srikanth88infy commited on
Commit
f172fed
·
verified ·
1 Parent(s): 777157a

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,657 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:156
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: 1. What significant multi-modal models were released by major vendors
13
+ in 2024?
14
+ sentences:
15
+ - 'The boring yet crucial secret behind good system prompts is test-driven development.
16
+ You don’t write down a system prompt and find ways to test it. You write down
17
+ tests and find a system prompt that passes them.
18
+
19
+
20
+ It’s become abundantly clear over the course of 2024 that writing good automated
21
+ evals for LLM-powered systems is the skill that’s most needed to build useful
22
+ applications on top of these models. If you have a strong eval suite you can adopt
23
+ new models faster, iterate better and build more reliable and useful product features
24
+ than your competition.
25
+
26
+ Vercel’s Malte Ubl:'
27
+ - 'In 2024, almost every significant model vendor released multi-modal models. We
28
+ saw the Claude 3 series from Anthropic in March, Gemini 1.5 Pro in April (images,
29
+ audio and video), then September brought Qwen2-VL and Mistral’s Pixtral 12B and
30
+ Meta’s Llama 3.2 11B and 90B vision models. We got audio input and output from
31
+ OpenAI in October, then November saw SmolVLM from Hugging Face and December saw
32
+ image and video models from Amazon Nova.
33
+
34
+ In October I upgraded my LLM CLI tool to support multi-modal models via attachments.
35
+ It now has plugins for a whole collection of different vision models.'
36
+ - 'Intuitively, one would expect that systems this powerful would take millions
37
+ of lines of complex code. Instead, it turns out a few hundred lines of Python
38
+ is genuinely enough to train a basic version!
39
+
40
+ What matters most is the training data. You need a lot of data to make these
41
+ things work, and the quantity and quality of the training data appears to be the
42
+ most important factor in how good the resulting model is.
43
+
44
+ If you can gather the right data, and afford to pay for the GPUs to train it,
45
+ you can build an LLM.'
46
+ - source_sentence: 2. How did the construction of railways in the 1800s impact the
47
+ environment?
48
+ sentences:
49
+ - 'The environmental impact got much, much worse
50
+
51
+ The much bigger problem here is the enormous competitive buildout of the infrastructure
52
+ that is imagined to be necessary for these models in the future.
53
+
54
+ Companies like Google, Meta, Microsoft and Amazon are all spending billions of
55
+ dollars rolling out new datacenters, with a very material impact on the electricity
56
+ grid and the environment. There’s even talk of spinning up new nuclear power stations,
57
+ but those can take decades.
58
+
59
+ Is this infrastructure necessary? DeepSeek v3’s $6m training cost and the continued
60
+ crash in LLM prices might hint that it’s not. But would you want to be the big
61
+ tech executive that argued NOT to build out this infrastructure only to be proven
62
+ wrong in a few years’ time?'
63
+ - 'An interesting point of comparison here could be the way railways rolled out
64
+ around the world in the 1800s. Constructing these required enormous investments
65
+ and had a massive environmental impact, and many of the lines that were built
66
+ turned out to be unnecessary—sometimes multiple lines from different companies
67
+ serving the exact same routes!
68
+
69
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
70
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
71
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
72
+ environmental damage.
73
+
74
+ The year of slop'
75
+ - 'An interesting point of comparison here could be the way railways rolled out
76
+ around the world in the 1800s. Constructing these required enormous investments
77
+ and had a massive environmental impact, and many of the lines that were built
78
+ turned out to be unnecessary—sometimes multiple lines from different companies
79
+ serving the exact same routes!
80
+
81
+ The resulting bubbles contributed to several financial crashes, see Wikipedia
82
+ for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
83
+ left us with a lot of useful infrastructure and a great deal of bankruptcies and
84
+ environmental damage.
85
+
86
+ The year of slop'
87
+ - source_sentence: 2. Why does the author believe that gullibility may hinder the
88
+ development of AI agents?
89
+ sentences:
90
+ - 'The two main categories I see are people who think AI agents are obviously things
91
+ that go and act on your behalf—the travel agent model—and people who think in
92
+ terms of LLMs that have been given access to tools which they can run in a loop
93
+ as part of solving a problem. The term “autonomy” is often thrown into the mix
94
+ too, again without including a clear definition.
95
+
96
+ (I also collected 211 definitions on Twitter a few months ago—here they are in
97
+ Datasette Lite—and had gemini-exp-1206 attempt to summarize them.)
98
+
99
+ Whatever the term may mean, agents still have that feeling of perpetually “coming
100
+ soon”.'
101
+ - 'A lot of people are excited about AI agents—an infuriatingly vague term that
102
+ seems to be converging on “AI systems that can go away and act on your behalf”.
103
+ We’ve been talking about them all year, but I’ve seen few if any examples of them
104
+ running in production, despite lots of exciting prototypes.
105
+
106
+ I think this is because of gullibility.
107
+
108
+ Can we solve this? Honestly, I’m beginning to suspect that you can’t fully solve
109
+ gullibility without achieving AGI. So it may be quite a while before those agent
110
+ dreams can really start to come true!
111
+
112
+ Code may be the best application
113
+
114
+ Over the course of the year, it’s become increasingly clear that writing code
115
+ is one of the things LLMs are most capable of.'
116
+ - 'So far, I think they’re a net positive. I’ve used them on a personal level to
117
+ improve my productivity (and entertain myself) in all sorts of different ways.
118
+ I think people who learn how to use them effectively can gain a significant boost
119
+ to their quality of life.
120
+
121
+ A lot of people are yet to be sold on their value! Some think their negatives
122
+ outweigh their positives, some think they are all hot air, and some even think
123
+ they represent an existential threat to humanity.
124
+
125
+ They’re actually quite easy to build
126
+
127
+ The most surprising thing we’ve learned about LLMs this year is that they’re actually
128
+ quite easy to build.'
129
+ - source_sentence: 2. How does the author compare a prompt without evals, models,
130
+ and UX to an ASML machine?
131
+ sentences:
132
+ - 'Terminology aside, I remain skeptical as to their utility based, once again,
133
+ on the challenge of gullibility. LLMs believe anything you tell them. Any systems
134
+ that attempts to make meaningful decisions on your behalf will run into the same
135
+ roadblock: how good is a travel agent, or a digital assistant, or even a research
136
+ tool if it can’t distinguish truth from fiction?
137
+
138
+ Just the other day Google Search was caught serving up an entirely fake description
139
+ of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
140
+ movie listing from a fan fiction wiki.'
141
+ - 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed
142
+ models currently available, significantly bigger than the largest of Meta’s Llama
143
+ series, Llama 3.1 405B.
144
+
145
+ Benchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot
146
+ Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models.
147
+ This is by far the highest ranking openly licensed model.
148
+
149
+ The really impressive thing about DeepSeek v3 is the training cost. The model
150
+ was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama
151
+ 3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model
152
+ that benchmarks slightly worse.'
153
+ - 'When @v0 first came out we were paranoid about protecting the prompt with all
154
+ kinds of pre and post processing complexity.
155
+
156
+ We completely pivoted to let it rip. A prompt without the evals, models, and especially
157
+ UX is like getting a broken ASML machine without a manual'
158
+ - source_sentence: 1. What significant change occurred in May regarding OpenAI's GPT-4o
159
+ model for users?
160
+ sentences:
161
+ - 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
162
+ available from its launch in June. This was a momentus change, because for the
163
+ previous year free users had mostly been restricted to GPT-3.5 level models, meaning
164
+ new users got a very inaccurate mental model of what a capable LLM could actually
165
+ do.
166
+
167
+ That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
168
+ Pro. This $200/month subscription service is the only way to access their most
169
+ capable model, o1 Pro.
170
+
171
+ Since the trick behind the o1 series (and the future models it will undoubtedly
172
+ inspire) is to expend more compute time to get better results, I don’t think those
173
+ days of free access to the best available models are likely to return.'
174
+ - 'I’m still trying to figure out the best patterns for doing this for my own work.
175
+ Everyone knows that evals are important, but there remains a lack of great guidance
176
+ for how to best implement them—I’m tracking this under my evals tag. My SVG pelican
177
+ riding a bicycle benchmark is a pale imitation of what a real eval suite should
178
+ look like.
179
+
180
+ Apple Intelligence is bad, Apple’s MLX library is excellent
181
+
182
+ As a Mac user I’ve been feeling a lot better about my choice of platform this
183
+ year.
184
+
185
+ Last year it felt like my lack of a Linux/Windows machine with an NVIDIA GPU
186
+ was a huge disadvantage in terms of trying out new models.'
187
+ - 'We already knew LLMs were spookily good at writing code. If you prompt them right,
188
+ it turns out they can build you a full interactive application using HTML, CSS
189
+ and JavaScript (and tools like React if you wire up some extra supporting build
190
+ mechanisms)—often in a single prompt.
191
+
192
+ Anthropic kicked this idea into high gear when they released Claude Artifacts,
193
+ a groundbreaking new feature that was initially slightly lost in the noise due
194
+ to being described half way through their announcement of the incredible Claude
195
+ 3.5 Sonnet.
196
+
197
+ With Artifacts, Claude can write you an on-demand interactive application and
198
+ then let you use it directly inside the Claude interface.
199
+
200
+ Here’s my Extract URLs app, entirely generated by Claude:'
201
+ pipeline_tag: sentence-similarity
202
+ library_name: sentence-transformers
203
+ metrics:
204
+ - cosine_accuracy@1
205
+ - cosine_accuracy@3
206
+ - cosine_accuracy@5
207
+ - cosine_accuracy@10
208
+ - cosine_precision@1
209
+ - cosine_precision@3
210
+ - cosine_precision@5
211
+ - cosine_precision@10
212
+ - cosine_recall@1
213
+ - cosine_recall@3
214
+ - cosine_recall@5
215
+ - cosine_recall@10
216
+ - cosine_ndcg@10
217
+ - cosine_mrr@10
218
+ - cosine_map@100
219
+ model-index:
220
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
221
+ results:
222
+ - task:
223
+ type: information-retrieval
224
+ name: Information Retrieval
225
+ dataset:
226
+ name: Unknown
227
+ type: unknown
228
+ metrics:
229
+ - type: cosine_accuracy@1
230
+ value: 1.0
231
+ name: Cosine Accuracy@1
232
+ - type: cosine_accuracy@3
233
+ value: 1.0
234
+ name: Cosine Accuracy@3
235
+ - type: cosine_accuracy@5
236
+ value: 1.0
237
+ name: Cosine Accuracy@5
238
+ - type: cosine_accuracy@10
239
+ value: 1.0
240
+ name: Cosine Accuracy@10
241
+ - type: cosine_precision@1
242
+ value: 1.0
243
+ name: Cosine Precision@1
244
+ - type: cosine_precision@3
245
+ value: 0.3333333333333333
246
+ name: Cosine Precision@3
247
+ - type: cosine_precision@5
248
+ value: 0.20000000000000004
249
+ name: Cosine Precision@5
250
+ - type: cosine_precision@10
251
+ value: 0.10000000000000002
252
+ name: Cosine Precision@10
253
+ - type: cosine_recall@1
254
+ value: 0.027777777777777776
255
+ name: Cosine Recall@1
256
+ - type: cosine_recall@3
257
+ value: 0.027777777777777776
258
+ name: Cosine Recall@3
259
+ - type: cosine_recall@5
260
+ value: 0.027777777777777776
261
+ name: Cosine Recall@5
262
+ - type: cosine_recall@10
263
+ value: 0.027777777777777776
264
+ name: Cosine Recall@10
265
+ - type: cosine_ndcg@10
266
+ value: 0.22009176629808017
267
+ name: Cosine Ndcg@10
268
+ - type: cosine_mrr@10
269
+ value: 1.0
270
+ name: Cosine Mrr@10
271
+ - type: cosine_map@100
272
+ value: 0.027777777777777776
273
+ name: Cosine Map@100
274
+ ---
275
+
276
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
277
+
278
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
279
+
280
+ ## Model Details
281
+
282
+ ### Model Description
283
+ - **Model Type:** Sentence Transformer
284
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
285
+ - **Maximum Sequence Length:** 512 tokens
286
+ - **Output Dimensionality:** 1024 dimensions
287
+ - **Similarity Function:** Cosine Similarity
288
+ <!-- - **Training Dataset:** Unknown -->
289
+ <!-- - **Language:** Unknown -->
290
+ <!-- - **License:** Unknown -->
291
+
292
+ ### Model Sources
293
+
294
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
295
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
296
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
297
+
298
+ ### Full Model Architecture
299
+
300
+ ```
301
+ SentenceTransformer(
302
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
303
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
304
+ (2): Normalize()
305
+ )
306
+ ```
307
+
308
+ ## Usage
309
+
310
+ ### Direct Usage (Sentence Transformers)
311
+
312
+ First install the Sentence Transformers library:
313
+
314
+ ```bash
315
+ pip install -U sentence-transformers
316
+ ```
317
+
318
+ Then you can load this model and run inference.
319
+ ```python
320
+ from sentence_transformers import SentenceTransformer
321
+
322
+ # Download from the 🤗 Hub
323
+ model = SentenceTransformer("srikanth88infy/legal-ft-v3")
324
+ # Run inference
325
+ sentences = [
326
+ "1. What significant change occurred in May regarding OpenAI's GPT-4o model for users?",
327
+ 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely available from its launch in June. This was a momentus change, because for the previous year free users had mostly been restricted to GPT-3.5 level models, meaning new users got a very inaccurate mental model of what a capable LLM could actually do.\nThat era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT Pro. This $200/month subscription service is the only way to access their most capable model, o1 Pro.\nSince the trick behind the o1 series (and the future models it will undoubtedly inspire) is to expend more compute time to get better results, I don’t think those days of free access to the best available models are likely to return.',
328
+ 'We already knew LLMs were spookily good at writing code. If you prompt them right, it turns out they can build you a full interactive application using HTML, CSS and JavaScript (and tools like React if you wire up some extra supporting build mechanisms)—often in a single prompt.\nAnthropic kicked this idea into high gear when they released Claude Artifacts, a groundbreaking new feature that was initially slightly lost in the noise due to being described half way through their announcement of the incredible Claude 3.5 Sonnet.\nWith Artifacts, Claude can write you an on-demand interactive application and then let you use it directly inside the Claude interface.\nHere’s my Extract URLs app, entirely generated by Claude:',
329
+ ]
330
+ embeddings = model.encode(sentences)
331
+ print(embeddings.shape)
332
+ # [3, 1024]
333
+
334
+ # Get the similarity scores for the embeddings
335
+ similarities = model.similarity(embeddings, embeddings)
336
+ print(similarities.shape)
337
+ # [3, 3]
338
+ ```
339
+
340
+ <!--
341
+ ### Direct Usage (Transformers)
342
+
343
+ <details><summary>Click to see the direct usage in Transformers</summary>
344
+
345
+ </details>
346
+ -->
347
+
348
+ <!--
349
+ ### Downstream Usage (Sentence Transformers)
350
+
351
+ You can finetune this model on your own dataset.
352
+
353
+ <details><summary>Click to expand</summary>
354
+
355
+ </details>
356
+ -->
357
+
358
+ <!--
359
+ ### Out-of-Scope Use
360
+
361
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
362
+ -->
363
+
364
+ ## Evaluation
365
+
366
+ ### Metrics
367
+
368
+ #### Information Retrieval
369
+
370
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
371
+
372
+ | Metric | Value |
373
+ |:--------------------|:-----------|
374
+ | cosine_accuracy@1 | 1.0 |
375
+ | cosine_accuracy@3 | 1.0 |
376
+ | cosine_accuracy@5 | 1.0 |
377
+ | cosine_accuracy@10 | 1.0 |
378
+ | cosine_precision@1 | 1.0 |
379
+ | cosine_precision@3 | 0.3333 |
380
+ | cosine_precision@5 | 0.2 |
381
+ | cosine_precision@10 | 0.1 |
382
+ | cosine_recall@1 | 0.0278 |
383
+ | cosine_recall@3 | 0.0278 |
384
+ | cosine_recall@5 | 0.0278 |
385
+ | cosine_recall@10 | 0.0278 |
386
+ | **cosine_ndcg@10** | **0.2201** |
387
+ | cosine_mrr@10 | 1.0 |
388
+ | cosine_map@100 | 0.0278 |
389
+
390
+ <!--
391
+ ## Bias, Risks and Limitations
392
+
393
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
394
+ -->
395
+
396
+ <!--
397
+ ### Recommendations
398
+
399
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
400
+ -->
401
+
402
+ ## Training Details
403
+
404
+ ### Training Dataset
405
+
406
+ #### Unnamed Dataset
407
+
408
+ * Size: 156 training samples
409
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
410
+ * Approximate statistics based on the first 156 samples:
411
+ | | sentence_0 | sentence_1 |
412
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
413
+ | type | string | string |
414
+ | details | <ul><li>min: 14 tokens</li><li>mean: 22.31 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 135.18 tokens</li><li>max: 214 tokens</li></ul> |
415
+ * Samples:
416
+ | sentence_0 | sentence_1 |
417
+ |:--------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
418
+ | <code>1. What significant advancements in AI were made in 2023, particularly regarding Large Language Models (LLMs)?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
419
+ | <code>2. How does the development of LLMs in 2023 relate to the historical context of Artificial Intelligence since the 1950s?</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
420
+ | <code>1. What are some potential applications of Large Language Models (LLMs) mentioned in the context?</code> | <code>Large Language Models<br>They’re actually quite easy to build<br>You can run LLMs on your own devices<br>Hobbyists can build their own fine-tuned models<br>We don’t yet know how to build GPT-4<br>Vibes Based Development<br>LLMs are really smart, and also really, really dumb<br>Gullibility is the biggest unsolved problem<br>Code may be the best application<br>The ethics of this space remain diabolically complex<br>My blog in 2023</code> |
421
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
422
+ ```json
423
+ {
424
+ "loss": "MultipleNegativesRankingLoss",
425
+ "matryoshka_dims": [
426
+ 768,
427
+ 512,
428
+ 256,
429
+ 128,
430
+ 64
431
+ ],
432
+ "matryoshka_weights": [
433
+ 1,
434
+ 1,
435
+ 1,
436
+ 1,
437
+ 1
438
+ ],
439
+ "n_dims_per_step": -1
440
+ }
441
+ ```
442
+
443
+ ### Training Hyperparameters
444
+ #### Non-Default Hyperparameters
445
+
446
+ - `eval_strategy`: steps
447
+ - `per_device_train_batch_size`: 10
448
+ - `per_device_eval_batch_size`: 10
449
+ - `num_train_epochs`: 10
450
+ - `multi_dataset_batch_sampler`: round_robin
451
+
452
+ #### All Hyperparameters
453
+ <details><summary>Click to expand</summary>
454
+
455
+ - `overwrite_output_dir`: False
456
+ - `do_predict`: False
457
+ - `eval_strategy`: steps
458
+ - `prediction_loss_only`: True
459
+ - `per_device_train_batch_size`: 10
460
+ - `per_device_eval_batch_size`: 10
461
+ - `per_gpu_train_batch_size`: None
462
+ - `per_gpu_eval_batch_size`: None
463
+ - `gradient_accumulation_steps`: 1
464
+ - `eval_accumulation_steps`: None
465
+ - `torch_empty_cache_steps`: None
466
+ - `learning_rate`: 5e-05
467
+ - `weight_decay`: 0.0
468
+ - `adam_beta1`: 0.9
469
+ - `adam_beta2`: 0.999
470
+ - `adam_epsilon`: 1e-08
471
+ - `max_grad_norm`: 1
472
+ - `num_train_epochs`: 10
473
+ - `max_steps`: -1
474
+ - `lr_scheduler_type`: linear
475
+ - `lr_scheduler_kwargs`: {}
476
+ - `warmup_ratio`: 0.0
477
+ - `warmup_steps`: 0
478
+ - `log_level`: passive
479
+ - `log_level_replica`: warning
480
+ - `log_on_each_node`: True
481
+ - `logging_nan_inf_filter`: True
482
+ - `save_safetensors`: True
483
+ - `save_on_each_node`: False
484
+ - `save_only_model`: False
485
+ - `restore_callback_states_from_checkpoint`: False
486
+ - `no_cuda`: False
487
+ - `use_cpu`: False
488
+ - `use_mps_device`: False
489
+ - `seed`: 42
490
+ - `data_seed`: None
491
+ - `jit_mode_eval`: False
492
+ - `use_ipex`: False
493
+ - `bf16`: False
494
+ - `fp16`: False
495
+ - `fp16_opt_level`: O1
496
+ - `half_precision_backend`: auto
497
+ - `bf16_full_eval`: False
498
+ - `fp16_full_eval`: False
499
+ - `tf32`: None
500
+ - `local_rank`: 0
501
+ - `ddp_backend`: None
502
+ - `tpu_num_cores`: None
503
+ - `tpu_metrics_debug`: False
504
+ - `debug`: []
505
+ - `dataloader_drop_last`: False
506
+ - `dataloader_num_workers`: 0
507
+ - `dataloader_prefetch_factor`: None
508
+ - `past_index`: -1
509
+ - `disable_tqdm`: False
510
+ - `remove_unused_columns`: True
511
+ - `label_names`: None
512
+ - `load_best_model_at_end`: False
513
+ - `ignore_data_skip`: False
514
+ - `fsdp`: []
515
+ - `fsdp_min_num_params`: 0
516
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
517
+ - `fsdp_transformer_layer_cls_to_wrap`: None
518
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
519
+ - `deepspeed`: None
520
+ - `label_smoothing_factor`: 0.0
521
+ - `optim`: adamw_torch
522
+ - `optim_args`: None
523
+ - `adafactor`: False
524
+ - `group_by_length`: False
525
+ - `length_column_name`: length
526
+ - `ddp_find_unused_parameters`: None
527
+ - `ddp_bucket_cap_mb`: None
528
+ - `ddp_broadcast_buffers`: False
529
+ - `dataloader_pin_memory`: True
530
+ - `dataloader_persistent_workers`: False
531
+ - `skip_memory_metrics`: True
532
+ - `use_legacy_prediction_loop`: False
533
+ - `push_to_hub`: False
534
+ - `resume_from_checkpoint`: None
535
+ - `hub_model_id`: None
536
+ - `hub_strategy`: every_save
537
+ - `hub_private_repo`: None
538
+ - `hub_always_push`: False
539
+ - `gradient_checkpointing`: False
540
+ - `gradient_checkpointing_kwargs`: None
541
+ - `include_inputs_for_metrics`: False
542
+ - `include_for_metrics`: []
543
+ - `eval_do_concat_batches`: True
544
+ - `fp16_backend`: auto
545
+ - `push_to_hub_model_id`: None
546
+ - `push_to_hub_organization`: None
547
+ - `mp_parameters`:
548
+ - `auto_find_batch_size`: False
549
+ - `full_determinism`: False
550
+ - `torchdynamo`: None
551
+ - `ray_scope`: last
552
+ - `ddp_timeout`: 1800
553
+ - `torch_compile`: False
554
+ - `torch_compile_backend`: None
555
+ - `torch_compile_mode`: None
556
+ - `dispatch_batches`: None
557
+ - `split_batches`: None
558
+ - `include_tokens_per_second`: False
559
+ - `include_num_input_tokens_seen`: False
560
+ - `neftune_noise_alpha`: None
561
+ - `optim_target_modules`: None
562
+ - `batch_eval_metrics`: False
563
+ - `eval_on_start`: False
564
+ - `use_liger_kernel`: False
565
+ - `eval_use_gather_object`: False
566
+ - `average_tokens_across_devices`: False
567
+ - `prompts`: None
568
+ - `batch_sampler`: batch_sampler
569
+ - `multi_dataset_batch_sampler`: round_robin
570
+
571
+ </details>
572
+
573
+ ### Training Logs
574
+ | Epoch | Step | cosine_ndcg@10 |
575
+ |:-----:|:----:|:--------------:|
576
+ | 1.0 | 16 | 0.2133 |
577
+ | 2.0 | 32 | 0.2133 |
578
+ | 3.0 | 48 | 0.2167 |
579
+ | 3.125 | 50 | 0.2167 |
580
+ | 4.0 | 64 | 0.2201 |
581
+ | 5.0 | 80 | 0.2201 |
582
+ | 6.0 | 96 | 0.2167 |
583
+ | 6.25 | 100 | 0.2167 |
584
+ | 7.0 | 112 | 0.2167 |
585
+ | 8.0 | 128 | 0.2167 |
586
+ | 9.0 | 144 | 0.2201 |
587
+ | 9.375 | 150 | 0.2201 |
588
+ | 10.0 | 160 | 0.2201 |
589
+
590
+
591
+ ### Framework Versions
592
+ - Python: 3.13.1
593
+ - Sentence Transformers: 3.4.1
594
+ - Transformers: 4.48.3
595
+ - PyTorch: 2.6.0
596
+ - Accelerate: 1.3.0
597
+ - Datasets: 3.2.0
598
+ - Tokenizers: 0.21.0
599
+
600
+ ## Citation
601
+
602
+ ### BibTeX
603
+
604
+ #### Sentence Transformers
605
+ ```bibtex
606
+ @inproceedings{reimers-2019-sentence-bert,
607
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
608
+ author = "Reimers, Nils and Gurevych, Iryna",
609
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
610
+ month = "11",
611
+ year = "2019",
612
+ publisher = "Association for Computational Linguistics",
613
+ url = "https://arxiv.org/abs/1908.10084",
614
+ }
615
+ ```
616
+
617
+ #### MatryoshkaLoss
618
+ ```bibtex
619
+ @misc{kusupati2024matryoshka,
620
+ title={Matryoshka Representation Learning},
621
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
622
+ year={2024},
623
+ eprint={2205.13147},
624
+ archivePrefix={arXiv},
625
+ primaryClass={cs.LG}
626
+ }
627
+ ```
628
+
629
+ #### MultipleNegativesRankingLoss
630
+ ```bibtex
631
+ @misc{henderson2017efficient,
632
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
633
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
634
+ year={2017},
635
+ eprint={1705.00652},
636
+ archivePrefix={arXiv},
637
+ primaryClass={cs.CL}
638
+ }
639
+ ```
640
+
641
+ <!--
642
+ ## Glossary
643
+
644
+ *Clearly define terms in order to be accessible across audiences.*
645
+ -->
646
+
647
+ <!--
648
+ ## Model Card Authors
649
+
650
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
651
+ -->
652
+
653
+ <!--
654
+ ## Model Card Contact
655
+
656
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
657
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77831b287b7a463cd01dd4de1d991b8ad9e19edac1edf02ce0b1ae121c6ff145
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff