Update handler.py
Browse files- handler.py +14 -17
handler.py
CHANGED
@@ -1,34 +1,31 @@
|
|
1 |
from typing import Dict
|
2 |
from faster_whisper import WhisperModel
|
3 |
import io
|
4 |
-
import re
|
5 |
|
6 |
class EndpointHandler:
|
7 |
def __init__(self, model_dir=None):
|
8 |
-
#
|
9 |
-
|
10 |
-
compute_type
|
11 |
-
|
12 |
-
# Initialize WhisperModel with large-v2 model size and specified compute_type
|
13 |
-
model_size = "large-v2" if model_dir is None else model_dir
|
14 |
-
self.model = WhisperModel(model_size, device="cuda", compute_type=compute_type)
|
15 |
|
16 |
def __call__(self, data: Dict) -> Dict[str, str]:
|
|
|
17 |
audio_bytes = data["inputs"]
|
|
|
|
|
18 |
audio_file = io.BytesIO(audio_bytes)
|
19 |
-
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# Aggregate transcribed text and remove any extra spaces
|
26 |
text = " ".join(segment.text.strip() for segment in segments)
|
27 |
-
text = re.sub(' +', ' ', text)
|
28 |
-
|
29 |
language_code = info.language
|
30 |
language_prob = info.language_probability
|
31 |
|
|
|
32 |
result = {
|
33 |
"text": text,
|
34 |
"language": language_code,
|
|
|
1 |
from typing import Dict
|
2 |
from faster_whisper import WhisperModel
|
3 |
import io
|
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, model_dir=None):
|
7 |
+
# Set model size, assuming installation has been done with appropriate model files and setup
|
8 |
+
model_size = "medium" if model_dir is None else model_dir
|
9 |
+
# Change to 'cuda' to use the GPU, and set compute_type for faster computation
|
10 |
+
self.model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
|
|
|
|
|
|
11 |
|
12 |
def __call__(self, data: Dict) -> Dict[str, str]:
|
13 |
+
# Process the input data expected to be in 'inputs' key containing audio file bytes
|
14 |
audio_bytes = data["inputs"]
|
15 |
+
|
16 |
+
# Convert bytes to a file-like object
|
17 |
audio_file = io.BytesIO(audio_bytes)
|
18 |
+
|
19 |
+
# Perform transcription using the model
|
20 |
+
segments, info = self.model.transcribe(audio_file)
|
21 |
+
|
22 |
+
# Compile the results into a text string and extract language information
|
23 |
+
# Strip whitespace from each segment before joining them
|
|
|
24 |
text = " ".join(segment.text.strip() for segment in segments)
|
|
|
|
|
25 |
language_code = info.language
|
26 |
language_prob = info.language_probability
|
27 |
|
28 |
+
# Compile the response dictionary
|
29 |
result = {
|
30 |
"text": text,
|
31 |
"language": language_code,
|