srikarvar commited on
Commit
1960c37
1 Parent(s): 5a799f4

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy
10
+ - cosine_accuracy_threshold
11
+ - cosine_f1
12
+ - cosine_f1_threshold
13
+ - cosine_precision
14
+ - cosine_recall
15
+ - cosine_ap
16
+ - dot_accuracy
17
+ - dot_accuracy_threshold
18
+ - dot_f1
19
+ - dot_f1_threshold
20
+ - dot_precision
21
+ - dot_recall
22
+ - dot_ap
23
+ - manhattan_accuracy
24
+ - manhattan_accuracy_threshold
25
+ - manhattan_f1
26
+ - manhattan_f1_threshold
27
+ - manhattan_precision
28
+ - manhattan_recall
29
+ - manhattan_ap
30
+ - euclidean_accuracy
31
+ - euclidean_accuracy_threshold
32
+ - euclidean_f1
33
+ - euclidean_f1_threshold
34
+ - euclidean_precision
35
+ - euclidean_recall
36
+ - euclidean_ap
37
+ - max_accuracy
38
+ - max_accuracy_threshold
39
+ - max_f1
40
+ - max_f1_threshold
41
+ - max_precision
42
+ - max_recall
43
+ - max_ap
44
+ pipeline_tag: sentence-similarity
45
+ tags:
46
+ - sentence-transformers
47
+ - sentence-similarity
48
+ - feature-extraction
49
+ - generated_from_trainer
50
+ - dataset_size:559
51
+ - loss:OnlineContrastiveLoss
52
+ widget:
53
+ - source_sentence: How do I sign up for a new account?
54
+ sentences:
55
+ - How do I book a flight online?
56
+ - Can I withdraw money from my bank?
57
+ - What is the process for creating a new account?
58
+ - source_sentence: How can I enhance my English skills?
59
+ sentences:
60
+ - What are the ingredients of a pizza?
61
+ - How can I improve my English?
62
+ - What are the ingredients of a pizza?
63
+ - source_sentence: Where can I buy a new bicycle?
64
+ sentences:
65
+ - What is the importance of a balanced diet?
66
+ - How do I update my address?
67
+ - Where can I buy a new laptop?
68
+ - source_sentence: What steps do I need to follow to log into the company's internal
69
+ network?
70
+ sentences:
71
+ - Who wrote the book "To Kill a Mockingbird"?
72
+ - How do I reset my password?
73
+ - How do I access the company's intranet?
74
+ - source_sentence: How can I improve my Spanish?
75
+ sentences:
76
+ - How can I lose weight?
77
+ - How can I improve my English?
78
+ - What is the most effective way to lose weight?
79
+ model-index:
80
+ - name: e5 cogcache small
81
+ results:
82
+ - task:
83
+ type: binary-classification
84
+ name: Binary Classification
85
+ dataset:
86
+ name: quora duplicates dev
87
+ type: quora-duplicates-dev
88
+ metrics:
89
+ - type: cosine_accuracy
90
+ value: 0.9769230769230769
91
+ name: Cosine Accuracy
92
+ - type: cosine_accuracy_threshold
93
+ value: 0.8896927833557129
94
+ name: Cosine Accuracy Threshold
95
+ - type: cosine_f1
96
+ value: 0.9822485207100591
97
+ name: Cosine F1
98
+ - type: cosine_f1_threshold
99
+ value: 0.8896927833557129
100
+ name: Cosine F1 Threshold
101
+ - type: cosine_precision
102
+ value: 0.9764705882352941
103
+ name: Cosine Precision
104
+ - type: cosine_recall
105
+ value: 0.9880952380952381
106
+ name: Cosine Recall
107
+ - type: cosine_ap
108
+ value: 0.994223106525432
109
+ name: Cosine Ap
110
+ - type: dot_accuracy
111
+ value: 0.9769230769230769
112
+ name: Dot Accuracy
113
+ - type: dot_accuracy_threshold
114
+ value: 0.8896929025650024
115
+ name: Dot Accuracy Threshold
116
+ - type: dot_f1
117
+ value: 0.9822485207100591
118
+ name: Dot F1
119
+ - type: dot_f1_threshold
120
+ value: 0.8896929025650024
121
+ name: Dot F1 Threshold
122
+ - type: dot_precision
123
+ value: 0.9764705882352941
124
+ name: Dot Precision
125
+ - type: dot_recall
126
+ value: 0.9880952380952381
127
+ name: Dot Recall
128
+ - type: dot_ap
129
+ value: 0.994223106525432
130
+ name: Dot Ap
131
+ - type: manhattan_accuracy
132
+ value: 0.9769230769230769
133
+ name: Manhattan Accuracy
134
+ - type: manhattan_accuracy_threshold
135
+ value: 7.349482536315918
136
+ name: Manhattan Accuracy Threshold
137
+ - type: manhattan_f1
138
+ value: 0.9822485207100591
139
+ name: Manhattan F1
140
+ - type: manhattan_f1_threshold
141
+ value: 7.349482536315918
142
+ name: Manhattan F1 Threshold
143
+ - type: manhattan_precision
144
+ value: 0.9764705882352941
145
+ name: Manhattan Precision
146
+ - type: manhattan_recall
147
+ value: 0.9880952380952381
148
+ name: Manhattan Recall
149
+ - type: manhattan_ap
150
+ value: 0.9943188357594678
151
+ name: Manhattan Ap
152
+ - type: euclidean_accuracy
153
+ value: 0.9769230769230769
154
+ name: Euclidean Accuracy
155
+ - type: euclidean_accuracy_threshold
156
+ value: 0.46969443559646606
157
+ name: Euclidean Accuracy Threshold
158
+ - type: euclidean_f1
159
+ value: 0.9822485207100591
160
+ name: Euclidean F1
161
+ - type: euclidean_f1_threshold
162
+ value: 0.46969443559646606
163
+ name: Euclidean F1 Threshold
164
+ - type: euclidean_precision
165
+ value: 0.9764705882352941
166
+ name: Euclidean Precision
167
+ - type: euclidean_recall
168
+ value: 0.9880952380952381
169
+ name: Euclidean Recall
170
+ - type: euclidean_ap
171
+ value: 0.994223106525432
172
+ name: Euclidean Ap
173
+ - type: max_accuracy
174
+ value: 0.9769230769230769
175
+ name: Max Accuracy
176
+ - type: max_accuracy_threshold
177
+ value: 7.349482536315918
178
+ name: Max Accuracy Threshold
179
+ - type: max_f1
180
+ value: 0.9822485207100591
181
+ name: Max F1
182
+ - type: max_f1_threshold
183
+ value: 7.349482536315918
184
+ name: Max F1 Threshold
185
+ - type: max_precision
186
+ value: 0.9764705882352941
187
+ name: Max Precision
188
+ - type: max_recall
189
+ value: 0.9880952380952381
190
+ name: Max Recall
191
+ - type: max_ap
192
+ value: 0.9943188357594678
193
+ name: Max Ap
194
+ - task:
195
+ type: binary-classification
196
+ name: Binary Classification
197
+ dataset:
198
+ name: e5 cogcache dev
199
+ type: e5-cogcache-dev
200
+ metrics:
201
+ - type: cosine_accuracy
202
+ value: 0.9769230769230769
203
+ name: Cosine Accuracy
204
+ - type: cosine_accuracy_threshold
205
+ value: 0.8896927833557129
206
+ name: Cosine Accuracy Threshold
207
+ - type: cosine_f1
208
+ value: 0.9822485207100591
209
+ name: Cosine F1
210
+ - type: cosine_f1_threshold
211
+ value: 0.8896927833557129
212
+ name: Cosine F1 Threshold
213
+ - type: cosine_precision
214
+ value: 0.9764705882352941
215
+ name: Cosine Precision
216
+ - type: cosine_recall
217
+ value: 0.9880952380952381
218
+ name: Cosine Recall
219
+ - type: cosine_ap
220
+ value: 0.994223106525432
221
+ name: Cosine Ap
222
+ - type: dot_accuracy
223
+ value: 0.9769230769230769
224
+ name: Dot Accuracy
225
+ - type: dot_accuracy_threshold
226
+ value: 0.8896929025650024
227
+ name: Dot Accuracy Threshold
228
+ - type: dot_f1
229
+ value: 0.9822485207100591
230
+ name: Dot F1
231
+ - type: dot_f1_threshold
232
+ value: 0.8896929025650024
233
+ name: Dot F1 Threshold
234
+ - type: dot_precision
235
+ value: 0.9764705882352941
236
+ name: Dot Precision
237
+ - type: dot_recall
238
+ value: 0.9880952380952381
239
+ name: Dot Recall
240
+ - type: dot_ap
241
+ value: 0.994223106525432
242
+ name: Dot Ap
243
+ - type: manhattan_accuracy
244
+ value: 0.9769230769230769
245
+ name: Manhattan Accuracy
246
+ - type: manhattan_accuracy_threshold
247
+ value: 7.349482536315918
248
+ name: Manhattan Accuracy Threshold
249
+ - type: manhattan_f1
250
+ value: 0.9822485207100591
251
+ name: Manhattan F1
252
+ - type: manhattan_f1_threshold
253
+ value: 7.349482536315918
254
+ name: Manhattan F1 Threshold
255
+ - type: manhattan_precision
256
+ value: 0.9764705882352941
257
+ name: Manhattan Precision
258
+ - type: manhattan_recall
259
+ value: 0.9880952380952381
260
+ name: Manhattan Recall
261
+ - type: manhattan_ap
262
+ value: 0.9943188357594678
263
+ name: Manhattan Ap
264
+ - type: euclidean_accuracy
265
+ value: 0.9769230769230769
266
+ name: Euclidean Accuracy
267
+ - type: euclidean_accuracy_threshold
268
+ value: 0.46969443559646606
269
+ name: Euclidean Accuracy Threshold
270
+ - type: euclidean_f1
271
+ value: 0.9822485207100591
272
+ name: Euclidean F1
273
+ - type: euclidean_f1_threshold
274
+ value: 0.46969443559646606
275
+ name: Euclidean F1 Threshold
276
+ - type: euclidean_precision
277
+ value: 0.9764705882352941
278
+ name: Euclidean Precision
279
+ - type: euclidean_recall
280
+ value: 0.9880952380952381
281
+ name: Euclidean Recall
282
+ - type: euclidean_ap
283
+ value: 0.994223106525432
284
+ name: Euclidean Ap
285
+ - type: max_accuracy
286
+ value: 0.9769230769230769
287
+ name: Max Accuracy
288
+ - type: max_accuracy_threshold
289
+ value: 7.349482536315918
290
+ name: Max Accuracy Threshold
291
+ - type: max_f1
292
+ value: 0.9822485207100591
293
+ name: Max F1
294
+ - type: max_f1_threshold
295
+ value: 7.349482536315918
296
+ name: Max F1 Threshold
297
+ - type: max_precision
298
+ value: 0.9764705882352941
299
+ name: Max Precision
300
+ - type: max_recall
301
+ value: 0.9880952380952381
302
+ name: Max Recall
303
+ - type: max_ap
304
+ value: 0.9943188357594678
305
+ name: Max Ap
306
+ ---
307
+
308
+ # e5 cogcache small
309
+
310
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
311
+
312
+ ## Model Details
313
+
314
+ ### Model Description
315
+ - **Model Type:** Sentence Transformer
316
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
317
+ - **Maximum Sequence Length:** 512 tokens
318
+ - **Output Dimensionality:** 384 tokens
319
+ - **Similarity Function:** Cosine Similarity
320
+ <!-- - **Training Dataset:** Unknown -->
321
+ - **Language:** en
322
+ - **License:** apache-2.0
323
+
324
+ ### Model Sources
325
+
326
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
327
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
328
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
329
+
330
+ ### Full Model Architecture
331
+
332
+ ```
333
+ SentenceTransformer(
334
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
335
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
336
+ (2): Normalize()
337
+ )
338
+ ```
339
+
340
+ ## Usage
341
+
342
+ ### Direct Usage (Sentence Transformers)
343
+
344
+ First install the Sentence Transformers library:
345
+
346
+ ```bash
347
+ pip install -U sentence-transformers
348
+ ```
349
+
350
+ Then you can load this model and run inference.
351
+ ```python
352
+ from sentence_transformers import SentenceTransformer
353
+
354
+ # Download from the 🤗 Hub
355
+ model = SentenceTransformer("srikarvar/e5-small-cogcachedata-6")
356
+ # Run inference
357
+ sentences = [
358
+ 'How can I improve my Spanish?',
359
+ 'How can I improve my English?',
360
+ 'How can I lose weight?',
361
+ ]
362
+ embeddings = model.encode(sentences)
363
+ print(embeddings.shape)
364
+ # [3, 384]
365
+
366
+ # Get the similarity scores for the embeddings
367
+ similarities = model.similarity(embeddings, embeddings)
368
+ print(similarities.shape)
369
+ # [3, 3]
370
+ ```
371
+
372
+ <!--
373
+ ### Direct Usage (Transformers)
374
+
375
+ <details><summary>Click to see the direct usage in Transformers</summary>
376
+
377
+ </details>
378
+ -->
379
+
380
+ <!--
381
+ ### Downstream Usage (Sentence Transformers)
382
+
383
+ You can finetune this model on your own dataset.
384
+
385
+ <details><summary>Click to expand</summary>
386
+
387
+ </details>
388
+ -->
389
+
390
+ <!--
391
+ ### Out-of-Scope Use
392
+
393
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
394
+ -->
395
+
396
+ ## Evaluation
397
+
398
+ ### Metrics
399
+
400
+ #### Binary Classification
401
+ * Dataset: `quora-duplicates-dev`
402
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
403
+
404
+ | Metric | Value |
405
+ |:-----------------------------|:-----------|
406
+ | cosine_accuracy | 0.9769 |
407
+ | cosine_accuracy_threshold | 0.8897 |
408
+ | cosine_f1 | 0.9822 |
409
+ | cosine_f1_threshold | 0.8897 |
410
+ | cosine_precision | 0.9765 |
411
+ | cosine_recall | 0.9881 |
412
+ | cosine_ap | 0.9942 |
413
+ | dot_accuracy | 0.9769 |
414
+ | dot_accuracy_threshold | 0.8897 |
415
+ | dot_f1 | 0.9822 |
416
+ | dot_f1_threshold | 0.8897 |
417
+ | dot_precision | 0.9765 |
418
+ | dot_recall | 0.9881 |
419
+ | dot_ap | 0.9942 |
420
+ | manhattan_accuracy | 0.9769 |
421
+ | manhattan_accuracy_threshold | 7.3495 |
422
+ | manhattan_f1 | 0.9822 |
423
+ | manhattan_f1_threshold | 7.3495 |
424
+ | manhattan_precision | 0.9765 |
425
+ | manhattan_recall | 0.9881 |
426
+ | manhattan_ap | 0.9943 |
427
+ | euclidean_accuracy | 0.9769 |
428
+ | euclidean_accuracy_threshold | 0.4697 |
429
+ | euclidean_f1 | 0.9822 |
430
+ | euclidean_f1_threshold | 0.4697 |
431
+ | euclidean_precision | 0.9765 |
432
+ | euclidean_recall | 0.9881 |
433
+ | euclidean_ap | 0.9942 |
434
+ | max_accuracy | 0.9769 |
435
+ | max_accuracy_threshold | 7.3495 |
436
+ | max_f1 | 0.9822 |
437
+ | max_f1_threshold | 7.3495 |
438
+ | max_precision | 0.9765 |
439
+ | max_recall | 0.9881 |
440
+ | **max_ap** | **0.9943** |
441
+
442
+ #### Binary Classification
443
+ * Dataset: `e5-cogcache-dev`
444
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
445
+
446
+ | Metric | Value |
447
+ |:-----------------------------|:-----------|
448
+ | cosine_accuracy | 0.9769 |
449
+ | cosine_accuracy_threshold | 0.8897 |
450
+ | cosine_f1 | 0.9822 |
451
+ | cosine_f1_threshold | 0.8897 |
452
+ | cosine_precision | 0.9765 |
453
+ | cosine_recall | 0.9881 |
454
+ | cosine_ap | 0.9942 |
455
+ | dot_accuracy | 0.9769 |
456
+ | dot_accuracy_threshold | 0.8897 |
457
+ | dot_f1 | 0.9822 |
458
+ | dot_f1_threshold | 0.8897 |
459
+ | dot_precision | 0.9765 |
460
+ | dot_recall | 0.9881 |
461
+ | dot_ap | 0.9942 |
462
+ | manhattan_accuracy | 0.9769 |
463
+ | manhattan_accuracy_threshold | 7.3495 |
464
+ | manhattan_f1 | 0.9822 |
465
+ | manhattan_f1_threshold | 7.3495 |
466
+ | manhattan_precision | 0.9765 |
467
+ | manhattan_recall | 0.9881 |
468
+ | manhattan_ap | 0.9943 |
469
+ | euclidean_accuracy | 0.9769 |
470
+ | euclidean_accuracy_threshold | 0.4697 |
471
+ | euclidean_f1 | 0.9822 |
472
+ | euclidean_f1_threshold | 0.4697 |
473
+ | euclidean_precision | 0.9765 |
474
+ | euclidean_recall | 0.9881 |
475
+ | euclidean_ap | 0.9942 |
476
+ | max_accuracy | 0.9769 |
477
+ | max_accuracy_threshold | 7.3495 |
478
+ | max_f1 | 0.9822 |
479
+ | max_f1_threshold | 7.3495 |
480
+ | max_precision | 0.9765 |
481
+ | max_recall | 0.9881 |
482
+ | **max_ap** | **0.9943** |
483
+
484
+ <!--
485
+ ## Bias, Risks and Limitations
486
+
487
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
488
+ -->
489
+
490
+ <!--
491
+ ### Recommendations
492
+
493
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
494
+ -->
495
+
496
+ ## Training Details
497
+
498
+ ### Training Dataset
499
+
500
+ #### Unnamed Dataset
501
+
502
+
503
+ * Size: 559 training samples
504
+ * Columns: <code>sentence2</code>, <code>label</code>, and <code>sentence1</code>
505
+ * Approximate statistics based on the first 1000 samples:
506
+ | | sentence2 | label | sentence1 |
507
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
508
+ | type | string | int | string |
509
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.07 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~44.54%</li><li>1: ~55.46%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.45 tokens</li><li>max: 20 tokens</li></ul> |
510
+ * Samples:
511
+ | sentence2 | label | sentence1 |
512
+ |:-------------------------------------------------|:---------------|:--------------------------------------------------|
513
+ | <code>What are the ingredients of a pizza</code> | <code>1</code> | <code>What are the ingredients of a pizza?</code> |
514
+ | <code>What are the ingredients of pizza</code> | <code>1</code> | <code>What are the ingredients of a pizza?</code> |
515
+ | <code>What are ingredients of pizza</code> | <code>1</code> | <code>What are the ingredients of a pizza?</code> |
516
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
517
+
518
+ ### Evaluation Dataset
519
+
520
+ #### Unnamed Dataset
521
+
522
+
523
+ * Size: 130 evaluation samples
524
+ * Columns: <code>sentence2</code>, <code>label</code>, and <code>sentence1</code>
525
+ * Approximate statistics based on the first 1000 samples:
526
+ | | sentence2 | label | sentence1 |
527
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
528
+ | type | string | int | string |
529
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.48 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~35.38%</li><li>1: ~64.62%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.85 tokens</li><li>max: 20 tokens</li></ul> |
530
+ * Samples:
531
+ | sentence2 | label | sentence1 |
532
+ |:-------------------------------------------------|:---------------|:--------------------------------------------------|
533
+ | <code>What are the ingredients of a pizza</code> | <code>1</code> | <code>What are the ingredients of a pizza?</code> |
534
+ | <code>What are the ingredients of pizza</code> | <code>1</code> | <code>What are the ingredients of a pizza?</code> |
535
+ | <code>What are ingredients of pizza</code> | <code>1</code> | <code>What are the ingredients of a pizza?</code> |
536
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
537
+
538
+ ### Training Hyperparameters
539
+ #### Non-Default Hyperparameters
540
+
541
+ - `eval_strategy`: epoch
542
+ - `per_device_train_batch_size`: 16
543
+ - `per_device_eval_batch_size`: 16
544
+ - `num_train_epochs`: 6
545
+ - `warmup_ratio`: 0.1
546
+ - `batch_sampler`: no_duplicates
547
+
548
+ #### All Hyperparameters
549
+ <details><summary>Click to expand</summary>
550
+
551
+ - `overwrite_output_dir`: False
552
+ - `do_predict`: False
553
+ - `eval_strategy`: epoch
554
+ - `prediction_loss_only`: True
555
+ - `per_device_train_batch_size`: 16
556
+ - `per_device_eval_batch_size`: 16
557
+ - `per_gpu_train_batch_size`: None
558
+ - `per_gpu_eval_batch_size`: None
559
+ - `gradient_accumulation_steps`: 1
560
+ - `eval_accumulation_steps`: None
561
+ - `learning_rate`: 5e-05
562
+ - `weight_decay`: 0.0
563
+ - `adam_beta1`: 0.9
564
+ - `adam_beta2`: 0.999
565
+ - `adam_epsilon`: 1e-08
566
+ - `max_grad_norm`: 1.0
567
+ - `num_train_epochs`: 6
568
+ - `max_steps`: -1
569
+ - `lr_scheduler_type`: linear
570
+ - `lr_scheduler_kwargs`: {}
571
+ - `warmup_ratio`: 0.1
572
+ - `warmup_steps`: 0
573
+ - `log_level`: passive
574
+ - `log_level_replica`: warning
575
+ - `log_on_each_node`: True
576
+ - `logging_nan_inf_filter`: True
577
+ - `save_safetensors`: True
578
+ - `save_on_each_node`: False
579
+ - `save_only_model`: False
580
+ - `restore_callback_states_from_checkpoint`: False
581
+ - `no_cuda`: False
582
+ - `use_cpu`: False
583
+ - `use_mps_device`: False
584
+ - `seed`: 42
585
+ - `data_seed`: None
586
+ - `jit_mode_eval`: False
587
+ - `use_ipex`: False
588
+ - `bf16`: False
589
+ - `fp16`: False
590
+ - `fp16_opt_level`: O1
591
+ - `half_precision_backend`: auto
592
+ - `bf16_full_eval`: False
593
+ - `fp16_full_eval`: False
594
+ - `tf32`: None
595
+ - `local_rank`: 0
596
+ - `ddp_backend`: None
597
+ - `tpu_num_cores`: None
598
+ - `tpu_metrics_debug`: False
599
+ - `debug`: []
600
+ - `dataloader_drop_last`: False
601
+ - `dataloader_num_workers`: 0
602
+ - `dataloader_prefetch_factor`: None
603
+ - `past_index`: -1
604
+ - `disable_tqdm`: False
605
+ - `remove_unused_columns`: True
606
+ - `label_names`: None
607
+ - `load_best_model_at_end`: False
608
+ - `ignore_data_skip`: False
609
+ - `fsdp`: []
610
+ - `fsdp_min_num_params`: 0
611
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
612
+ - `fsdp_transformer_layer_cls_to_wrap`: None
613
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
614
+ - `deepspeed`: None
615
+ - `label_smoothing_factor`: 0.0
616
+ - `optim`: adamw_torch
617
+ - `optim_args`: None
618
+ - `adafactor`: False
619
+ - `group_by_length`: False
620
+ - `length_column_name`: length
621
+ - `ddp_find_unused_parameters`: None
622
+ - `ddp_bucket_cap_mb`: None
623
+ - `ddp_broadcast_buffers`: False
624
+ - `dataloader_pin_memory`: True
625
+ - `dataloader_persistent_workers`: False
626
+ - `skip_memory_metrics`: True
627
+ - `use_legacy_prediction_loop`: False
628
+ - `push_to_hub`: False
629
+ - `resume_from_checkpoint`: None
630
+ - `hub_model_id`: None
631
+ - `hub_strategy`: every_save
632
+ - `hub_private_repo`: False
633
+ - `hub_always_push`: False
634
+ - `gradient_checkpointing`: False
635
+ - `gradient_checkpointing_kwargs`: None
636
+ - `include_inputs_for_metrics`: False
637
+ - `eval_do_concat_batches`: True
638
+ - `fp16_backend`: auto
639
+ - `push_to_hub_model_id`: None
640
+ - `push_to_hub_organization`: None
641
+ - `mp_parameters`:
642
+ - `auto_find_batch_size`: False
643
+ - `full_determinism`: False
644
+ - `torchdynamo`: None
645
+ - `ray_scope`: last
646
+ - `ddp_timeout`: 1800
647
+ - `torch_compile`: False
648
+ - `torch_compile_backend`: None
649
+ - `torch_compile_mode`: None
650
+ - `dispatch_batches`: None
651
+ - `split_batches`: None
652
+ - `include_tokens_per_second`: False
653
+ - `include_num_input_tokens_seen`: False
654
+ - `neftune_noise_alpha`: None
655
+ - `optim_target_modules`: None
656
+ - `batch_eval_metrics`: False
657
+ - `batch_sampler`: no_duplicates
658
+ - `multi_dataset_batch_sampler`: proportional
659
+
660
+ </details>
661
+
662
+ ### Training Logs
663
+ | Epoch | Step | loss | e5-cogcache-dev_max_ap | quora-duplicates-dev_max_ap |
664
+ |:------:|:----:|:------:|:----------------------:|:---------------------------:|
665
+ | 0 | 0 | - | - | 0.7430 |
666
+ | 1.0286 | 36 | 0.3066 | - | 0.9122 |
667
+ | 2.0286 | 72 | 0.0949 | - | 0.9643 |
668
+ | 3.0286 | 108 | 0.0307 | - | 0.9898 |
669
+ | 4.0286 | 144 | 0.0301 | - | 0.9916 |
670
+ | 5.0286 | 180 | 0.0291 | - | 0.9950 |
671
+ | 5.8571 | 210 | 0.0294 | 0.9943 | 0.9943 |
672
+
673
+
674
+ ### Framework Versions
675
+ - Python: 3.10.12
676
+ - Sentence Transformers: 3.0.1
677
+ - Transformers: 4.41.2
678
+ - PyTorch: 2.1.2+cu121
679
+ - Accelerate: 0.32.1
680
+ - Datasets: 2.19.1
681
+ - Tokenizers: 0.19.1
682
+
683
+ ## Citation
684
+
685
+ ### BibTeX
686
+
687
+ #### Sentence Transformers
688
+ ```bibtex
689
+ @inproceedings{reimers-2019-sentence-bert,
690
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
691
+ author = "Reimers, Nils and Gurevych, Iryna",
692
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
693
+ month = "11",
694
+ year = "2019",
695
+ publisher = "Association for Computational Linguistics",
696
+ url = "https://arxiv.org/abs/1908.10084",
697
+ }
698
+ ```
699
+
700
+ <!--
701
+ ## Glossary
702
+
703
+ *Clearly define terms in order to be accessible across audiences.*
704
+ -->
705
+
706
+ <!--
707
+ ## Model Card Authors
708
+
709
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
710
+ -->
711
+
712
+ <!--
713
+ ## Model Card Contact
714
+
715
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
716
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c37bdc6e32808f07399c46b3acff91e05d1b4111f396fc0b512da4a8ebdf989
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }