ssmits commited on
Commit
44ceb87
1 Parent(s): 8f639b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -1
README.md CHANGED
@@ -55,4 +55,39 @@ print(similarities)
55
  # [0.6609, 0.7046, 1.0000]])
56
  ```
57
 
58
- Note: In my tests it utilizes more than 24GB (RTX 4090), so an A100 or A6000 would be required for inference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  # [0.6609, 0.7046, 1.0000]])
56
  ```
57
 
58
+ Note: In my tests it utilizes more than 24GB (RTX 4090), so an A100 or A6000 would be required for inference.
59
+
60
+ ## Inference (HuggingFace Transformers)
61
+ Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
62
+
63
+ ```python
64
+ from transformers import AutoTokenizer, AutoModel
65
+ import torch
66
+
67
+ #Mean Pooling - Take attention mask into account for correct averaging
68
+ def mean_pooling(model_output, attention_mask):
69
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
70
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
71
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
72
+
73
+
74
+ # Sentences we want sentence embeddings for
75
+ sentences = ['This is an example sentence', 'Each sentence is converted']
76
+
77
+ # Load model from HuggingFace Hub
78
+ tokenizer = AutoTokenizer.from_pretrained('ssmits/Qwen2-7B-Instruct-embed-base')
79
+ model = AutoModel.from_pretrained('ssmits/Qwen2-7B-Instruct-embed-base') # device = "cpu" when <= 24 GB VRAM
80
+
81
+ # Tokenize sentences
82
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
83
+
84
+ # Compute token embeddings
85
+ with torch.no_grad():
86
+ model_output = model(**encoded_input)
87
+
88
+ # Perform pooling. In this case, mean pooling.
89
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
90
+
91
+ print("Sentence embeddings:")
92
+ print(sentence_embeddings)
93
+ ```