|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from torch.cuda.amp import custom_bwd, custom_fwd |
|
|
|
try: |
|
import triton |
|
import triton.language as tl |
|
from . import custom_autotune |
|
|
|
|
|
@custom_autotune.autotune( |
|
configs=[ |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 256, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 128, |
|
'BLOCK_SIZE_N': 128, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 128, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 128, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 64, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 128, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=2, num_warps=8), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 64, |
|
'BLOCK_SIZE_K': 64, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=3, num_warps=8), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 32, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 128, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=2, num_warps=4), |
|
], |
|
key=['M', 'N', 'K'], |
|
nearest_power_of_two=True, |
|
prune_configs_by={ |
|
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner, |
|
'perf_model': None, |
|
'top_k': None, |
|
}, |
|
) |
|
@triton.jit |
|
def matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros, |
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): |
|
""" |
|
Compute the matrix multiplication C = A x B. |
|
A is of shape (M, K) float16 |
|
B is of shape (K//8, N) int32 |
|
C is of shape (M, N) float16 |
|
scales is of shape (G, N) float16 |
|
zeros is of shape (G, N) float16 |
|
g_ptr is of shape (K) int32 |
|
""" |
|
infearure_per_bits = 32 // bits |
|
|
|
pid = tl.program_id(axis=0) |
|
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) |
|
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) |
|
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) |
|
num_pid_in_group = GROUP_SIZE_M * num_pid_n |
|
group_id = pid // num_pid_in_group |
|
first_pid_m = group_id * GROUP_SIZE_M |
|
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) |
|
pid_m = first_pid_m + (pid % group_size_m) |
|
pid_n = (pid % num_pid_in_group) // group_size_m |
|
|
|
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) |
|
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) |
|
offs_k = tl.arange(0, BLOCK_SIZE_K) |
|
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) |
|
a_mask = (offs_am[:, None] < M) |
|
|
|
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) |
|
g_ptrs = g_ptr + offs_k |
|
|
|
scales_ptrs = scales_ptr + offs_bn[None, :] |
|
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits) |
|
|
|
shifter = (offs_k % infearure_per_bits) * bits |
|
zeros_shifter = (offs_bn % infearure_per_bits) * bits |
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) |
|
|
|
for k in range(0, num_pid_k): |
|
g_idx = tl.load(g_ptrs) |
|
|
|
|
|
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) |
|
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) |
|
|
|
zeros = (zeros >> zeros_shifter[None, :]) & maxq |
|
zeros = (zeros + 1) |
|
|
|
a = tl.load(a_ptrs, mask=a_mask, other=0.) |
|
b = tl.load(b_ptrs) |
|
|
|
|
|
b = (b >> shifter[:, None]) & maxq |
|
b = (b - zeros) * scales |
|
|
|
accumulator += tl.dot(a, b) |
|
a_ptrs += BLOCK_SIZE_K |
|
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk |
|
g_ptrs += BLOCK_SIZE_K |
|
|
|
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :] |
|
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N) |
|
tl.store(c_ptrs, accumulator, mask=c_mask) |
|
|
|
@custom_autotune.autotune(configs=[ |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 256, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 128, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 128, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 128, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 128, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 64, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=4, num_warps=4), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 32, |
|
'BLOCK_SIZE_K': 128, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=2, num_warps=8), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 64, |
|
'BLOCK_SIZE_N': 64, |
|
'BLOCK_SIZE_K': 64, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=3, num_warps=8), |
|
triton.Config({ |
|
'BLOCK_SIZE_M': 32, |
|
'BLOCK_SIZE_N': 128, |
|
'BLOCK_SIZE_K': 32, |
|
'GROUP_SIZE_M': 8 |
|
}, num_stages=2, num_warps=4), |
|
], |
|
key=['M', 'N', 'K'], |
|
nearest_power_of_two=True) |
|
@triton.jit |
|
def transpose_matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, |
|
stride_zeros, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): |
|
""" |
|
Compute the matrix multiplication C = A x B. |
|
A is of shape (M, N) float16 |
|
B is of shape (K//8, N) int32 |
|
C is of shape (M, K) float16 |
|
scales is of shape (G, N) float16 |
|
zeros is of shape (G, N) float16 |
|
g_ptr is of shape (K) int32 |
|
""" |
|
infearure_per_bits = 32 // bits |
|
|
|
pid = tl.program_id(axis=0) |
|
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) |
|
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) |
|
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) |
|
num_pid_in_group = GROUP_SIZE_M * num_pid_k |
|
group_id = pid // num_pid_in_group |
|
first_pid_m = group_id * GROUP_SIZE_M |
|
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) |
|
pid_m = first_pid_m + (pid % group_size_m) |
|
pid_k = (pid % num_pid_in_group) // group_size_m |
|
|
|
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) |
|
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) |
|
offs_n = tl.arange(0, BLOCK_SIZE_N) |
|
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) |
|
a_mask = (offs_am[:, None] < M) |
|
|
|
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) |
|
g_ptrs = g_ptr + offs_bk |
|
g_idx = tl.load(g_ptrs) |
|
|
|
|
|
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales |
|
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros |
|
|
|
shifter = (offs_bk % infearure_per_bits) * bits |
|
zeros_shifter = (offs_n % infearure_per_bits) * bits |
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32) |
|
|
|
for n in range(0, num_pid_n): |
|
|
|
scales = tl.load(scales_ptrs) |
|
zeros = tl.load(zeros_ptrs) |
|
|
|
zeros = (zeros >> zeros_shifter[None, :]) & maxq |
|
zeros = (zeros + 1) |
|
|
|
a = tl.load(a_ptrs, mask=a_mask, other=0.) |
|
b = tl.load(b_ptrs) |
|
|
|
|
|
b = (b >> shifter[:, None]) & maxq |
|
b = (b - zeros) * scales |
|
b = tl.trans(b) |
|
|
|
accumulator += tl.dot(a, b) |
|
a_ptrs += BLOCK_SIZE_N |
|
b_ptrs += BLOCK_SIZE_N |
|
scales_ptrs += BLOCK_SIZE_N |
|
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits) |
|
|
|
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :] |
|
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K) |
|
tl.store(c_ptrs, accumulator, mask=c_mask) |
|
except: |
|
print('trioton not installed.') |
|
|
|
|
|
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq): |
|
with torch.cuda.device(input.device): |
|
output = torch.empty((input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16) |
|
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']), ) |
|
matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0), |
|
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0)) |
|
return output |
|
|
|
|
|
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq): |
|
with torch.cuda.device(input.device): |
|
output_dim = (qweight.shape[0] * 32) // bits |
|
output = torch.empty((input.shape[0], output_dim), device=input.device, dtype=torch.float16) |
|
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']), ) |
|
transpose_matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], output_dim, bits, maxq, input.stride(0), input.stride(1), qweight.stride(0), |
|
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0)) |
|
return output |
|
|
|
|
|
class QuantLinearFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float16) |
|
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq): |
|
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq) |
|
ctx.save_for_backward(qweight, scales, qzeros, g_idx) |
|
ctx.bits, ctx.maxq = bits, maxq |
|
return output |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_output): |
|
qweight, scales, qzeros, g_idx = ctx.saved_tensors |
|
bits, maxq = ctx.bits, ctx.maxq |
|
grad_input = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq) |
|
return grad_input, None, None, None, None, None, None |
|
|
|
|
|
class QuantLinear(nn.Module): |
|
|
|
def __init__(self, bits, groupsize, infeatures, outfeatures, bias): |
|
super().__init__() |
|
if bits not in [2, 4, 8]: |
|
raise NotImplementedError("Only 2,4,8 bits are supported.") |
|
self.infeatures = infeatures |
|
self.outfeatures = outfeatures |
|
self.bits = bits |
|
self.maxq = 2**self.bits - 1 |
|
self.groupsize = groupsize if groupsize != -1 else infeatures |
|
|
|
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)) |
|
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32)) |
|
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16)) |
|
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32)) |
|
if bias: |
|
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16)) |
|
else: |
|
self.bias = None |
|
|
|
def pack(self, linear, scales, zeros, g_idx=None): |
|
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx |
|
|
|
scales = scales.t().contiguous() |
|
zeros = zeros.t().contiguous() |
|
scale_zeros = zeros * scales |
|
self.scales = scales.clone().half() |
|
if linear.bias is not None: |
|
self.bias = linear.bias.clone().half() |
|
|
|
intweight = [] |
|
for idx in range(self.infeatures): |
|
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None]) |
|
intweight = torch.cat(intweight, dim=1) |
|
intweight = intweight.t().contiguous() |
|
intweight = intweight.numpy().astype(np.uint32) |
|
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32) |
|
i = 0 |
|
row = 0 |
|
while row < qweight.shape[0]: |
|
if self.bits in [2, 4, 8]: |
|
for j in range(i, i + (32 // self.bits)): |
|
qweight[row] |= intweight[j] << (self.bits * (j - i)) |
|
i += 32 // self.bits |
|
row += 1 |
|
else: |
|
raise NotImplementedError("Only 2,4,8 bits are supported.") |
|
|
|
qweight = qweight.astype(np.int32) |
|
self.qweight = torch.from_numpy(qweight) |
|
|
|
zeros -= 1 |
|
zeros = zeros.numpy().astype(np.uint32) |
|
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32) |
|
i = 0 |
|
col = 0 |
|
while col < qzeros.shape[1]: |
|
if self.bits in [2, 4, 8]: |
|
for j in range(i, i + (32 // self.bits)): |
|
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) |
|
i += 32 // self.bits |
|
col += 1 |
|
else: |
|
raise NotImplementedError("Only 2,4,8 bits are supported.") |
|
|
|
qzeros = qzeros.astype(np.int32) |
|
self.qzeros = torch.from_numpy(qzeros) |
|
|
|
def forward(self, x): |
|
out_shape = x.shape[:-1] + (self.outfeatures, ) |
|
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq) |
|
out = out + self.bias if self.bias is not None else out |
|
return out.reshape(out_shape) |
|
|
|
|
|
def make_quant_linear(module, names, bits, groupsize, name=''): |
|
if isinstance(module, QuantLinear): |
|
return |
|
for attr in dir(module): |
|
tmp = getattr(module, attr) |
|
name1 = name + '.' + attr if name != '' else attr |
|
if name1 in names: |
|
delattr(module, attr) |
|
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None)) |
|
for name1, child in module.named_children(): |
|
make_quant_linear(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1) |
|
|
|
|
|
def autotune_warmup_linear(model, transpose=False): |
|
""" |
|
Pre-tunes the quantized kernel |
|
""" |
|
from tqdm import tqdm |
|
|
|
kn_values = {} |
|
|
|
for _, m in model.named_modules(): |
|
if not isinstance(m, QuantLinear): |
|
continue |
|
|
|
k = m.infeatures |
|
n = m.outfeatures |
|
|
|
if (k, n) not in kn_values: |
|
kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq) |
|
|
|
print(f'Found {len(kn_values)} unique KN Linear values.') |
|
|
|
print('Warming up autotune cache ...') |
|
with torch.no_grad(): |
|
for m in tqdm(range(0, 12)): |
|
m = 2**m |
|
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq) in kn_values.items(): |
|
a = torch.randn(m, k, dtype=torch.float16, device='cuda') |
|
matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq) |
|
if transpose: |
|
a = torch.randn(m, n, dtype=torch.float16, device='cuda') |
|
transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq) |
|
del kn_values |
|
|