJeQD3o2M3JAlIaUUpRoFUu1aBZHQMMtgpfhMrV1fZQoaAZoCWgPQwiV1Alo4jV0QJSGlFKUaBVL3GgWR0DDLY6tNi6QdX2UKGgGaAloD0MILSRgdHlwckCUhpRSlGgVS7toFkdAwy2Ru8brC3V9lChoBmgJaA9DCEHWU6vvo3FAlIaUUpRoFUu2aBZHQMMtkFq8Djl1fZQoaAZoCWgPQwgxthDkIDByQJSGlFKUaBVLmGgWR0DDLaEEzO5bdX2UKGgGaAloD0MIrRiuDoBGSkCUhpRSlGgVS3NoFkdAwy2xytmthnV9lChoBmgJaA9DCAg8MIDw5HJAlIaUUpRoFUvGaBZHQMMttZnUUfx1fZQoaAZoCWgPQwj0UNuGUe5wQJSGlFKUaBVLoWgWR0DDLcDnaFmGdX2UKGgGaAloD0MIYcWp1sKUcECUhpRSlGgVS6doFkdAwy3CicG1QnV9lChoBmgJaA9DCOvE5XjFH3JAlIaUUpRoFUuVaBZHQMMtx/gaWHF1fZQoaAZoCWgPQwg2BTI7CxRxQJSGlFKUaBVLrGgWR0DDLd6zZ6D5dX2UKGgGaAloD0MI3q8CfDejc0CUhpRSlGgVS7hoFkdAwy3kHFglW3V9lChoBmgJaA9DCG6/fLLimnNAlIaUUpRoFUu8aBZHQMMuDbMHKOl1fZQoaAZoCWgPQwjb3JieMDVyQJSGlFKUaBVLu2gWR0DDLhHdXT3JdX2UKGgGaAloD0MIiWGHMWnDc0CUhpRSlGgVS8BoFkdAwy4XHe7+UHV9lChoBmgJaA9DCMXjolrEcnJAlIaUUpRoFUuzaBZHQMMuG6X0Gu91fZQoaAZoCWgPQwjaU3JO7BVyQJSGlFKUaBVLp2gWR0DDLh94qwyJdX2UKGgGaAloD0MI1EZ1OhBLckCUhpRSlGgVS5VoFkdAwy4hk078vXV9lChoBmgJaA9DCMy209YIfXJAlIaUUpRoFUuvaBZHQMMuJMZ5zHV1fZQoaAZoCWgPQwgcCwqD8odxQJSGlFKUaBVLh2gWR0DDLiqpzcREdX2UKGgGaAloD0MIokRLHg9nckCUhpRSlGgVS4doFkdAwy42s4ku6HV9lChoBmgJaA9DCJ7RViXRTHRAlIaUUpRoFUvBaBZHQMMuN1hb4ah1fZQoaAZoCWgPQwjhmjv63+pyQJSGlFKUaBVLmmgWR0DDLjcKG+K1dX2UKGgGaAloD0MIUDi7tUw9dECUhpRSlGgVTQUBaBZHQMMuSBF/hEV1fZQoaAZoCWgPQwj1K50PDzhyQJSGlFKUaBVLpmgWR0DDLlcIPbwjdX2UKGgGaAloD0MIyVUsftOpc0CUhpRSlGgVS7VoFkdAwy5di1Aqu3V9lChoBmgJaA9DCECKOnNPW3FAlIaUUpRoFUusaBZHQMMuc5vDP4V1fZQoaAZoCWgPQwh4YADhA7hxQJSGlFKUaBVLsmgWR0DDLn4mZ3LWdX2UKGgGaAloD0MIv0aSINxcc0CUhpRSlGgVS6BoFkdAwy6VyhBZ6nV9lChoBmgJaA9DCNRfr7AgwnBAlIaUUpRoFUuraBZHQMMuqFAE+xJ1fZQoaAZoCWgPQwi/f/PihAByQJSGlFKUaBVLo2gWR0DDLq0RUWEcdX2UKGgGaAloD0MI3q8CfLegc0CUhpRSlGgVS8FoFkdAwy64VO9FnnV9lChoBmgJaA9DCKCM8WG2i3NAlIaUUpRoFUuyaBZHQMMuuVQZXMh1fZQoaAZoCWgPQwgKoYMuIVVyQJSGlFKUaBVLtGgWR0DDLsWPzWf9dX2UKGgGaAloD0MIXAUx0PUtckCUhpRSlGgVS79oFkdAwy7JLuhK2HV9lChoBmgJaA9DCDW4rS28MXRAlIaUUpRoFUuuaBZHQMMuzPz4DcN1fZQoaAZoCWgPQwj8x0J0iOZxQJSGlFKUaBVL3WgWR0DDLtmpAD7qdX2UKGgGaAloD0MIVMN+T2zbckCUhpRSlGgVS61oFkdAwy7ddAPd23V9lChoBmgJaA9DCHGsi9to6HNAlIaUUpRoFUvQaBZHQMMu6XMQmNR1fZQoaAZoCWgPQwhlUkMbACBzQJSGlFKUaBVL2GgWR0DDLu+Ef1YhdX2UKGgGaAloD0MIB5rPuVtIcUCUhpRSlGgVS7BoFkdAwy7vedCmdnV9lChoBmgJaA9DCLvSMlJvWnRAlIaUUpRoFUuuaBZHQMMu9QM6RyR1fZQoaAZoCWgPQwigbqDAezhxQJSGlFKUaBVLqWgWR0DDLwTwc5sCdX2UKGgGaAloD0MIZysv+R+5c0CUhpRSlGgVS8VoFkdAwy8mZ4wAVHV9lChoBmgJaA9DCJOmQdF8BnFAlIaUUpRoFUuraBZHQMMvJ5pi7TV1fZQoaAZoCWgPQwghWcAE7lBzQJSGlFKUaBVLomgWR0DDLzIkZ75VdX2UKGgGaAloD0MIngyOkpfCcECUhpRSlGgVS51oFkdAwy88ONHYpXV9lChoBmgJaA9DCL9FJ0stjXFAlIaUUpRoFUuraBZHQMMvSR95Qgt1fZQoaAZoCWgPQwjDf7qBAgNvQJSGlFKUaBVLpGgWR0DDL0+VJL/TdX2UKGgGaAloD0MIW+z2WeXtckCUhpRSlGgVS8JoFkdAwy9RoysS03V9lChoBmgJaA9DCBxhURHnd3NAlIaUUpRoFUunaBZHQMMvVZuIhyN1fZQoaAZoCWgPQwiWmGclLXlxQJSGlFKUaBVLpWgWR0DDL2aDIzWPdX2UKGgGaAloD0MIcm4T7hUbc0CUhpRSlGgVS6toFkdAwy9nybx3FHV9lChoBmgJaA9DCFFqL6Jt7nNAlIaUUpRoFUvDaBZHQMMvbnZ00WN1fZQoaAZoCWgPQwgRUrezLzdyQJSGlFKUaBVLpGgWR0DDL3FB8hLXdX2UKGgGaAloD0MIz4WRXpRzc0CUhpRSlGgVS6JoFkdAwy91N1QqJHV9lChoBmgJaA9DCOWzPA9uFnNAlIaUUpRoFUusaBZHQMMvfUwaisZ1fZQoaAZoCWgPQwi77q1IzBlwQJSGlFKUaBVLqGgWR0DDL41JcxCZdX2UKGgGaAloD0MIc2cmGE51cUCUhpRSlGgVS8JoFkdAwy+SBJ7LMnV9lChoBmgJaA9DCFyPwvVoKnNAlIaUUpRoFUuaaBZHQMMvossH0K91fZQoaAZoCWgPQwjfwyXHXb5wQJSGlFKUaBVLnWgWR0DDL69YyO7ydX2UKGgGaAloD0MI9WVppyZtcUCUhpRSlGgVS7JoFkdAwy+1HbRF7XVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3070,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1789b66a792a07e22fb5ba12c8088c64449647e877ff7754449a0d5fe38054cc
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0f4e02a45a07bb79a4555cf4aab6c62942874a53e051bd0d23f5e91f75732fe
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:beefebc4eed2d4e3feb3bbc69577eaa4aa95be8561096183ee578b9d200ebadc
3
+ size 193537
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.73021263595433, "std_reward": 12.7050687730098, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T12:26:18.067777"}