Upload 8 files
Browse files- README.md +110 -0
- config.json +43 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- ner
|
6 |
+
- gene
|
7 |
+
- protein
|
8 |
+
- rna
|
9 |
+
- bioinfomatics
|
10 |
+
license: apache-2.0
|
11 |
+
datasets:
|
12 |
+
- jnlpba
|
13 |
+
- tner/bc5cdr
|
14 |
+
- jnlpba
|
15 |
+
- bc2gm_corpus
|
16 |
+
- drAbreu/bc4chemd_ner
|
17 |
+
- linnaeus
|
18 |
+
- ncbi_disease
|
19 |
+
widget:
|
20 |
+
- text: "It consists of 25 exons encoding a 1,278-amino acid glycoprotein that is composed of 13 transmembrane domains"
|
21 |
+
---
|
22 |
+
|
23 |
+
# NER to find Gene & Gene products
|
24 |
+
> The model was trained on jnlpba dataset, pretrained on this [pubmed-pretrained roberta model](/raynardj/roberta-pubmed)
|
25 |
+
|
26 |
+
All the labels, the possible token classes.
|
27 |
+
```json
|
28 |
+
{"label2id": {
|
29 |
+
"DNA": 2,
|
30 |
+
"O": 0,
|
31 |
+
"RNA": 5,
|
32 |
+
"cell_line": 4,
|
33 |
+
"cell_type": 3,
|
34 |
+
"protein": 1
|
35 |
+
}
|
36 |
+
}
|
37 |
+
```
|
38 |
+
|
39 |
+
Notice, we removed the 'B-','I-' etc from data label.🗡
|
40 |
+
|
41 |
+
## This is the template we suggest for using the model
|
42 |
+
```python
|
43 |
+
from transformers import pipeline
|
44 |
+
|
45 |
+
PRETRAINED = "raynardj/ner-gene-dna-rna-jnlpba-pubmed"
|
46 |
+
ner = pipeline(task="ner",model=PRETRAINED, tokenizer=PRETRAINED)
|
47 |
+
ner("Your text", aggregation_strategy="first")
|
48 |
+
```
|
49 |
+
And here is to make your output more consecutive ⭐️
|
50 |
+
|
51 |
+
```python
|
52 |
+
import pandas as pd
|
53 |
+
from transformers import AutoTokenizer
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED)
|
55 |
+
|
56 |
+
def clean_output(outputs):
|
57 |
+
results = []
|
58 |
+
current = []
|
59 |
+
last_idx = 0
|
60 |
+
# make to sub group by position
|
61 |
+
for output in outputs:
|
62 |
+
if output["index"]-1==last_idx:
|
63 |
+
current.append(output)
|
64 |
+
else:
|
65 |
+
results.append(current)
|
66 |
+
current = [output, ]
|
67 |
+
last_idx = output["index"]
|
68 |
+
if len(current)>0:
|
69 |
+
results.append(current)
|
70 |
+
|
71 |
+
# from tokens to string
|
72 |
+
strings = []
|
73 |
+
for c in results:
|
74 |
+
tokens = []
|
75 |
+
starts = []
|
76 |
+
ends = []
|
77 |
+
for o in c:
|
78 |
+
tokens.append(o['word'])
|
79 |
+
starts.append(o['start'])
|
80 |
+
ends.append(o['end'])
|
81 |
+
|
82 |
+
new_str = tokenizer.convert_tokens_to_string(tokens)
|
83 |
+
if new_str!='':
|
84 |
+
strings.append(dict(
|
85 |
+
word=new_str,
|
86 |
+
start = min(starts),
|
87 |
+
end = max(ends),
|
88 |
+
entity = c[0]['entity']
|
89 |
+
))
|
90 |
+
return strings
|
91 |
+
|
92 |
+
def entity_table(pipeline, **pipeline_kw):
|
93 |
+
if "aggregation_strategy" not in pipeline_kw:
|
94 |
+
pipeline_kw["aggregation_strategy"] = "first"
|
95 |
+
def create_table(text):
|
96 |
+
return pd.DataFrame(
|
97 |
+
clean_output(
|
98 |
+
pipeline(text, **pipeline_kw)
|
99 |
+
)
|
100 |
+
)
|
101 |
+
return create_table
|
102 |
+
|
103 |
+
# will return a dataframe
|
104 |
+
entity_table(ner)(YOUR_VERY_CONTENTFUL_TEXT)
|
105 |
+
```
|
106 |
+
|
107 |
+
> check our NER model on
|
108 |
+
* [gene and gene products](/raynardj/ner-gene-dna-rna-jnlpba-pubmed)
|
109 |
+
* [chemical substance](/raynardj/ner-chemical-bionlp-bc5cdr-pubmed).
|
110 |
+
* [disease](/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed)
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "raynardj/roberta-pubmed",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "O",
|
15 |
+
"1": "protein",
|
16 |
+
"2": "DNA",
|
17 |
+
"3": "cell_type",
|
18 |
+
"4": "cell_line",
|
19 |
+
"5": "RNA"
|
20 |
+
},
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 3072,
|
23 |
+
"label2id": {
|
24 |
+
"DNA": 2,
|
25 |
+
"O": 0,
|
26 |
+
"RNA": 5,
|
27 |
+
"cell_line": 4,
|
28 |
+
"cell_type": 3,
|
29 |
+
"protein": 1
|
30 |
+
},
|
31 |
+
"layer_norm_eps": 1e-05,
|
32 |
+
"max_position_embeddings": 514,
|
33 |
+
"model_type": "roberta",
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 12,
|
36 |
+
"pad_token_id": 1,
|
37 |
+
"position_embedding_type": "absolute",
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.9.1",
|
40 |
+
"type_vocab_size": 1,
|
41 |
+
"use_cache": true,
|
42 |
+
"vocab_size": 50265
|
43 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:255a480aa20741d98de5708721f9431b0b1394ed1f6e90d4094226ee45197733
|
3 |
+
size 496325623
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "add_prefix_space": true, "errors": "replace", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": "<mask>", "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "raynardj/roberta-pubmed", "tokenizer_class": "RobertaTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|