sshk commited on
Commit
55f9f11
1 Parent(s): 93c8622

End of training

Browse files
Files changed (4) hide show
  1. README.md +86 -196
  2. config.json +90 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,89 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: sayeed99/segformer-b3-fashion
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b3-fashion-finetuned-polo-segments-v1.4
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b3-fashion-finetuned-polo-segments-v1.4
17
+
18
+ This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0547
21
+ - Mean Iou: 0.7482
22
+ - Mean Accuracy: 0.9206
23
+ - Overall Accuracy: 0.9823
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Collar: 0.8807
26
+ - Accuracy Polo: 0.9847
27
+ - Accuracy Lines-cuff: 0.7598
28
+ - Accuracy Lines-chest: 0.9230
29
+ - Accuracy Human: 0.9823
30
+ - Accuracy Background: 0.9929
31
+ - Accuracy Tape: nan
32
+ - Iou Unlabeled: nan
33
+ - Iou Collar: 0.8276
34
+ - Iou Polo: 0.9580
35
+ - Iou Lines-cuff: 0.6735
36
+ - Iou Lines-chest: 0.8230
37
+ - Iou Human: 0.9680
38
+ - Iou Background: 0.9872
39
+ - Iou Tape: 0.0
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 6e-05
59
+ - train_batch_size: 8
60
+ - eval_batch_size: 8
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 30
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Accuracy Tape | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | Iou Tape |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|:--------:|
70
+ | 0.206 | 2.5 | 20 | 0.1808 | 0.5772 | 0.6083 | 0.9552 | nan | 0.6933 | 0.9875 | 0.0 | 0.0304 | 0.9818 | 0.9566 | nan | nan | 0.6406 | 0.9100 | 0.0 | 0.0276 | 0.9299 | 0.9553 | nan |
71
+ | 0.0873 | 5.0 | 40 | 0.0882 | 0.7806 | 0.8207 | 0.9768 | nan | 0.8457 | 0.9848 | 0.2359 | 0.8896 | 0.9780 | 0.9904 | nan | nan | 0.7808 | 0.9460 | 0.2351 | 0.7783 | 0.9605 | 0.9827 | nan |
72
+ | 0.0648 | 7.5 | 60 | 0.0712 | 0.8502 | 0.8900 | 0.9794 | nan | 0.8586 | 0.9880 | 0.6659 | 0.8584 | 0.9796 | 0.9892 | nan | nan | 0.8059 | 0.9499 | 0.6054 | 0.7918 | 0.9642 | 0.9842 | nan |
73
+ | 0.0607 | 10.0 | 80 | 0.0631 | 0.8556 | 0.8957 | 0.9806 | nan | 0.8586 | 0.9856 | 0.7087 | 0.8477 | 0.9829 | 0.9907 | nan | nan | 0.8055 | 0.9539 | 0.6394 | 0.7834 | 0.9659 | 0.9856 | nan |
74
+ | 0.057 | 12.5 | 100 | 0.0605 | 0.8661 | 0.9135 | 0.9815 | nan | 0.8708 | 0.9818 | 0.7296 | 0.9224 | 0.9855 | 0.9908 | nan | nan | 0.8148 | 0.9570 | 0.6577 | 0.8144 | 0.9669 | 0.9859 | nan |
75
+ | 0.0458 | 15.0 | 120 | 0.0573 | 0.7446 | 0.9169 | 0.9819 | nan | 0.8925 | 0.9838 | 0.7505 | 0.9009 | 0.9792 | 0.9949 | nan | nan | 0.8244 | 0.9581 | 0.6600 | 0.8164 | 0.9669 | 0.9863 | 0.0 |
76
+ | 0.0413 | 17.5 | 140 | 0.0587 | 0.7428 | 0.9196 | 0.9818 | nan | 0.8818 | 0.9820 | 0.7483 | 0.9299 | 0.9823 | 0.9932 | nan | nan | 0.8217 | 0.9571 | 0.6671 | 0.7997 | 0.9673 | 0.9869 | 0.0 |
77
+ | 0.0449 | 20.0 | 160 | 0.0542 | 0.7468 | 0.9202 | 0.9826 | nan | 0.8850 | 0.9833 | 0.7516 | 0.9248 | 0.9842 | 0.9925 | nan | nan | 0.8270 | 0.9590 | 0.6678 | 0.8179 | 0.9688 | 0.9873 | 0.0 |
78
+ | 0.0394 | 22.5 | 180 | 0.0558 | 0.7468 | 0.9208 | 0.9819 | nan | 0.8934 | 0.9853 | 0.7528 | 0.9207 | 0.9808 | 0.9919 | nan | nan | 0.8298 | 0.9564 | 0.6657 | 0.8214 | 0.9672 | 0.9869 | 0.0 |
79
+ | 0.0472 | 25.0 | 200 | 0.0549 | 0.7474 | 0.9185 | 0.9823 | nan | 0.8792 | 0.9854 | 0.7531 | 0.9186 | 0.9828 | 0.9922 | nan | nan | 0.8274 | 0.9577 | 0.6681 | 0.8233 | 0.9681 | 0.9871 | 0.0 |
80
+ | 0.0452 | 27.5 | 220 | 0.0547 | 0.7482 | 0.9217 | 0.9823 | nan | 0.8837 | 0.9846 | 0.7622 | 0.9247 | 0.9823 | 0.9927 | nan | nan | 0.8287 | 0.9580 | 0.6733 | 0.8221 | 0.9681 | 0.9871 | 0.0 |
81
+ | 0.0392 | 30.0 | 240 | 0.0547 | 0.7482 | 0.9206 | 0.9823 | nan | 0.8807 | 0.9847 | 0.7598 | 0.9230 | 0.9823 | 0.9929 | nan | nan | 0.8276 | 0.9580 | 0.6735 | 0.8230 | 0.9680 | 0.9872 | 0.0 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.44.0
87
+ - Pytorch 2.4.0+cu121
88
+ - Datasets 2.20.0
89
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sayeed99/segformer-b3-fashion",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 18,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "collar",
33
+ "2": "polo",
34
+ "3": "lines-cuff",
35
+ "4": "lines-chest",
36
+ "5": "human",
37
+ "6": "background",
38
+ "7": "tape"
39
+ },
40
+ "image_size": 224,
41
+ "initializer_range": 0.02,
42
+ "label2id": {
43
+ "background": 6,
44
+ "collar": 1,
45
+ "human": 5,
46
+ "lines-chest": 4,
47
+ "lines-cuff": 3,
48
+ "polo": 2,
49
+ "tape": 7,
50
+ "unlabeled": 0
51
+ },
52
+ "layer_norm_eps": 1e-06,
53
+ "mlp_ratios": [
54
+ 4,
55
+ 4,
56
+ 4,
57
+ 4
58
+ ],
59
+ "model_type": "segformer",
60
+ "num_attention_heads": [
61
+ 1,
62
+ 2,
63
+ 5,
64
+ 8
65
+ ],
66
+ "num_channels": 3,
67
+ "num_encoder_blocks": 4,
68
+ "patch_sizes": [
69
+ 7,
70
+ 3,
71
+ 3,
72
+ 3
73
+ ],
74
+ "reshape_last_stage": true,
75
+ "semantic_loss_ignore_index": 255,
76
+ "sr_ratios": [
77
+ 8,
78
+ 4,
79
+ 2,
80
+ 1
81
+ ],
82
+ "strides": [
83
+ 4,
84
+ 2,
85
+ 2,
86
+ 2
87
+ ],
88
+ "torch_dtype": "float32",
89
+ "transformers_version": "4.44.0"
90
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6545d86d846157c42801eaad601e10e2fb8ca12aa54258d164f74303fe12b1cd
3
+ size 188998232
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bfe9eff2346e12e676c303760d8724d8d6efc9697c983d2d73fdb7f32054deb
3
+ size 5304